[go: up one dir, main page]

JPH06170144A - Method for recovering high-purity gaseous co or co2 from gaseous mixture - Google Patents

Method for recovering high-purity gaseous co or co2 from gaseous mixture

Info

Publication number
JPH06170144A
JPH06170144A JP4325744A JP32574492A JPH06170144A JP H06170144 A JPH06170144 A JP H06170144A JP 4325744 A JP4325744 A JP 4325744A JP 32574492 A JP32574492 A JP 32574492A JP H06170144 A JPH06170144 A JP H06170144A
Authority
JP
Japan
Prior art keywords
gas
adsorption
adsorption tower
adsorbent
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4325744A
Other languages
Japanese (ja)
Inventor
Yasushi Kawamura
靖 川村
Katsushi Kosuge
克志 小菅
Toshiya Higuchi
俊也 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4325744A priority Critical patent/JPH06170144A/en
Publication of JPH06170144A publication Critical patent/JPH06170144A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

(57)【要約】 【目的】 CO又はCO2 ガス濃度が低い混合ガスから
高純度のCO又はCO2ガスを効率的に回収できる手段
を提供すること。 【構成】 原料ガス中の特定成分を吸着する吸着剤を充
填した吸着塔を複数塔配置した圧力スイング吸着装置の
操業方法において、前記吸着剤を原料ガスからCO又は
CO2 ガスを優先的に選択吸着する吸着剤とするととも
に、それぞれの吸着塔の昇圧、吸着、洗浄、脱着の各工
程を有する操業工程に、他の吸着塔の均圧工程と共通す
る均圧工程を付加する。均圧工程で不純物を他塔に移す
ことにより、洗浄ガス量が減り、その分、製品ガスとす
ることができるため、回収率を向上することができる。
また、CO又はCO2 ガス選択性が高く、且つ、CO又
はCO2 の吸着量が豊富な吸着剤を用いることにより、
原料ガス中のCO又はCO2濃度が低いガスから高純度
のCO又はCO2 ガスを分離回収することができる。
(57) [Summary] [Object] To provide means for efficiently recovering highly pure CO or CO 2 gas from a mixed gas having a low CO or CO 2 gas concentration. In a method of operating a pressure swing adsorption device in which a plurality of adsorption towers filled with an adsorbent that adsorbs a specific component in a raw material gas are arranged, CO or CO 2 gas is preferentially selected from the raw material gases as the adsorbent. In addition to the adsorbent to be adsorbed, a pressure equalizing step common to the pressure equalizing step of the other adsorption towers is added to the operation step having the steps of pressurizing, adsorbing, washing and desorbing each adsorption tower. By moving the impurities to the other column in the pressure equalizing step, the amount of cleaning gas is reduced, and the product gas can be used as much, so that the recovery rate can be improved.
Further, by using an adsorbent having a high CO or CO 2 gas selectivity and abundant CO or CO 2 adsorption amount,
Highly pure CO or CO 2 gas can be separated and recovered from a gas having a low CO or CO 2 concentration in the raw material gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原料ガス中の回収目的
成分のガスが低濃度であり、この混合ガスから効率的に
高純度の特定ガスを回収する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for efficiently recovering a high-purity specific gas from a mixed gas having a low concentration of a target gas for recovery in a raw material gas.

【0002】[0002]

【従来の技術】以下、COガスを高純度で回収する方法
について例示する。
2. Description of the Related Art A method for recovering CO gas with high purity will be described below.

【0003】例えば、各種の排ガス,合成ガス等原料ガ
ス中に含有されている特定ガス成分の回収方法として、
吸着塔の中に回収目的成分のみを吸着する吸着剤を充填
し、この吸着剤に原料ガスを導入し、その後製品ガスの
導入等により吸着塔の内圧を変動させることで、目的ガ
スを回収する方法が圧力スイング吸着法として知られて
いる。
For example, as a method for recovering a specific gas component contained in a raw material gas such as various kinds of exhaust gas and synthesis gas,
The target gas is recovered by filling the adsorption tower with an adsorbent that adsorbs only the target components to be recovered, introducing the raw material gas into this adsorbent, and then changing the internal pressure of the adsorption tower by introducing product gas, etc. The method is known as the pressure swing adsorption method.

【0004】ここで、回収されたガスは、純度が高いほ
ど製品価値の高いものであり、これについては、回収効
率の向上、回収純度の向上を目的として、種々検討され
てきている。
Here, the higher the purity of the recovered gas, the higher the product value, and various investigations have been conducted for the purpose of improving recovery efficiency and recovery purity.

【0005】転炉排ガスのような、COガスを主成分と
するような高濃度のCO混合ガスからの高純度COガス
の分離回収方法として、COガスの回収効率の向上につ
いては、特開平1−203018号公報に開示があり、
これは、吸着洗浄後の脱着工程を予備脱着工程と本脱着
工程とに分け、他の吸着塔との操作と重複させて、複数
の吸着塔の作動切り換え時の各塔の待ち時間を少なくし
て吸着塔の稼働効率を向上させ、その結果、COガスの
回収効率を上げるものである。
As a method for separating and recovering high-purity CO gas from a high-concentration CO mixed gas containing CO gas as a main component, such as converter exhaust gas, the improvement of CO gas recovery efficiency is described in Japanese Patent Laid-Open No. HEI-1 -203018, there is a disclosure,
This is because the desorption process after adsorption cleaning is divided into a preliminary desorption process and a main desorption process, and it is overlapped with the operation with other adsorption towers to reduce the waiting time of each tower when switching the operation of multiple adsorption towers. The operation efficiency of the adsorption tower is improved, and as a result, the CO gas recovery efficiency is increased.

【0006】一方、回収COガスの純度の向上について
は、吸着塔の中に充填する吸着剤の性能を上げるものと
して、特公平3−60524号公報に開示があり、これ
は、一般的に広く知られ、かつ使用されているゼオライ
トに塩化銅を担持させ、回収するCOガスの純度向上を
はかるものである。
On the other hand, regarding the improvement of the purity of the recovered CO gas, it is disclosed in Japanese Patent Publication No. 3-60524 as improving the performance of the adsorbent packed in the adsorption tower, which is generally widely used. The known and used zeolite is loaded with copper chloride to improve the purity of CO gas to be recovered.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、前記従
来の技術には次のような問題がある。
However, the above-mentioned conventional techniques have the following problems.

【0008】特開平1−203018号公報に記載され
た吸着剤は、単位吸着剤当りのCOガス吸着量が少ない
ため、4塔の吸着塔中2塔を重複させる脱着方法により
得た吸着ガスを後の洗浄工程で使用し、純度の向上をは
かっている。
Since the adsorbent described in JP-A-1-203018 has a small CO gas adsorption amount per unit adsorbent, the adsorbent gas obtained by the desorption method in which two of the four adsorbents are overlapped is used. It is used in the subsequent washing process to improve the purity.

【0009】この方法では、洗浄ガス量を確保する点で
は優れているが、原料ガス中のCOガスの濃度が低下し
た場合、このような操作方法を繰り返しても、前述の通
り、吸着剤のCOガス吸着量が少ないために、純度を向
上させるだけの洗浄ガス量を確保し得ないという問題が
ある。また、脱着工程において、予備脱着と本脱着と別
々の真空ポンプを使用しているため、電力消費量が増大
するという問題もある。
This method is excellent in ensuring the amount of cleaning gas, but when the concentration of CO gas in the raw material gas is lowered, even if such an operating method is repeated, as described above, Since the amount of CO gas adsorbed is small, there is a problem that it is not possible to secure a sufficient amount of cleaning gas to improve the purity. In addition, in the desorption process, separate vacuum pumps are used for the preliminary desorption and the main desorption, which causes a problem that power consumption increases.

【0010】特公平3−60524号公報に記載された
ものは、原料ガス中のCOガスの濃度が高い場合に有効
であり、かつ吸着剤の最適吸着温度範囲が例えば60〜
70℃であり、通常の圧力スイング方法では、吸着時に
この温度まで昇温しないため、対象とする原料ガスの温
度が低い場合には、別にガスの加熱装置が必要となり、
設備構成が複雑になる。
The method disclosed in Japanese Patent Publication No. 3-60524 is effective when the concentration of CO gas in the raw material gas is high, and the optimum adsorption temperature range of the adsorbent is, for example, 60 to
Since the temperature is 70 ° C. and the normal pressure swing method does not raise the temperature to this temperature during adsorption, when the temperature of the target raw material gas is low, a separate gas heating device is required,
The equipment configuration becomes complicated.

【0011】本発明の目的は、従来の圧力スイング吸着
法における欠点を解消し、とくに、CO又CO2 ガス濃
度が低い混合ガスから高純度のCO又はCO2 ガスを効
率的に回収できる手段を提供することにある。
The object of the present invention is to solve the drawbacks of the conventional pressure swing adsorption method, and in particular, to provide means for efficiently recovering highly pure CO or CO 2 gas from a mixed gas having a low CO or CO 2 gas concentration. To provide.

【0012】[0012]

【課題を解決するための手段】本発明は、原料ガス中の
特定成分を吸着する吸着剤を充填した吸着塔を複数塔配
置した圧力スイング吸着装置の操業方法において、前記
吸着剤を原料ガスからCO又はCO2 ガスを優先的に選
択吸着する吸着剤とするとともに、それぞれの吸着塔の
昇圧、吸着、洗浄、脱着の各工程を有する操業工程に、
他の吸着塔の均圧工程と共通する均圧工程を付加するこ
とを特徴とする。
The present invention provides a method for operating a pressure swing adsorption apparatus in which a plurality of adsorption towers filled with an adsorbent for adsorbing a specific component in a raw material gas are arranged. In addition to an adsorbent that preferentially adsorbs CO or CO 2 gas, an operation process that has steps of pressurizing, adsorbing, cleaning, and desorbing each adsorption tower,
It is characterized in that a pressure equalizing step common to the pressure equalizing steps of other adsorption towers is added.

【0013】[0013]

【作用】吸着塔内のCOガスと不純物の割合の経時変化
を示す図6及び均圧操作の効果を示す図7により本発明
における作用を説明する。
The operation of the present invention will be described with reference to FIG. 6 showing the change with time of the proportion of CO gas and impurities in the adsorption tower and FIG. 7 showing the effect of the pressure equalizing operation.

【0014】図6の(a)は従来法による場合を示し、
(b)は本発明法による場合を示す。本発明において
は、吸着塔の中に充填する吸着剤を従来のものに代え
て、COガスに対してより優れた選択吸着性能を有する
ものにしたため、原料ガス中のCOガス濃度が30%以
下の低い場合においても、吸着工程において吸着剤に吸
着されるCOガスの量が多くなる。次の洗浄工程におけ
る洗浄ガスには、すでに回収されたCOガスを使用する
ものであり、その量を多くするほど、吸着剤に吸着され
た不純物を吸着剤から洗浄除去し、吸着剤に吸着される
COガスの量を漸次増加させ、次の回収工程で回収され
るCOガスの純度が向上する。
FIG. 6A shows the case of the conventional method.
(B) shows the case according to the method of the present invention. In the present invention, since the adsorbent packed in the adsorption tower is replaced with a conventional one to have a better selective adsorption performance for CO gas, the CO gas concentration in the raw material gas is 30% or less. Even in the case of low, the amount of CO gas adsorbed by the adsorbent in the adsorption step increases. The CO gas already recovered is used as the cleaning gas in the next cleaning step. As the amount of CO gas is increased, the impurities adsorbed by the adsorbent are cleaned and removed from the adsorbent, and the adsorbent is adsorbed by the adsorbent. The amount of CO gas to be gradually increased, and the purity of CO gas recovered in the next recovery step is improved.

【0015】図7の(a)は、吸着工程が終了した一つ
の吸着塔Aと脱着・均圧工程が終了した他の吸着塔Bと
の均圧を示す。この均圧により、吸着工程が終了した吸
着塔Aの上部にある不純物を他の吸着塔Bの上部又は下
部に移すことになり、吸着工程が終了した吸着塔Aの次
の工程である洗浄工程での洗浄ガス量の減少が可能とな
る。
FIG. 7A shows the pressure equalization between one adsorption tower A after the adsorption step and the other adsorption tower B after the desorption / pressure equalization step. Due to this pressure equalization, the impurities in the upper part of the adsorption tower A after the adsorption step are transferred to the upper part or the lower part of the other adsorption tower B, and the cleaning step which is the next step of the adsorption tower A after the adsorption step is completed. It is possible to reduce the amount of cleaning gas.

【0016】図7の(b)は、洗浄工程が終了した一つ
の吸着塔Aと脱着工程が終了した他の吸着塔Cとの均圧
を示す。この均圧により、洗浄工程が終了した吸着塔A
の上部または配管内にある不純物を他の吸着塔Cの上部
又は下部に移すことになり、洗浄工程が終了した吸着塔
Aの次の工程である回収工程での回収COガスの純度を
高めることが可能となる。
FIG. 7B shows the pressure equalization between one adsorption tower A after the washing step and another adsorption tower C after the desorption step. Due to this pressure equalization, the adsorption tower A whose cleaning process has been completed
Of impurities in the upper part or the inside of the pipe is transferred to the upper part or the lower part of the other adsorption tower C, and the purity of the recovered CO gas in the recovery step which is the next step of the adsorption tower A after the washing step is increased. Is possible.

【0017】[0017]

【実施例】【Example】

実施例1 本発明をメタノール分解ガス等の低濃度CO混合ガスを
原料ガスとして使用して3基の吸着塔により、COガス
を回収するのに適用した例を示す。
Example 1 An example in which the present invention is applied to recover CO gas by three adsorption towers using a low concentration CO mixed gas such as methanol decomposition gas as a raw material gas will be shown.

【0018】図1は、吸着塔A,B,Cを3基配列した
本発明実施例の代表的なガス通路系を示す。
FIG. 1 shows a typical gas passage system of an embodiment of the present invention in which three adsorption towers A, B and C are arranged.

【0019】ガス通路系は、各切替弁A1,B1,C1
の切替えによって各吸着塔A,B,Cに導入される原料
ガス供給系と、各切替弁A2,B2,C2の切替えによ
って、各吸着塔A,B,Cからの回収COガスを真空ポ
ンプ1によって製品ガスホールダー3に至る回収系と、
さらに、各切替弁A5,B5,C5の切替えによって、
製品ガスホールダー3からブロア2によって回収COガ
スを洗浄ガスとして各吸着塔A,B,Cに供給し、且
つ、その途中で製品COガスとして取り出す製品ガス系
を分岐した洗浄系と、各吸着塔A,B,Cからの排ガス
を各切替弁A4,B4,C4の切替えによって排出する
排出系とを有し、各吸着塔A,B,Cからの排出系は、
各切替弁A3,B3,C3によって切り換えられる連結
系によって連結されている。
The gas passage system includes switching valves A1, B1, C1.
By switching the source gas supply system introduced into each adsorption tower A, B, C and each switching valve A2, B2, C2, the recovered CO gas from each adsorption tower A, B, C is vacuum pump 1 With the recovery system that leads to the product gas holder 3,
Furthermore, by switching the switching valves A5, B5, C5,
A cleaning system in which the recovered CO gas is supplied as a cleaning gas from the product gas holder 3 to the adsorption towers A, B, C by a blower 2 and the product gas system is taken out as a product CO gas in the middle of the cleaning system, and each adsorption tower. The exhaust system from each of the adsorption towers A, B, C has a discharge system for discharging the exhaust gas from A, B, C by switching the switching valves A4, B4, C4.
They are connected by a connection system that is switched by each switching valve A3, B3, C3.

【0020】図2は、図1に示す各吸着塔A、B、Cに
おける操作タイムサイクルを示す。同図に示すように、
各吸着塔A、B、Cにおける操業の基本プロセスは、昇
圧、吸着、洗浄、脱着の工程を経るものであるが、第1
のタイムサイクルT1においては、吸着塔Aの第1の均
圧時(均圧)には吸着塔Cの洗浄前に均圧工程(均圧
)を置き、吸着工程終了後の吸着塔Cと、脱着工程が
終了し減圧状態にある吸着塔Aとを連結し、吸着塔Aに
おける第1の均圧工程(均圧)を経たガスは次工程の
昇圧に利用される。また、第1のタイムサイクルT1の
終期には、洗浄工程終了後の吸着塔Cと脱着工程終了後
の吸着塔Bとを連結し、脱着工程にあった吸着塔Bの次
の工程である昇圧工程に利用される。
FIG. 2 shows an operation time cycle in each of the adsorption towers A, B and C shown in FIG. As shown in the figure,
The basic process of operation in each adsorption tower A, B, C is through the steps of pressurization, adsorption, washing and desorption.
In the time cycle T1 of 1, the pressure equalization step (equal pressure equalization) is performed before the adsorption tower C is washed during the first pressure equalization (pressure equalization) of the adsorption tower A, and the adsorption tower C after the adsorption step is finished, The gas that has passed through the first pressure equalization step (equal pressure equalization) in the adsorption tower A is connected to the adsorption tower A that is in a depressurized state after the desorption step is completed, and is used for pressurization in the next step. At the end of the first time cycle T1, the adsorption tower C after the washing step and the adsorption tower B after the desorption step are connected to each other, and the pressure is the next step after the adsorption tower B in the desorption step. Used in the process.

【0021】また、同図の第2のタイムサイクルT2に
おいては、第1の均圧工程(均圧)として、吸着塔A
における洗浄工程前と昇圧工程前の吸着塔Bを共通化
し、また、第2の均圧工程(均圧)として、吸着塔A
における洗浄後の均圧と吸着塔Cにおける脱着後の均圧
とを共通化する。
In the second time cycle T2 shown in the figure, the adsorption tower A is used as the first pressure equalizing step (pressure equalizing).
The adsorption tower B before the washing step and before the pressurization step is shared, and the adsorption tower A is used as the second pressure equalization step (pressure equalization).
The pressure equalization after cleaning in step 1 and the pressure equalization after desorption in the adsorption tower C are made common.

【0022】また、同図の第3のタイムサイクルT3に
おいては、第1の均圧工程(均圧)として、吸着塔B
における洗浄工程前の均圧と吸着塔Cにおける昇圧前の
均圧とを共通化し、また、第2の均圧工程(均圧)と
して、吸着塔Bにおける洗浄後の均圧と吸着塔Aにおけ
る脱着後の均圧とを共通化する。
Further, in the third time cycle T3 in the figure, the adsorption tower B is used as the first pressure equalizing step (pressure equalizing).
In the adsorption tower C, the pressure equalization before the washing step and the pressure equalization before the pressure increase in the adsorption tower C are made common, and as the second pressure equalization step (equal pressure equalization), the pressure equalization after the washing in the adsorption tower B and the adsorption tower A are performed. Common pressure equalization after desorption.

【0023】図3の(a)〜(d)は、各吸着塔A,
B,Cの操作工程のためのガス流れを示す図である。
3A to 3D show the adsorption towers A,
It is a figure which shows the gas flow for the operation process of B and C.

【0024】図3(a)は、図2における第1のタイム
サイクルT1の吸着塔Aと吸着塔Cとの均圧操作(均圧
)と吸着塔Bの脱着工程のガス流れを示すもので、吸
着塔Cにおける均圧工程のガスは吸着塔Aに送られる。
FIG. 3 (a) shows the gas flow in the desorption process of the adsorption tower B and the adsorption tower A in the first time cycle T1 in FIG. The gas in the pressure equalization step in the adsorption tower C is sent to the adsorption tower A.

【0025】図3(b)は、同じく第1のタイムサイク
ルT1における吸着塔Aの昇圧、吸着塔Bの脱着、吸着
塔Cの洗浄の工程におけるガス流れを示す。吸着塔Bに
おける回収COガスDは製品ガスホールダー3に送入さ
れると共に、製品ガスホールダー3からのガスPが吸着
塔Cに供給され洗浄処理に使用される。また、吸着塔A
では原料ガスFが供給されて、吸着工程前の昇圧工程に
ある。
FIG. 3B shows the gas flow in the steps of pressurizing the adsorption tower A, desorbing the adsorption tower B, and cleaning the adsorption tower C in the same first time cycle T1. The recovered CO gas D in the adsorption tower B is sent to the product gas holder 3, and the gas P from the product gas holder 3 is supplied to the adsorption tower C and used for cleaning treatment. Also, the adsorption tower A
Then, the raw material gas F is supplied to the pressurization process before the adsorption process.

【0026】図3(c)は、同じく第1のタイムサイク
ルT1における吸着塔Aの吸着、吸着塔Bの脱着、吸着
塔Cの洗浄の工程におけるガス流れを示す。吸着塔Aへ
は原料ガスFが供給され、吸着塔Cへは製品ガスホール
ダー3からのガスPが供給され洗浄に使用される。そし
て、吸着塔Bからは回収COガスDが回収される。
FIG. 3C shows the gas flow in the steps of adsorption of the adsorption tower A, desorption of the adsorption tower B, and cleaning of the adsorption tower C in the same first time cycle T1. The raw material gas F is supplied to the adsorption tower A, and the gas P from the product gas holder 3 is supplied to the adsorption tower C and used for cleaning. Then, the recovered CO gas D is recovered from the adsorption tower B.

【0027】図3(d)は、同じく第1のタイムサイク
ルT1における吸着塔Aの吸着、吸着塔Bと吸着塔Cと
が均圧の工程にあるガス流れを示す。吸着塔Aへは原料
ガスFが供給され、吸着塔Bへは吸着塔Cにおける均圧
のためのガスが送入される。
FIG. 3 (d) shows the gas flow in the same adsorption process of the adsorption tower A in the first time cycle T1 and the pressure equalization step of the adsorption tower B and the adsorption tower C. The raw material gas F is supplied to the adsorption tower A, and the gas for pressure equalization in the adsorption tower C is sent to the adsorption tower B.

【0028】このようにして、3基の吸着塔を有する回
収系のタイムサイクルを3つに分割して、それぞれの分
割されたタイムサイクルにおいて、他の吸着塔と共通化
した均圧工程を洗浄工程の前後に置き、吸着塔内に残留
している非目的成分を他の塔に移すことによって、回収
率とともに回収COガスの純度を高めることができる。
In this way, the time cycle of the recovery system having three adsorption towers is divided into three, and in each divided time cycle, the pressure equalizing step shared with other adsorption towers is washed. By placing it before and after the process and transferring the non-target component remaining in the adsorption tower to another tower, the recovery rate as well as the purity of the recovered CO gas can be increased.

【0029】図4は、吸着剤の量が60リットルで、C
O濃度が26vol%、他にH2 ,CO2 ,CH4 から
なる原料ガスを5〜15Nm3 /Hrで供給し、吸着圧
力が0.5kg/cm2 G、脱着圧力が60Torrの
場合の実施例における洗浄ガス量と製品COガスの純度
との関係を示す図である。同図の横軸は、本発明におけ
る均圧工程を用いない操作(比較例)において製品CO
ガス純度が99.94%に到達したときの必要とした洗
浄ガス量を100%としたときの割合を表す。
FIG. 4 shows that the amount of adsorbent is 60 liters and C
Implemented when the O concentration is 26 vol%, the source gas consisting of H 2 , CO 2 , and CH 4 is supplied at 5 to 15 Nm 3 / Hr, the adsorption pressure is 0.5 kg / cm 2 G, and the desorption pressure is 60 Torr. It is a figure which shows the relationship between the amount of cleaning gas and the purity of product CO gas in an example. The horizontal axis of the figure shows the product CO in an operation (comparative example) without using the pressure equalizing step in the present invention.
It represents the ratio when the required cleaning gas amount when the gas purity reaches 99.94% is 100%.

【0030】従来例(特開平1−203018号公報記
載の方法)では、原料ガス中のCO濃度が低いため、C
Oガス吸着量が少なく、したがって十分な洗浄ガス量が
得られない。このため、COガス純度は98.6%が限
界となる(図中、○で示す)。
In the conventional example (the method described in JP-A-1-203018), since the CO concentration in the raw material gas is low, C
Since the amount of O gas adsorbed is small, a sufficient amount of cleaning gas cannot be obtained. Therefore, the CO gas purity is limited to 98.6% (indicated by a circle in the figure).

【0031】本発明法では、吸着剤のCO吸着量が多い
ので、原料ガス中のCO濃度が低くても十分に洗浄ガス
量を確保でき、高純度のCOガスを得ることが可能であ
る。また、操業工程に均圧工程を有することによって、
例えばCOガス純度が99.9%に到達するのに、均圧
工程を用いない方法(比較例)より6%程度、洗浄ガス
量が少なくてすむ。このため、製品COガス量をこの分
多くすることができ、純度の向上とともに回収率の向上
もはかれる。
In the method of the present invention, since the amount of CO adsorbed by the adsorbent is large, even if the CO concentration in the raw material gas is low, a sufficient amount of cleaning gas can be secured, and CO gas of high purity can be obtained. Also, by having a pressure equalizing process in the operating process,
For example, when the CO gas purity reaches 99.9%, the amount of cleaning gas can be reduced by about 6% as compared with the method (comparative example) not using the pressure equalizing step. Therefore, the product CO gas amount can be increased by this amount, and the recovery rate can be improved as well as the purity.

【0032】これにより、本実施例は、原料ガス中のC
O濃度が30%以下の低濃度であっても、高純度で分離
回収することができる。
As a result, in this embodiment, C in the source gas is
Even if the O concentration is as low as 30% or less, it can be separated and recovered with high purity.

【0033】さらに、吸着剤としては、COガスを優先
的に選択吸着するものであることに加えて、20℃、大
気圧の条件のもとで、少なくとも静的な平衡吸着量が
2.5mmol/g以上のCOガス吸着量を有するもの
を使用することが望ましく、これ以下のものでは低濃度
CO混合ガスから高純度でCOガスを分離回収すること
は困難である。
Furthermore, in addition to the preferential adsorption of CO gas, the adsorbent has a static equilibrium adsorption amount of at least 2.5 mmol under the conditions of 20 ° C. and atmospheric pressure. It is desirable to use a gas having an amount of CO gas adsorption of not less than 1 g / g, and if it is less than this, it is difficult to separate and collect CO gas from a low concentration CO mixed gas with high purity.

【0034】実施例2 図5は、吸着剤量が1.4kg、CO2 濃度が30vo
l%、他にN2 ,O2からなる燃焼排ガスを原料ガスと
して、0.5〜1.0Nm3 /Hで供給し、常圧より吸
着、脱着圧力が50〜55Torrの場合の実施例にお
ける洗浄ガス量と製品CO2 ガスの純度との関係を示す
図である。同図の横軸は、図4と同様に本発明における
均圧工程を用いない操作(比較例)において、製品CO
2 ガス純度が99.0%に達したときに必要とした洗浄
ガス量を100%としたときの割合を表す。
Example 2 FIG. 5 shows that the adsorbent amount is 1.4 kg and the CO 2 concentration is 30 vo.
1%, and combustion exhaust gas composed of N 2 and O 2 as a raw material gas was supplied at 0.5 to 1.0 Nm 3 / H, and the adsorption and desorption pressures from normal pressure were 50 to 55 Torr. is a diagram showing the relationship between the purity of the cleaned gas quantity and the product CO 2 gas. Similar to FIG. 4, the horizontal axis of the figure indicates the product CO in the operation (comparative example) without using the pressure equalizing step in the present invention.
2 Indicates the ratio when the amount of cleaning gas required when the gas purity reaches 99.0% is 100%.

【0035】本発明法である均圧工程は、CO2 ガスに
適用した場合でも回収率がよく、高純度のCO2 を得る
ことができる。
The pressure equalization step is a method of the present invention, even recoveries when applied to CO 2 gas well, it is possible to obtain a high purity CO 2.

【0036】例えば、CO2 ガス純度が99.0%に到
達するのに、均圧工程を用いない方法(比較例)より2
0%程度洗浄ガス量が少なくてすむ。このため、製品C
2ガス量をこの分多くでき、回収率の向上と共に純度
の向上を図ることができる。
For example, compared with a method (comparative example) in which the pressure equalizing step is not used to reach a CO 2 gas purity of 99.0%,
The amount of cleaning gas is about 0%. Therefore, product C
The amount of O 2 gas can be increased by this amount, and the recovery rate as well as the purity can be improved.

【0037】これにより本実施例は、原料ガス中のCO
2 濃度が30%程度の低濃度であっても、高純度で分離
回収することができる。
Therefore, in this embodiment, CO in the raw material gas is
2 Even if the concentration is as low as about 30%, it can be separated and recovered with high purity.

【0038】さらに吸着剤としては、CO2 ガスを優先
的に選択吸着するものであることに加えて、25℃大気
圧の条件の下で、少なくとも静的な平衡吸着量が65c
c/g以上のCO2 ガス吸着量を有することが望まし
く、これ以下のものでは、低濃度CO2 混合ガスから高
純度のCO2 ガスを分離回収することは困難である。
Further, as the adsorbent, in addition to preferentially adsorbing CO 2 gas, at least a static equilibrium adsorption amount of 65 c is obtained under the condition of 25 ° C. and atmospheric pressure.
It is desirable to have a CO 2 gas adsorption amount of c / g or more, and with this amount or less, it is difficult to separate and recover high-purity CO 2 gas from a low-concentration CO 2 mixed gas.

【0039】[0039]

【発明の効果】本発明により以下の効果を奏する。The present invention has the following effects.

【0040】(1)均圧工程で不純物を他塔に移すこと
により、洗浄ガス量が減り、その分、製品ガスとするこ
とができるため、回収率を向上することができる。
(1) By transferring the impurities to the other column in the pressure equalizing step, the amount of cleaning gas is reduced, and the product gas can be used as much, so that the recovery rate can be improved.

【0041】(2)CO又はCO2 ガス選択性が高く、
且つ、CO又はCO2 ガスの吸着量が豊富な吸着剤を用
いることにより、CO又はCO2 濃度が低い原料ガスか
ら高純度のCO又はCO2 ガスを分離回収することがで
きる。
(2) CO or CO 2 gas selectivity is high,
Moreover, by using an adsorbent that is rich in the amount of CO or CO 2 gas adsorbed, it is possible to separate and recover high-purity CO or CO 2 gas from a raw material gas having a low CO or CO 2 concentration.

【図面の簡単な説明】[Brief description of drawings]

【図1】 吸着塔を3基配列した本発明実施例の代表的
なガス通路系を示す図である。
FIG. 1 is a diagram showing a typical gas passage system of an embodiment of the present invention in which three adsorption towers are arranged.

【図2】 図1の各吸着塔におけるタイムサイクルを示
す図である。
FIG. 2 is a diagram showing a time cycle in each adsorption tower of FIG.

【図3】 図1における各ガスの流れを示す図である。FIG. 3 is a diagram showing a flow of each gas in FIG.

【図4】 本発明の効果を洗浄ガス量と製品COガス純
度との関係で示す図ある。
FIG. 4 is a diagram showing the effect of the present invention in the relationship between the cleaning gas amount and the product CO gas purity.

【図5】 本発明の効果を洗浄ガス量と製品CO2 ガス
純度との関係で示す図である。
FIG. 5 is a diagram showing the effect of the present invention in relation to the amount of cleaning gas and the product CO 2 gas purity.

【図6】 吸着塔内のCOガス又はCO2 ガスと不純物
の割合の経時変化を示す図である。
FIG. 6 is a diagram showing a change over time in the ratio of CO gas or CO 2 gas and impurities in the adsorption tower.

【図7】 均圧操作の効果を示す図である。FIG. 7 is a diagram showing an effect of a pressure equalizing operation.

【符号の説明】[Explanation of symbols]

A,B,C 吸着塔 A1〜A5,B1〜B5,C1〜C5 切替弁 1 真空ポンプ 2 ブロワー 3 製品ガスホールダー A, B, C adsorption towers A1 to A5, B1 to B5, C1 to C5 switching valve 1 vacuum pump 2 blower 3 product gas holder

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 原料ガス中の特定成分を吸着する吸着剤
を充填した吸着塔を複数塔配置した圧力スイング吸着装
置の操業方法において、前記吸着剤を原料ガスからCO
又はCO2 ガスを優先的に選択吸着する吸着剤とすると
ともに、それぞれの吸着塔の昇圧、吸着、洗浄、脱着の
各工程を有する操業工程に、他の吸着塔の均圧工程と共
通する均圧工程を付加することを特徴とする混合ガスか
ら高純度のCO又はCO2 ガスを回収する方法。
1. A method for operating a pressure swing adsorption apparatus in which a plurality of adsorption towers filled with an adsorbent for adsorbing a specific component in a raw material gas are arranged, wherein the adsorbent is converted from the raw material gas into CO
Alternatively, an adsorbent for preferentially adsorbing CO 2 gas is used, and the operation process having the steps of pressurizing, adsorbing, cleaning, and desorbing each adsorption tower is performed in the same operation as the pressure equalization step of other adsorption towers. A method for recovering high-purity CO or CO 2 gas from a mixed gas, which is characterized by adding a pressure step.
JP4325744A 1992-12-04 1992-12-04 Method for recovering high-purity gaseous co or co2 from gaseous mixture Pending JPH06170144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4325744A JPH06170144A (en) 1992-12-04 1992-12-04 Method for recovering high-purity gaseous co or co2 from gaseous mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4325744A JPH06170144A (en) 1992-12-04 1992-12-04 Method for recovering high-purity gaseous co or co2 from gaseous mixture

Publications (1)

Publication Number Publication Date
JPH06170144A true JPH06170144A (en) 1994-06-21

Family

ID=18180166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4325744A Pending JPH06170144A (en) 1992-12-04 1992-12-04 Method for recovering high-purity gaseous co or co2 from gaseous mixture

Country Status (1)

Country Link
JP (1) JPH06170144A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100324709B1 (en) * 1999-03-19 2002-02-16 이종훈 Pressure Swing Adsorption System for Highly Concentrated Carbon Dioxide Recovery from Power Plant Flue Gas and Recovery Method Using thereof
KR20200073679A (en) * 2018-12-14 2020-06-24 재단법인 포항산업과학연구원 Pressure swing adsorption process for separation and recovery of carbon monoxide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100324709B1 (en) * 1999-03-19 2002-02-16 이종훈 Pressure Swing Adsorption System for Highly Concentrated Carbon Dioxide Recovery from Power Plant Flue Gas and Recovery Method Using thereof
KR20200073679A (en) * 2018-12-14 2020-06-24 재단법인 포항산업과학연구원 Pressure swing adsorption process for separation and recovery of carbon monoxide

Similar Documents

Publication Publication Date Title
JPH0429601B2 (en)
JP2002306918A (en) Gas separating method and device thereof
KR100579941B1 (en) How to separate hydrogen gas
JP3101225B2 (en) Pressure fluctuation adsorption type high purity carbon dioxide production method
JPH06170144A (en) Method for recovering high-purity gaseous co or co2 from gaseous mixture
JP3569420B2 (en) Hydrogen production method by pressure swing adsorption method
JPH07110762B2 (en) Method for producing high concentration oxygen
JP3219612B2 (en) Method for co-producing carbon monoxide and hydrogen from mixed gas
JP3025653B2 (en) Improved pressure swing adsorption method
JP2587334B2 (en) Method of separating CO gas not containing CH4
JP4195131B2 (en) Single tower type adsorption separation method and apparatus
JPH0525801B2 (en)
JPH0555171B2 (en)
JPH07275631A (en) Method for reducing substitution of product impurities in pressure swing adsorption method
JP3405565B2 (en) Gas separation method
JPH0967104A (en) Oxygen concentrating method by pressure swing adsorption
JPH0351647B2 (en)
JPS6238281B2 (en)
JPH07275630A (en) Two component simultaneous recovery pressure swing adsorption device
JPH0429408B2 (en)
JPS62193623A (en) Method for taking out easily-adsorbing substance as high-purity gas
JPH0221285B2 (en)
JPH10309425A (en) Method for separating organic gas
JPH01176418A (en) Stepless equalizing type psa process
JPS6144702A (en) Argon manufacturing method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000609