JPH06162576A - Production of optical master disk - Google Patents
Production of optical master diskInfo
- Publication number
- JPH06162576A JPH06162576A JP31682192A JP31682192A JPH06162576A JP H06162576 A JPH06162576 A JP H06162576A JP 31682192 A JP31682192 A JP 31682192A JP 31682192 A JP31682192 A JP 31682192A JP H06162576 A JPH06162576 A JP H06162576A
- Authority
- JP
- Japan
- Prior art keywords
- groove
- grooves
- manufacturing
- photoresist
- base
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 35
- 238000004519 manufacturing process Methods 0.000 title claims description 32
- 229920002120 photoresistant polymer Polymers 0.000 claims abstract description 39
- 238000000034 method Methods 0.000 claims abstract description 28
- 239000000463 material Substances 0.000 claims abstract description 16
- 230000001678 irradiating effect Effects 0.000 claims abstract description 6
- 239000011347 resin Substances 0.000 claims description 27
- 229920005989 resin Polymers 0.000 claims description 27
- 239000000758 substrate Substances 0.000 claims description 22
- 239000010409 thin film Substances 0.000 claims description 16
- 239000002184 metal Substances 0.000 claims description 13
- 229910052751 metal Inorganic materials 0.000 claims description 13
- 239000004925 Acrylic resin Substances 0.000 claims description 3
- 229920000178 Acrylic resin Polymers 0.000 claims description 3
- 239000010408 film Substances 0.000 claims description 3
- 238000001746 injection moulding Methods 0.000 claims description 2
- 230000007547 defect Effects 0.000 abstract description 11
- 238000001459 lithography Methods 0.000 abstract description 8
- 229910003460 diamond Inorganic materials 0.000 description 9
- 239000010432 diamond Substances 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 238000005520 cutting process Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000000869 ion-assisted deposition Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910052950 sphalerite Inorganic materials 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
Landscapes
- Manufacturing Optical Record Carriers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、高密度に情報を蓄積す
ることの可能な光ディスク原盤の製造方法に関するもの
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing an optical disc master capable of storing information at a high density.
【0002】[0002]
【従来の技術】光ディスクの高密度化には、再生用レー
ザーの短波長化や対物レンズの高NA化が考えられてい
るが、現在では実用的には波長670nm、NA0.6
が限界であり、短波長化や高NA化に頼らない方式も幾
つか提案されている。2. Description of the Related Art In order to increase the density of optical discs, it has been considered to shorten the wavelength of a reproducing laser and increase the NA of an objective lens, but at present, the wavelength is 670 nm and the NA is 0.6.
Is the limit, and some methods have been proposed that do not rely on shortening the wavelength or increasing the NA.
【0003】その一つに、特開昭54−136303号
公報に記載の、隣接するトラックで信号ピットの深さを
交互に変化させる方式がある。反射光を2つの光検出部
に分割された検出器で受光し、一方の深さの信号ピット
列の再生にはそれら2つの光検出部の和信号を用い、他
方の信号ピット列の再生にはそれら2つの光検出部の差
信号を用いれば、隣りのトラックからのクロストークは
小さく、狭ピッチ化して高密度化する事ができる。As one of them, there is a method described in Japanese Patent Laid-Open No. 54-136303 which alternately changes the depth of signal pits in adjacent tracks. The reflected light is received by a detector that is divided into two photo detectors, and the sum signal of the two photo detectors is used to reproduce the signal pit train at one depth, and the other signal pit train is reproduced. If the difference signal of these two photodetectors is used, the crosstalk from the adjacent tracks is small, and the pitch can be narrowed to increase the density.
【0004】この方式の光ディスク原盤の製造方法を図
6を用いて述べる。一旦、凹凸状の溝が形成された基盤
を製造する必要があり、ガラス盤41にフォトレジスト
42を塗布し(図6(A))、レーザービーム43を連
続的に照射し(図6(B))、現像してレーザー照射部
のフォトレジストを除去し(図6(C))、エッチング
でガラス盤に溝44を形成し(図6(D))、その後フ
ォトレジストを除去する(図6(E))。A method of manufacturing an optical disk master of this system will be described with reference to FIG. Once it is necessary to manufacture a substrate having concave and convex grooves, a glass plate 41 is coated with a photoresist 42 (FIG. 6A), and a laser beam 43 is continuously irradiated (see FIG. 6B). )), Developing is performed to remove the photoresist in the laser irradiation portion (FIG. 6C), the groove 44 is formed in the glass plate by etching (FIG. 6D), and then the photoresist is removed (FIG. 6C). (E)).
【0005】次にこの凹凸状の溝が形成された基盤45
上に再度フォトレジスト42を塗布し(図6(F))、
溝内および溝間にレーザービーム43を照射して信号を
記録し(図6(G))、現像して記録部のフォトレジス
トを除去(図6(H))する事で、溝内と溝間で深さの
異なる信号ピットが形成された光ディスク原盤はでき
る。Next, the substrate 45 having the groove of the uneven shape is formed.
The photoresist 42 is applied again on the top (FIG. 6 (F)),
By irradiating the laser beam 43 in and between the grooves to record a signal (FIG. 6 (G)) and developing it to remove the photoresist in the recording portion (FIG. 6 (H)), An optical disc master in which signal pits having different depths are formed is possible.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、この製
造方法には次の様な問題点があった。However, this manufacturing method has the following problems.
【0007】光ディスク原盤上の欠陥は、フォトレジス
ト塗布、レーザー記録、現像などの湿式プロセスである
リソグラフィーで主として発生する。従来の方法で信号
ピットの深さを変化させた原盤を製造するには、一度だ
けのリソグラフィー・プロセスを用いるだけではできな
い。一度目のリソグラフィーで発生した欠陥の上に再度
フォトレジストを塗布すると、その欠陥を核として数倍
以上の欠陥が増加してしまう。特に、高密度光ディスク
原盤では、信号ピットと信号ピットの間隔が狭いので、
一つの欠陥が影響する信号ピットの数は非常に多くな
り、光ディスク原盤として使用する事はできない。即
ち、湿式プロセスであるリソグラフィーを2度必要とす
る方法は欠陥の低減が極めて困難である。Defects on the optical disk master are mainly generated by lithography, which is a wet process such as photoresist coating, laser recording, and development. It is not possible to use a single-time lithographic process to manufacture a master in which the depth of signal pits is changed by the conventional method. When the photoresist is applied again on the defect generated in the first lithography, the defect becomes a nucleus and the number of defects increases several times or more. Especially, in the high density optical disc master, since the interval between the signal pits is narrow,
The number of signal pits affected by one defect is so large that it cannot be used as an optical disc master. That is, it is extremely difficult to reduce defects in a method that requires lithography twice as a wet process.
【0008】[0008]
【課題を解決するための手段】以上の問題点を克服して
光ディスクの高密度化を達成するために、直接溝を加工
した円盤、あるいは、その円盤から溝を転写した基材を
基盤として用い、その基盤上にフォトレジスト薄膜を形
成し、溝内および溝間に各々レーザービームを照射して
信号記録し、レーザーが照射された部分のフォトレジス
トを除去して光ディスク原盤を製造する。[Means for Solving the Problems] In order to overcome the above problems and achieve high density of an optical disk, a disk in which a groove is directly processed or a substrate in which a groove is transferred from the disk is used as a base. A photoresist thin film is formed on the substrate, a laser beam is radiated in each of the grooves and between the grooves to record a signal, and the photoresist in the laser-irradiated portion is removed to manufacture an optical disc master.
【0009】[0009]
【作用】上記手段の作用は次の通りである。溝が形成さ
れた基盤の上にフォトレジスト薄膜を塗布などの方法で
形成すれば、そのフォトレジスト表面は溝の形状に沿っ
て形成されるより、むしろ平面に近くなり、溝内と溝間
のフォトレジスト膜厚が異なり、溝内と溝間で深さの異
なる信号ピットを形成する事ができる。The operation of the above means is as follows. If a photoresist thin film is formed on the substrate on which the groove is formed by a method such as coating, the surface of the photoresist becomes closer to a flat surface rather than being formed along the shape of the groove. It is possible to form signal pits having different photoresist film thicknesses and different depths in and between the grooves.
【0010】また、直接溝が加工された円盤、または、
その円盤から溝を転写した基材を基盤として用いるの
で、リソグラフィーなどの湿式プロセスは一度だけ用い
る事になり欠陥は低減できる。Further, a disk directly processed with a groove, or
Since the substrate on which the groove is transferred is used as a base, the wet process such as lithography is used only once, and defects can be reduced.
【0011】[0011]
(実施例1)以下本発明の第1の実施例について、図面
を参照しながら説明する。(First Embodiment) A first embodiment of the present invention will be described below with reference to the drawings.
【0012】図1は凹凸溝を形成する方法を示し、11
は円盤、12はダイヤモンド工具である。この工具12
の先端は約0.4μm位の幅で平坦に研磨されている。
円盤11を回転させながらダイヤモンド工具12を僅か
に切り込んで、この工具12を基盤の半径方向に移動さ
せて凹凸溝13を加工する。FIG. 1 shows a method for forming concave and convex grooves.
Is a disk and 12 is a diamond tool. This tool 12
Has a flat tip with a width of about 0.4 μm.
The diamond tool 12 is slightly cut while rotating the disk 11, and the tool 12 is moved in the radial direction of the substrate to form the concave and convex grooves 13.
【0013】溝を加工する円盤としては、ダイヤモンド
工具12で加工しやすい材料がよく、ビッカース硬度が
200HV以上の銅メッキ盤、または、アクリル系樹脂
が適している。溝の深さを一定にするには、ダイヤモン
ド工具の切り込み量を精密に制御する事が必要である。As a disk for processing the groove, a material which can be easily processed by the diamond tool 12 is preferable, and a copper-plated disk having a Vickers hardness of 200 HV or more, or an acrylic resin is suitable. To keep the groove depth constant, it is necessary to precisely control the cutting depth of the diamond tool.
【0014】あるいは、硬質ガラス円盤上に銅などの金
属薄膜を溝深さと同じ厚さで形成し、その円盤にダイヤ
モンド工具で凹凸溝を加工する。硬質ガラス表面が工具
の切り込み量を制限し、比較的容易に一定深さの凹凸溝
を加工できる様になる。ガラス円盤上への金属薄膜の形
成には、イオンアシストによるスパッタ法などを用い
る。Alternatively, a metal thin film such as copper is formed on the hard glass disk to have the same thickness as the groove depth, and the groove and groove are formed on the disk with a diamond tool. The hard glass surface limits the amount of cutting of the tool, and it becomes possible to process concave and convex grooves of a constant depth relatively easily. The metal thin film is formed on the glass disk by using the ion assisted sputtering method or the like.
【0015】上記のようにして直接凹凸溝を加工した円
盤を基盤とする、光ディスク原盤の製造方法を図2に示
す。凹凸溝13を形成した基盤14の上にフォトレジス
ト15を塗布する(図2(A))。フォトレジスト塗布
表面16は凹凸溝に沿うよりも、むしろ平面に近くな
る。溝内および溝間に各々レーザービーム17を絞って
照射し信号を記録する(図2(B))。FIG. 2 shows a method of manufacturing an optical disk master, which is based on a disk in which the concave and convex grooves are directly processed as described above. A photoresist 15 is applied on the substrate 14 on which the uneven grooves 13 are formed (FIG. 2A). The photoresist coated surface 16 will be closer to a flat surface rather than along a relief groove. The laser beam 17 is squeezed and radiated in the groove and between the grooves to record a signal (FIG. 2 (B)).
【0016】次に、現像してレーザーの照射されたフォ
トレジスト部分を除去して信号ピット18、19を形成
する(図2(C))。凹凸溝の溝内と溝間で信号ピット
の深さが異なり、隣接するトラックで信号ピットの深さ
が変化する高密度光ディスクの原盤を製造できる。この
方法は従来例の図6(F)〜(H)と同じであるが、溝
が形成された基盤として直接凹凸溝が加工された円盤を
用いるため、溝形成に湿式プロセスであるリソグラフィ
ーを用いないので欠陥の増大を防ぐ事ができる。Next, after development, the photoresist portion irradiated with the laser is removed to form signal pits 18 and 19 (FIG. 2C). It is possible to manufacture a high-density optical disc master in which the depth of the signal pits is different between the grooves of the concave-convex groove and between the grooves, and the depth of the signal pits changes in adjacent tracks. This method is the same as in FIGS. 6 (F) to 6 (H) of the conventional example, but since a disk in which uneven grooves are directly processed is used as a substrate on which grooves are formed, lithography which is a wet process is used for forming the grooves. Since it does not exist, the increase of defects can be prevented.
【0017】(実施例2)次に本発明の第2の実施例に
ついて説明する。(Second Embodiment) Next, a second embodiment of the present invention will be described.
【0018】図3において、21は円盤、22は先端が
V字形のダイヤモンド工具であり、実施例1と同様に円
盤に直接V字形溝23を形成する。実施例1の凹凸溝の
加工ではダイヤモンド工具の切り込み量を精密に制御す
る必要があるが、この実施例2のV字形溝の加工は、円
盤21を回転させながらダイヤモンド工具22を円盤に
数μm切り込んで、この工具22を円盤の半径方向に一
定ピッチで移動させてV字形溝を重ね切りするので、工
具の切り込み量の精密な制御は必要ない。In FIG. 3, reference numeral 21 is a disk, and 22 is a diamond tool having a V-shaped tip. The V-shaped groove 23 is directly formed in the disk as in the first embodiment. In the processing of the concave-convex groove of the first embodiment, it is necessary to precisely control the cutting amount of the diamond tool. However, in the processing of the V-shaped groove of the second embodiment, the diamond tool 22 is rotated by several μm while rotating the disk 21. Since the cutting is performed and the tool 22 is moved in the radial direction of the disk at a constant pitch to cut the V-shaped groove in an overlapping manner, it is not necessary to precisely control the cutting amount of the tool.
【0019】実施例1と同様に、溝を加工する円盤とし
てはダイヤモンド工具22で加工しやすい材料がよく、
ビッカース硬度が200HV以上の銅メッキ盤、また
は、アクリル系樹脂が適している。As in the first embodiment, the material used for forming the groove is a material that can be easily processed by the diamond tool 22,
A copper plating machine having a Vickers hardness of 200 HV or more or an acrylic resin is suitable.
【0020】直接V字形溝を加工した円盤を基盤とする
光ディスク原盤の製造方法を図4に示す。V字形溝23
を形成した基盤24の上にフォトレジスト25を塗布す
る(図4(A))。フォトレジスト塗布表面26はV字
形溝に沿うよりも、むしろ平面に近くなる。V字形溝の
谷および山に各々レーザービーム27を絞って照射し信
号を記録する(図4(B))。次に、現像してレーザー
の照射されたフォトレジスト部分を除去して信号ピット
28、29を形成する(図4(C))。V字形溝の谷と
山で信号ピットの深さが異なり、隣接するトラックで信
号ピットの深さが変化する高密度光ディスクの原盤を製
造できる。FIG. 4 shows a method of manufacturing an optical disk master based on a disk in which V-shaped grooves are directly processed. V-shaped groove 23
Photoresist 25 is applied on the substrate 24 on which is formed (FIG. 4A). The photoresist coated surface 26 will be near a plane rather than along a V-shaped groove. A laser beam 27 is focused on each of the valleys and peaks of the V-shaped groove to irradiate the signal to record a signal (FIG. 4 (B)). Next, the photoresist portion irradiated with the laser beam is developed and the signal pits 28 and 29 are formed (FIG. 4C). It is possible to manufacture a master for a high-density optical disc in which the depths of signal pits differ depending on the valleys and peaks of the V-shaped groove, and the depths of signal pits change in adjacent tracks.
【0021】本実施例2も溝が形成された基盤として直
接V字形溝が加工された円盤を用いるため、溝形成に湿
式プロセスであるリソグラフィーを用いないので欠陥の
増大を防ぐ事ができる。このV字形溝を用いた方法で
は、信号ピットの底は完全な平面ではないが、信号再生
に与える影響は大きくない。Since the disk in which the V-shaped groove is directly processed is used as the substrate in which the groove is formed in the second embodiment, the increase of defects can be prevented because the wet process lithography is not used for forming the groove. In the method using the V-shaped groove, the bottom of the signal pit is not a perfect plane, but the influence on the signal reproduction is not great.
【0022】(実施例3)実施例1、2では直接溝を加
工した円盤を基盤として用いたが、その直接溝が加工さ
れた円盤からスタンパを製造し、そのスタンパを原盤製
造の基盤として用いる事もできる。また、そのスタンパ
から樹脂に溝を転写し、その樹脂基材を基盤として用い
ても本発明の光ディスク原盤の製造はできる。その場
合、図2および図4の基盤14、24は、溝が形成され
たスタンパ、または、そのスタンパから溝を転写した樹
脂である。(Embodiment 3) In Embodiments 1 and 2, a disk in which a direct groove is processed is used as a base, but a stamper is manufactured from the disk in which the direct groove is processed, and the stamper is used as a base for manufacturing a master. You can also do things. Also, the optical disk master of the present invention can be manufactured by transferring the groove from the stamper to the resin and using the resin base material as a base. In that case, the bases 14 and 24 in FIGS. 2 and 4 are stampers having grooves formed therein, or resins having the grooves transferred from the stampers.
【0023】直接溝を加工した円盤にスパッタ法などで
ニッケルなどの金属薄膜を形成し、その上にニッケルな
どの金属をメッキして、基盤から剥離する事でスタンパ
は製造できる。A stamper can be manufactured by forming a thin metal film of nickel or the like on a disk in which a groove is directly processed by a sputtering method or the like, plating a metal thin film of nickel or the like on the thin film, and peeling the metal from the substrate.
【0024】このスタンパから樹脂に溝を転写する方法
には2通りある。一つは紫外線硬化樹脂を用いる方法で
ある。スタンパとアクリルなどの樹脂基材との間に紫外
線硬化樹脂を挟み込み、樹脂基材側から紫外線を照射し
て紫外線硬化樹脂を固めて、樹脂基材にスタンパの溝形
状を転写する。There are two methods for transferring the groove from the stamper to the resin. One is a method using an ultraviolet curable resin. An ultraviolet curable resin is sandwiched between a stamper and a resin base material such as acrylic, and the ultraviolet curable resin is irradiated from the resin base material side to harden the ultraviolet curable resin, and the groove shape of the stamper is transferred to the resin base material.
【0025】もう一つは射出成型により樹脂に溝を転写
する方法である。アクリルやポリカーボネイトなどの樹
脂温度を高めて軟化させておき、金型内に流し込み、ス
タンパを押し付けながら冷却させて溝が転写された樹脂
基材を製造する。The other is a method of transferring the groove to the resin by injection molding. A resin such as acrylic or polycarbonate is raised in temperature and softened, poured into a mold, and cooled while pressing a stamper to manufacture a resin base material having grooves transferred.
【0026】(実施例4)直接溝を加工した銅メッキ基
盤、または、直接溝を加工した円盤から製造した金属ス
タンパなどの金属基盤にフォトレジストを塗布する場合
は、金属とフォトレジストの間の反射率が大きいので、
溝形状から生じるトラッキング信号は大きく、正確にレ
ーザービームを溝に沿って容易にトラッキング制御する
事ができる。(Embodiment 4) When a photoresist is applied to a metal substrate such as a metal stamper manufactured from a direct grooved copper-plated substrate or a direct grooved disk, a gap between the metal and the photoresist is used. Since the reflectance is high,
The tracking signal generated from the groove shape is large, and the laser beam can be accurately and easily tracking-controlled along the groove.
【0027】しかし、直接溝を加工した樹脂円盤、また
は、スタンパから溝を転写した樹脂基材にフォトレジス
トを塗布する場合は、アクリルやポリカーボネイトなど
の樹脂の屈折率が約1.5であり、AZ系のフォトレジ
ストの屈折率が約1.7であるから、樹脂基材とフォト
レジストの間の反射率は約0.4%位になってしまう。
それに対して、フォトレジスト表面の反射率は6%以上
である。フォトレジスト表面は殆ど平面であるから、そ
の表面からは溝形状から生じるトラッキング誤差信号は
発生しないので、樹脂基材とフォトレジスト間の反射率
が小さいからと言ってトラキング制御が不可能ではな
い。しかし、反射率は大きい程トラッキング制御は容易
である。However, when the photoresist is applied to the resin disk in which the groove is directly processed or the resin substrate in which the groove is transferred from the stamper, the refractive index of the resin such as acrylic or polycarbonate is about 1.5, Since the refractive index of the AZ type photoresist is about 1.7, the reflectance between the resin base material and the photoresist is about 0.4%.
On the other hand, the reflectance of the photoresist surface is 6% or more. Since the surface of the photoresist is almost flat, no tracking error signal generated from the groove shape is generated from the surface, so that tracking control is not impossible just because the reflectance between the resin base material and the photoresist is small. However, the higher the reflectance, the easier the tracking control.
【0028】そこで、図5の様に、溝が形成された樹脂
基材31上にフォトレジスト32とは屈折率が異なる薄
膜33を形成し、その薄膜33上にフォトレジスト32
を塗布すれば、溝形状が発生するトラッキング誤差信号
が大きくなり、トラッキング制御は容易になる。この薄
膜33として金属や屈折率の大きい誘電体が適する。例
えば、金、ニッケル、ZnSなどの薄膜を樹脂基材31
上にスパッタ法などで形成する。Therefore, as shown in FIG. 5, a thin film 33 having a refractive index different from that of the photoresist 32 is formed on the resin base material 31 in which the groove is formed, and the photoresist 32 is formed on the thin film 33.
By coating, the tracking error signal for generating the groove shape becomes large and tracking control becomes easy. As the thin film 33, a metal or a dielectric material having a large refractive index is suitable. For example, a thin film of gold, nickel, ZnS or the like may be used as the resin base material 31.
It is formed on the top by a sputtering method or the like.
【0029】[0029]
【発明の効果】以上の様に本発明は、直接溝を加工した
円盤、あるいは、直接溝を加工した円盤から溝を転写し
た基材を基盤として用い、その基盤上にフォトレジスト
薄膜を形成し、溝内および溝間に各々レーザービームを
照射して信号記録し、レーザーが照射された部分のフォ
トレジストを除去して光ディスク原盤を製造する事によ
り、リソグラフィーなどの湿式プロセスは一度だけ用い
て欠陥が少なく、かつ、溝内と溝間で深さの異なる信号
ピットを形成した光ディスク原盤を製造する事ができ
る。INDUSTRIAL APPLICABILITY As described above, according to the present invention, a disk in which a direct groove is processed or a base material in which a groove is transferred from a disk in which a direct groove is processed is used as a base, and a photoresist thin film is formed on the base. , A signal is recorded by irradiating a laser beam in the groove and between the grooves, and the photoresist on the portion irradiated with the laser is removed to manufacture an optical disk master, so that a wet process such as lithography is used only once to make a defect. It is possible to manufacture an optical disk master having less signal pits and forming signal pits having different depths in and between the grooves.
【図1】本発明の光ディスク原盤の製造方法の第1の実
施例における溝加工工程の説明図FIG. 1 is an explanatory view of a groove processing step in a first embodiment of a method for manufacturing an optical disk master according to the present invention.
【図2】同実施例における光ディスク原盤の製造工程図FIG. 2 is a manufacturing process diagram of an optical disc master according to the embodiment.
【図3】本発明の第2の実施例におけるV字形溝の加工
工程図FIG. 3 is a process chart of processing a V-shaped groove in the second embodiment of the present invention.
【図4】同実施例における光ディスク原盤の製造工程図FIG. 4 is a manufacturing process diagram of an optical disc master according to the embodiment.
【図5】本発明の第4の実施例における光ディスク原盤
の製造工程図FIG. 5 is a manufacturing process diagram of an optical disk master according to a fourth embodiment of the present invention.
【図6】従来例の光ディスク原盤の製造工程図FIG. 6 is a manufacturing process diagram of a conventional optical disc master.
12、22 工具 13、23 溝 14、24、31 基盤 15、25、32 フォトレジスト 17、27 レーザービーム 18、19 信号ピット 28、29 信号ピット 33 薄膜 12, 22 Tool 13, 23 Groove 14, 24, 31 Substrate 15, 25, 32 Photoresist 17, 27 Laser beam 18, 19 Signal pit 28, 29 Signal pit 33 Thin film
───────────────────────────────────────────────────── フロントページの続き (72)発明者 貴志 俊法 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 宮本 寿樹 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 阿部 伸也 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kishi Shunho 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Toshiki Miyamoto, 1006 Kadoma, Kadoma City Osaka Prefecture (72) Inventor Shinya Abe, 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.
Claims (10)
ーザービームを照射して信号を記録し、そのレーザービ
ームが照射された部分のフォトレジストを除去して製造
する光ディスク原盤製造方法において、直接溝を加工し
た円盤、あるいは、その円盤から溝を転写した基材を基
盤として用い、その基盤上の溝内および溝間に各々レー
ザービームを照射して信号記録する事で、溝内と溝間で
深さの異なる信号ピットまたは信号溝を形成する事を特
徴とする光ディスク原盤の製造方法。1. A method for manufacturing an optical disk master in which a photoresist thin film is formed on a substrate, a signal is recorded by irradiating a laser beam, and the photoresist in a portion irradiated with the laser beam is removed to directly manufacture the optical disk master. By using a disc processed with grooves or a base material with grooves transferred from the disc as a base and irradiating a laser beam inside and between the grooves on the base to record signals, A method for manufacturing an optical disc master, which comprises forming signal pits or signal grooves having different depths.
成し、その基盤上にフォトレジスト薄膜を形成し、凹凸
溝の溝内および溝間に沿って各々レーザービームを照射
する事で、凹凸溝の溝内および溝間で深さの異なる信号
ピットまたは信号溝を形成する事を特徴とする請求項1
記載の光ディスク原盤の製造方法。2. A groove having an uneven cross section in a radial direction is formed on a substrate, a photoresist thin film is formed on the substrate, and a laser beam is irradiated inside and between the grooves. The signal pits or the signal grooves having different depths are formed in and between the concave and convex grooves.
A method for manufacturing the described optical disc master.
成し、その基盤上にフォトレジスト薄膜を形成し、V字
形溝の谷(溝内)および山(溝間)に沿って各々レーザ
ービームを照射する事で、V字形溝の山と谷で深さの異
なる信号ピットまたは信号溝を形成する事を特徴とする
請求項1記載の光ディスク原盤の製造方法。3. A groove having a V-shaped cross section in a radial direction is formed on a base, and a photoresist thin film is formed on the base, along a valley (inside the groove) and a peak (between grooves) of the V-shaped groove. 2. The method for manufacturing an optical disk master according to claim 1, wherein signal pits or signal grooves having different depths are formed at the peaks and valleys of the V-shaped groove by irradiating each with a laser beam.
端部に有する工具を用いて、金属円盤上に直接加工する
事を特徴とする請求項1〜3の何れかに記載の光ディス
ク原盤の製造方法。4. The groove according to claim 1, wherein the groove is directly processed on the metal disk by using a tool having the same shape as the cross-sectional shape of the groove at a tip portion thereof. Optical disc master manufacturing method.
端部に有する工具を用いて、樹脂円盤上に直接加工する
事を特徴とする請求項1〜3の何れかに記載の光ディス
ク原盤の製造方法。5. The groove according to claim 1, wherein the groove is directly processed on the resin disk by using a tool having the same cross-sectional shape as that of the groove at a tip portion thereof. Optical disc master manufacturing method.
とする請求項5記載の光ディスク原盤の製造方法。6. The method of manufacturing an optical disk master according to claim 5, wherein the resin disk is an acrylic resin.
端部に有する工具を用いて、金属もしくは樹脂の基盤上
に直接加工してスタンパを製造し、そのスタンパを基盤
として用いる事を特徴とする請求項1〜3の何れかに記
載の光ディスク原盤の製造方法。7. A stamper is manufactured by directly processing a groove on a metal or resin base using a tool having a tip having the same shape as the cross-sectional shape of the groove, and the stamper is used as the base. The method for manufacturing an optical disc master according to any one of claims 1 to 3, wherein
端部に有する工具を用いて、金属もしくは樹脂の基盤上
に直接加工してスタンパを製造し、そのスタンパから紫
外線硬化樹脂により溝を転写した基材を基盤として用い
る事を特徴とする請求項1〜3の何れかに記載の光ディ
スク原盤の製造方法。8. A stamper is manufactured by directly processing a groove on a metal or resin base using a tool having a tip having the same shape as the cross-sectional shape of the groove, and using the ultraviolet curable resin from the stamper. 4. The method for manufacturing an optical disk master according to claim 1, wherein a base material having the groove transferred is used as a base.
端部に有する工具を用いて、金属もしくは樹脂の基盤上
に直接加工してスタンパを製造し、そのスタンパから射
出成型により溝を転写した基材を基盤として用いる事を
特徴とする請求項1〜3の何れかに記載の光ディスク原
盤の製造方法。9. A stamper is manufactured by directly processing a groove on a metal or resin substrate by using a tool having a tip end having the same shape as the cross-sectional shape of the groove, and the groove is formed by injection molding from the stamper. 4. The method for producing an optical disk master according to claim 1, wherein a substrate on which the image is transferred is used as a base.
フォトレジストとは屈折率が異なる薄膜を形成する事を
特徴とする請求項1記載の光ディスク原盤の製造方法。10. Between the substrate and the photoresist film,
The method of manufacturing an optical disk master according to claim 1, wherein a thin film having a refractive index different from that of the photoresist is formed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31682192A JPH06162576A (en) | 1992-11-26 | 1992-11-26 | Production of optical master disk |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31682192A JPH06162576A (en) | 1992-11-26 | 1992-11-26 | Production of optical master disk |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06162576A true JPH06162576A (en) | 1994-06-10 |
Family
ID=18081294
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31682192A Pending JPH06162576A (en) | 1992-11-26 | 1992-11-26 | Production of optical master disk |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06162576A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009274445A (en) * | 2003-07-11 | 2009-11-26 | Kuraray Co Ltd | Method for manufacturing stamper for flow path member for fuel cell, method for manufacturing flow path member for fuel cell, and flow path member for fuel cell, and fuel cell |
-
1992
- 1992-11-26 JP JP31682192A patent/JPH06162576A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009274445A (en) * | 2003-07-11 | 2009-11-26 | Kuraray Co Ltd | Method for manufacturing stamper for flow path member for fuel cell, method for manufacturing flow path member for fuel cell, and flow path member for fuel cell, and fuel cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4517668A (en) | Optical disk with narrow guide tracks | |
US6665260B2 (en) | Optical recording medium including protruding winding parts used as prepits | |
JPH04248145A (en) | Production of high density optical disk | |
US20050167865A1 (en) | Multilayer optical recording medium manufacturing method and multilayer optical recording system | |
KR100913509B1 (en) | Method of manufacturing an optical recording medium, a disk for manufacturing an optical recording medium, an apparatus for manufacturing an optical recording medium, a disk for manufacturing an optical recording medium | |
JPH06162576A (en) | Production of optical master disk | |
US6934244B2 (en) | Optical recording medium and stamper for manufacturing the same | |
JPH09147417A (en) | Optical recording medium and its production | |
KR20040098596A (en) | Optical recording medium, master for optical recording medium manufacture, recording and reproducing apparatus, and recording and reproducing method | |
KR20020089568A (en) | Optical recording medium and method of producing the same | |
KR100188922B1 (en) | Method for manufacturing glass substrate and photomask for optical disc manufacturing | |
KR100207701B1 (en) | Optical disc manufacturing method | |
JP2002184032A (en) | Optical disk and its manufacturing method | |
JPS63138541A (en) | Production of optical recording medium | |
JP3186078B2 (en) | Mastering method, stamper and optical recording medium | |
JP2000048409A (en) | Optical recording medium, master disk for production of optical recording medium and optical recording and reproducing device | |
JPH09231619A (en) | Manufacture of optical recording medium and device used therefor | |
JP2002109784A (en) | Optical recording medium | |
JPH056578A (en) | Optical recording medium and production thereof | |
JPH0557655B2 (en) | ||
JPH0750038A (en) | Manufacture of master optical disc | |
JPS6139248A (en) | Optical information recording medium | |
JPH03156746A (en) | Production of optical information recording medium | |
JPS63181142A (en) | Production of optical recording medium | |
JPH04184729A (en) | Optical recording medium and method for manufacturing optical recording medium |