[go: up one dir, main page]

JPH0616243Y2 - Natural circulation boiler steam drum - Google Patents

Natural circulation boiler steam drum

Info

Publication number
JPH0616243Y2
JPH0616243Y2 JP1988003918U JP391888U JPH0616243Y2 JP H0616243 Y2 JPH0616243 Y2 JP H0616243Y2 JP 1988003918 U JP1988003918 U JP 1988003918U JP 391888 U JP391888 U JP 391888U JP H0616243 Y2 JPH0616243 Y2 JP H0616243Y2
Authority
JP
Japan
Prior art keywords
heat transfer
drum
flow
steam
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1988003918U
Other languages
Japanese (ja)
Other versions
JPH01111906U (en
Inventor
隆正 三塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1988003918U priority Critical patent/JPH0616243Y2/en
Publication of JPH01111906U publication Critical patent/JPH01111906U/ja
Application granted granted Critical
Publication of JPH0616243Y2 publication Critical patent/JPH0616243Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔考案の目的〕 (産業上の利用分野) 本考案は自然循環型ボイラ用蒸気ドラムに関する。[Detailed Description of the Invention] [Object of the Invention] (Field of Industrial Application) The present invention relates to a steam drum for a natural circulation type boiler.

(従来の技術) 従来、自然循環型ボイラ用蒸気ドラムには第3図示のも
のが使用されている。伝熱管1では、高温排ガスGの熱
を受け水ドラム4から伝熱管1に流入する飽和水の一部
が蒸気となり気液二相流の状態で流動する。また、降水
管3ではほぼ飽和水の状態で流れている。このため伝熱
管1と降水管3との流体には密度差が生じ、この密度差
が循環力となって気液二相流体として伝熱管1を上昇
し、蒸気ドラム2、降水管3、水ドラム4の順に循環
し、再び伝熱管1に戻るようになっている。蒸気ドラム
2内の流れを今少し詳細に述べると、伝熱管1からドラ
ム外胴5に流入する気液二相流体は、ドラム外胴5とド
ラム内胴6との間に形成された流路7を通り、ここから
それぞれサイクロンセパレータ8a,8bに流れる。この気
液二相流体はサイクロンセパレータ8a,8bで遠心力によ
り蒸気と飽和水に分離される。蒸気はさらにスクラバ9
で細かい水滴が除去され、蒸気出口管10を通して蒸気タ
ービン(図示せず)または過熱器(図示せず)に送られ
る。一方、サイクロンセパレータ8a,8b内で分離された
飽和水はドラム内胴6上方に集まって降水管3に送られ
る。
(Prior Art) Conventionally, the steam drum for a natural circulation type boiler shown in FIG. 3 has been used. In the heat transfer tube 1, a part of the saturated water that receives the heat of the high-temperature exhaust gas G and flows from the water drum 4 into the heat transfer tube 1 becomes steam and flows in a gas-liquid two-phase flow state. Further, in the downcomer pipe 3, almost saturated water flows. For this reason, a density difference occurs between the fluids of the heat transfer tube 1 and the downfall tube 3, and this density difference serves as a circulating force to move up the heat transfer tube 1 as a gas-liquid two-phase fluid, and thus the steam drum 2, the downfall tube 3, It circulates in the order of the drum 4 and returns to the heat transfer tube 1 again. The flow in the steam drum 2 will now be described in a little more detail. The gas-liquid two-phase fluid flowing from the heat transfer tube 1 into the outer drum body 5 is a flow path formed between the outer drum body 5 and the inner drum body 6. 7 and flows from here to the cyclone separators 8a and 8b, respectively. The gas-liquid two-phase fluid is separated into steam and saturated water by the cyclone separators 8a and 8b by centrifugal force. Steam is more scrubber 9
, Fine water droplets are removed and sent to a steam turbine (not shown) or a superheater (not shown) through the steam outlet pipe 10. On the other hand, the saturated water separated in the cyclone separators 8a and 8b gathers above the drum inner barrel 6 and is sent to the downcomer pipe 3.

(考案が解決しようとする課題) ところで、高温排ガスGは、列状に設置された伝熱管1
を通過していく間に気液二相流体と熱交換し、このため
高温排ガスGの温度は徐々に下がって行く。これについ
ての試験結果の一例を第4図に示す。横軸は高温排ガス
Gの流れに沿って列状に設置した伝熱管の各位置で、こ
の場合、伝熱管はガスが流入する箇所を1列目とする
と、流出までの間に10列目を数える。高温排ガス温度は
第1列目の伝熱管付近では約420℃であるが、第10列目
の伝熱管では約180℃である。このため、交換熱量は第
1列目の伝熱管が最も大きい。
(Problems to be solved by the invention) By the way, the high-temperature exhaust gas G is generated by the heat transfer tubes 1 arranged in rows.
The heat exchange with the gas-liquid two-phase fluid is made during the passage of the gas, so that the temperature of the hot exhaust gas G gradually decreases. An example of the test results for this is shown in FIG. The horizontal axis is each position of the heat transfer tubes arranged in a row along the flow of the high-temperature exhaust gas G, and in this case, the heat transfer tube has the first row at the position where the gas flows in, and the tenth row before the outflow. count. The hot exhaust gas temperature is about 420 ° C near the first row heat transfer tubes, but about 180 ° C in the tenth row heat transfer tubes. Therefore, the heat transfer amount in the heat transfer tubes in the first row is the largest.

次に、水ドラム4、蒸気ドラム2を通過する気液二相流
体の循環作用を第5図を参照して説明する。横軸には流
量を、縦軸には圧力差を取っている。なお、伝熱管の列
数は5列としている。第3図に示すように、加熱される
伝熱管と加熱されない降水管(通常は加熱されないが、
燃焼ガス通路内等に置かれる場合は加熱されることにな
る。ただし、熱交換量は小さく、降水管での蒸気の発生
はほとんどない。)との間での循環回路が形成される。
なお、この循環回路にはドラム内胴6に設置されている
サイクロンセパレータ8a,8bも含まれる。このサイクロ
ンセパレータ8a,8bでの圧力損失分は循環回路の最も大
きな循環阻害要因である。そしてサイクロンセパレータ
8a,8bの圧力損失はサイクロンセパレータを流れる流量
のほぼ2乗に比例して大きくなる。
Next, the circulation action of the gas-liquid two-phase fluid passing through the water drum 4 and the steam drum 2 will be described with reference to FIG. The horizontal axis shows the flow rate and the vertical axis shows the pressure difference. The number of rows of heat transfer tubes is five. As shown in Fig. 3, a heat transfer tube that is heated and a downcomer that is not heated (usually not heated,
When placed in the combustion gas passage or the like, it is heated. However, the amount of heat exchange is small and almost no steam is generated in the downcomer. ) And a circulation circuit are formed.
It should be noted that the circulation circuit also includes cyclone separators 8a and 8b installed on the drum inner case 6. The amount of pressure loss in the cyclone separators 8a and 8b is the largest factor that impedes circulation in the circulation circuit. And cyclone separator
The pressure loss of 8a and 8b increases in proportion to almost the square of the flow rate flowing through the cyclone separator.

各列の伝熱管の循環流量と、各列の伝熱管の圧力差(水
ドラムの圧力とサイクロンセパレータ入口の圧力との
差)との関係を示す、いわゆる流量特性は、第5図の流
量特性曲線G1,G2,G3,G4,G5で示される。ここで、G1は高
温排ガス上流側設置の伝熱管を流れる流量特性曲線であ
り、G5は高温排ガス下流側設置の伝熱管を流れる流量特
性曲線である。そして、各列の流量特性曲線G1〜G5の総
和が全伝熱管を流れる流量をあらわすことになる。この
全伝熱管に対する流量特性曲線はΣGiで示される。ま
た、流路に導通するサイクロンセパレータで生じる圧力
損失を考慮すると、結局、全伝熱管を流れる流量特性
は、曲線ΣGになる。
The so-called flow rate characteristic, which shows the relationship between the circulating flow rate of the heat transfer tubes in each row and the pressure difference between the heat transfer tubes in each row (difference between the water drum pressure and the cyclone separator inlet pressure), is the flow rate characteristic in FIG. It is shown by curves G1, G2, G3, G4, G5. Here, G1 is a flow rate characteristic curve flowing through the heat transfer tube installed on the high temperature exhaust gas upstream side, and G5 is a flow rate characteristic curve flowing through the heat transfer tube installed on the high temperature exhaust gas downstream side. Then, the sum of the flow rate characteristic curves G1 to G5 of each row represents the flow rate of all the heat transfer tubes. The flow characteristic curve for this all heat transfer tube is shown by ΣGi. Further, considering the pressure loss generated in the cyclone separator that is in communication with the flow path, the flow rate characteristic of flowing through all the heat transfer tubes eventually becomes a curve ΣG.

一方、降水管を流れる流量特性は、降水管を流れる流量
のほかに水ドラム内圧から蒸気ドラム内圧に至る圧力差
を考慮して図中破線であらわした曲線Gdで示される。曲
線Gdが右下りの曲線となるのは、流量増による降水管の
流動抵抗の増加によるものである。
On the other hand, the flow rate characteristic flowing through the downcomer pipe is shown by a curve Gd represented by a broken line in the figure in consideration of the pressure difference from the water drum internal pressure to the steam drum internal pressure in addition to the flow rate flowing through the downcomer pipe. The reason why the curve Gd becomes a downward-sloping curve is that the flow resistance of the downcomer pipe increases due to the increase in flow rate.

ところで、伝熱管側および降水管側とも水ドラム、蒸気
ドラム間の圧力差および流量は当然等しいので、伝熱管
側の流量特性ΣGと降水管側の流量特性Gdの交点aが求
める圧力差および流量を示すことになる。
By the way, since the pressure difference and the flow rate between the water drum and the steam drum are naturally equal on the heat transfer tube side and the downfall tube side, the pressure difference and the flow rate obtained at the intersection a of the heat transfer tube side flow rate characteristic ΣG and the downfall tube side flow rate characteristic Gd. Will be shown.

このときの各列の伝熱管の流量は以下のようにして求め
ることができる。まず、a点からサイクロンセパレータ
の圧力損失分を差し引いたb点を得る。このb点の圧力
差は水ドラム内圧とサイクロンセパレータ入口の圧力と
の圧力差であり、この圧力差をΔP3とする。各列の伝熱
管の流量は、この圧力差ΔP3と、各列の伝熱管の流量特
性曲線G1〜G5との交点c,d,e,f,gで求められ
る。これら流量特性曲線G1〜G5のうち、最終列の伝熱管
を流れる流量特性G5は、図からも理解されるように、交
点gが小さくなっており、わずかの加熱量の変動やその
他の要因により、伝熱管の流れはとじ込められることが
ある。このため最終列の伝熱管の流れは不安定になり、
熱疲労による伝熱管の破損の危険性がある。
The flow rate of the heat transfer tubes in each row at this time can be obtained as follows. First, point b is obtained by subtracting the pressure loss of the cyclone separator from point a. This pressure difference at point b is the pressure difference between the water drum internal pressure and the cyclone separator inlet pressure, and this pressure difference is ΔP3. The flow rate of the heat transfer tubes in each row is determined by the intersections c, d, e, f, g of the pressure difference ΔP3 and the flow rate characteristic curves G1 to G5 of the heat transfer tubes in each row. Of these flow rate characteristic curves G1 to G5, the flow rate characteristic G5 that flows through the heat transfer tubes in the final row has a small intersection point g, as can be understood from the figure, and due to slight fluctuations in the heating amount and other factors. , The heat transfer tube flow may be trapped. Therefore, the flow of the heat transfer tubes in the last row becomes unstable,
There is a risk of damage to the heat transfer tube due to thermal fatigue.

そこで、本考案の目的は、各列の伝熱管を流れる気液二
相流体のうち、高温排ガス下流側設置の伝熱管を通る気
液二相流体の流れが不安定になるのを防止するようにし
た自然循環型ボイラ用蒸気ドラムを提供することにあ
る。
Therefore, an object of the present invention is to prevent an unstable flow of the gas-liquid two-phase fluid passing through the heat transfer tubes installed on the downstream side of the high-temperature exhaust gas among the gas-liquid two-phase fluids flowing through the heat transfer tubes in each row. To provide a steam drum for a natural circulation boiler.

〔考案の構成〕[Constitution of device]

(課題を解決するための手段) 本考案による自然循環型ボイラ用蒸気ドラムは、横長円
筒の蒸気ドラムであって、この蒸気ドラムにはドラム外
胴に同芯配置のドラム内胴を備え、このドラム内胴にサ
イクロンセパレータを設け、このサイクロンセパレータ
に導通され、上記ドラム外胴、ドラム内胴間に形成され
た流路と、この流路に連通され、水ドラムからの気液二
相流体を案内する伝熱管とを備える一方、伝熱管は高温
排ガスの流れに沿って、かつ横断して列状に設置した自
然循環型ボイラ用蒸気ドラムにおいて、上記流路を第1
の流路と第2の流路とに区分けする仕切板を設け、区分
けされた流路のうち、第1の流路に、高温排ガス上流側
に設置した伝熱管により生成された蒸気の上昇力を利用
して水ドラムからの気液二相流体を導く一方、区分けさ
れた第2の流路に、高温排ガスの比較的上流側設置の伝
熱管により生成された蒸気の吸引力を利用して高温排ガ
ス下流側設置の伝熱管にとどまっている気液二相流体を
導くようにしたことを特徴とする。
(Means for Solving the Problem) A steam drum for a natural circulation type boiler according to the present invention is a horizontally long cylinder steam drum, and this steam drum is provided with a drum inner cylinder and a drum inner cylinder arranged concentrically. A cyclone separator is provided on the drum inner body, and is connected to the cyclone separator, and is connected to the flow passage formed between the drum outer body and the drum inner body, and this flow passage, and the gas-liquid two-phase fluid from the water drum is supplied. The heat transfer tube is provided with a heat transfer tube that guides the heat transfer tube, and the heat transfer tube is arranged in a row along and across the flow of the high-temperature exhaust gas.
A partition plate for partitioning into the second flow path and the second flow path is provided, and the ascending force of the steam generated by the heat transfer tube installed on the upstream side of the high-temperature exhaust gas in the first flow path of the divided flow paths. Is used to guide the gas-liquid two-phase fluid from the water drum, while using the suction force of the steam generated by the heat transfer tube installed relatively upstream of the high-temperature exhaust gas into the divided second flow path. It is characterized in that the gas-liquid two-phase fluid that remains in the heat transfer tube installed downstream of the high-temperature exhaust gas is introduced.

(作用) 上述構成では、流路に仕切板を設けて第1の流路と第2
の流路に区分けされ、第1の流路に高温排ガス上流側設
置の伝熱管が連通され、また第2の流路に高温排ガスの
比較的上流側および下流側設置の伝熱管が連通されるの
で、列状配置の各伝熱管の気液二相流体の流れは良好に
なる。すなわち、第1の流路に連通する伝熱管は高温排
ガスの熱を受けて蒸気が生成され、この蒸気の上昇力に
より気液二相流体の第1の流路への流れは良好である。
(Operation) In the above-described configuration, the partition plate is provided in the flow path to provide the first flow path and the second flow path
Of the high temperature exhaust gas is connected to the first flow path, and the heat transfer tubes of the high temperature exhaust gas are installed upstream and downstream of the high temperature exhaust gas are connected to the second flow path. Therefore, the flow of the gas-liquid two-phase fluid in each row of heat transfer tubes becomes good. That is, the heat transfer tube communicating with the first flow path receives the heat of the high-temperature exhaust gas to generate steam, and the ascending force of this steam allows the gas-liquid two-phase fluid to flow favorably to the first flow path.

また、第2の流路に連通する伝熱管のうち、高温排ガス
の比較的上流側設置の伝熱管も上述のように蒸気の上昇
力が利用され、気液二相流体の流れを良好にしている。
ところが、高温排ガス下流側設置の伝熱管は、高温排ガ
スから受ける熱が低いので、蒸気の生成が少なく、蒸気
の上昇力を期待することができない。しかしながら、第
2の流路には、すでに高温排ガスの比較的上流側設置の
伝熱管から蒸気が流れており、この蒸気が吸引力となっ
て高温排ガスの下流側設置の伝熱管にとどまっている気
液二相流体を引き上げ、これにより気液二相流体の流れ
は良好になる。
Further, among the heat transfer tubes communicating with the second flow path, the heat transfer tubes installed relatively upstream of the high-temperature exhaust gas also utilize the ascending force of the vapor as described above to improve the flow of the gas-liquid two-phase fluid. There is.
However, since the heat transfer pipe installed on the downstream side of the high-temperature exhaust gas receives a low amount of heat from the high-temperature exhaust gas, the amount of generated steam is small, and the power of rising steam cannot be expected. However, in the second flow path, steam has already flowed from the heat transfer tube installed relatively upstream of the high-temperature exhaust gas, and this steam serves as a suction force and remains in the heat transfer tube installed downstream of the high-temperature exhaust gas. Withdrawing the gas-liquid two-phase fluid, the flow of the gas-liquid two-phase fluid is improved.

このように本考案による自然循環型ボイラ用蒸気ドラム
では、伝熱管を高温排ガスの上下流いずれの側に設置し
ようともすべての伝熱管から第1の流路および第2の流
路への気液二相流体の流れは良好になるから、多量の蒸
気の生成と相まって、材料強弱面でも安定性を確保する
ことができる。
As described above, in the steam drum for the natural circulation type boiler according to the present invention, no matter whether the heat transfer tubes are installed on the upstream or downstream side of the hot exhaust gas, the gas and liquid from all the heat transfer tubes to the first flow path and the second flow path are Since the flow of the two-phase fluid becomes good, it is possible to secure stability in terms of material strength and weakness in combination with the generation of a large amount of vapor.

(実施例) 本考案の一実施例を第1図を参照して説明する。(Embodiment) An embodiment of the present invention will be described with reference to FIG.

第1図において、符号2は蒸気ドラムを示し、この蒸気
ドラム2は横長円筒になっている。この蒸気ドラム2に
はドラム外胴5に同芯配置のドラム内胴6が設けられて
いる。ドラム内胴6には一対のサイクロンセパレータ8
a,8bが設けられ、これら一対のサイクロンセパレータ8
a,8bに連通してドラム外胴5とドラム内胴6間に流路S
が形成されている。
In FIG. 1, reference numeral 2 indicates a steam drum, which is a horizontally long cylinder. The steam drum 2 is provided with an inner drum body 6 coaxially arranged with an outer drum body 5. A pair of cyclone separators 8 is provided on the drum inner body 6.
a and 8b are provided, and a pair of these cyclone separators 8
A flow path S is provided between the outer drum body 5 and the inner drum body 6 by communicating with a and 8b.
Are formed.

流路Sには、仕切板11が設けられ、この仕切板11によっ
て第1の流路12と第2の流路13とが区分けされている。
第1の流路12は、水ドラム4と結ぶ伝熱管1Aを備え、こ
の伝熱管1Aは高温排ガスGの上流側であって、かつその
流れに横断して複数本が列状に設置されている。また第
2の流路13は、水ドラム4と結ぶ伝熱管1B,1Cを備え、
これら伝熱管1B,1Cは高温排ガスGの比較的上流側から
下流側に向って列状に設置されている。そして、高温排
ガスGの最下流側には蒸気ドラム2と水ドラム4とを結
ぶ降水管3が設けられている。なお、符号9はスクラバ
を示し、また符号10は蒸気出口管をそれぞれ示してお
り、スクラバ9から細かい水滴が取り除かれた蒸気は蒸
気出口管10を経て蒸気タービン(図示せず)に送られて
いる。
A partition plate 11 is provided in the flow path S, and the partition plate 11 divides the first flow path 12 and the second flow path 13 from each other.
The first flow path 12 includes a heat transfer tube 1A connected to the water drum 4. The heat transfer tube 1A is located upstream of the high-temperature exhaust gas G, and a plurality of tubes are installed in a row across the flow. There is. The second flow path 13 includes heat transfer tubes 1B and 1C connected to the water drum 4,
These heat transfer tubes 1B and 1C are installed in a row from the relatively upstream side of the high-temperature exhaust gas G toward the downstream side. A downfall pipe 3 that connects the steam drum 2 and the water drum 4 is provided on the most downstream side of the high-temperature exhaust gas G. Note that reference numeral 9 indicates a scrubber, and reference numeral 10 indicates a steam outlet pipe. The steam from which fine water droplets have been removed from the scrubber 9 is sent to a steam turbine (not shown) via the steam outlet pipe 10. There is.

上記構成の自然循環型ボイラにおける気液混合蒸気の循
環作用を第2図を参照して説明する。第5図と同様に各
列の伝熱管の流量特性を曲線G1〜G5で示す。高温排ガス
上流側設置の伝熱管2列の総流量に基づく特性曲線ΣGa
と、高温排ガス下流側設置の伝熱管3列の総流量に基づ
く特性曲線ΣGbとを求め、第1の流路12および第2の流
路13の出口部に設置されているサイクロンセパレータ8
a,8bの圧力損失分を加えると、特性曲線hおよびiが得
られる。この場合のサイクロンセパレータ8a,8bの圧力
損失分は特性曲線hの方は第5図の場合よりも多少大き
くなり、特性曲線iの方は第5図の場合よりも小さくな
る。伝熱管側の特性曲線jは特性曲線hとiとの和で示
される。
The circulation action of the gas-liquid mixed vapor in the natural circulation boiler having the above configuration will be described with reference to FIG. Similar to FIG. 5, the flow rate characteristics of the heat transfer tubes in each row are shown by curves G1 to G5. Characteristic curve ΣGa based on total flow rate of two rows of heat transfer tubes installed upstream of high temperature exhaust gas
And the characteristic curve ΣGb based on the total flow rate of the three rows of heat transfer tubes installed on the downstream side of the high-temperature exhaust gas, the cyclone separator 8 installed at the outlets of the first flow path 12 and the second flow path 13 is obtained.
Characteristic curves h and i are obtained by adding the pressure loss components a and 8b. In this case, the pressure loss of the cyclone separators 8a and 8b is slightly larger in the characteristic curve h than in the case of FIG. 5, and smaller in the characteristic curve i than in the case of FIG. The characteristic curve j on the heat transfer tube side is represented by the sum of the characteristic curves h and i.

一方、降水管側の特性曲線は第5図と同じ破線で示され
る曲線Gdで示される。定常状態においては、伝熱管側お
よび降水管側とも水ドラム内圧と蒸気ドラム内圧との圧
力差、ならびに流量は当然等しいので、伝熱管側の流量
特性jと降水管側の流量特性Gdとの交点Kが求める圧力
差ならびに流量である。この時の各列の伝熱管の流量は
以下のようにして求めることができる。すなわち、ま
ず、k点での圧力差をΔP4とし、この圧力差ΔP4と特性
曲線hおよびiの交点lおよびmを求める。交点lおよ
びmで示される流量は第1の流路12および第2の流路13
を流れる流量を示している。次に、交点lおよびmから
サイクロンセパレータ8a,8bでの圧力損失分を差し引い
たnおよびo点を得る。このnおよびo点での圧力差は
水ドラム4と第1の流路12および第2の流路13との高さ
でありこれをそれぞれΔP5およびΔP6とする。高温排ガ
ス上流側設置の伝熱管1Aの流量は圧力差ΔP5と、流量特
性曲線G1およびG2との交点p,qで求められる。また、
高温排ガスの比較的上流側設置の伝熱管1Bおよびその下
流設置の伝熱管1Cの流量は圧力差Δ6と、流量特性曲線
G3,G4およびG5との交点r,s,tで求められる。ここ
で、最終列の伝熱管1Cの流量G5を第5図と、本考案によ
る第2図とを比較してみると、明らかに圧力差も流量も
増えていることが判る。このような事象発生の要因は、
高温排ガスの比較的上流側設置の伝熱管1Bから第2の流
路13に流れる蒸気の吸引力が作用して高温排ガス下流側
設置の伝熱管1Cにとどまっている気液二相流体に上昇力
を与えているものと考えられている。したがって、伝熱
管の流れは、常に上昇流にすることができる。
On the other hand, the characteristic curve on the downcomer side is indicated by the curve Gd indicated by the same broken line as in FIG. In the steady state, the pressure difference between the water drum internal pressure and the steam drum internal pressure and the flow rate are naturally equal on both the heat transfer tube side and the downfall tube side, so the intersection point between the heat transfer tube side flow rate characteristic j and the downfall tube side flow rate characteristic Gd. K is the pressure difference and the flow rate required. The flow rate of the heat transfer tubes in each row at this time can be obtained as follows. That is, first, the pressure difference at the point k is set to ΔP4, and the intersections 1 and m of this pressure difference ΔP4 and the characteristic curves h and i are obtained. The flow rates indicated by the intersections 1 and m are the first flow path 12 and the second flow path 13
It shows the flow rate through the. Next, points n and o are obtained by subtracting the pressure loss at the cyclone separators 8a and 8b from the intersections l and m. The pressure difference at the points n and o is the height between the water drum 4 and the first flow passage 12 and the second flow passage 13, which are designated as ΔP5 and ΔP6, respectively. The flow rate of the heat transfer tube 1A installed on the upstream side of the high-temperature exhaust gas is determined by the intersection points p and q of the pressure difference ΔP5 and the flow rate characteristic curves G1 and G2. Also,
The flow rate of the high temperature exhaust gas in the heat transfer tube 1B installed relatively upstream and the heat transfer tube 1C installed downstream thereof is a pressure difference Δ6 and a flow rate characteristic curve.
It is determined by the intersection points r, s, and t with G3, G4, and G5. Here, comparing the flow rate G5 of the heat transfer tubes 1C in the final row with FIG. 5 and FIG. 2 according to the present invention, it is apparent that the pressure difference and the flow rate are both increased. The factors that cause such events are
The suction force of the steam flowing from the heat transfer tube 1B installed relatively upstream of the high temperature exhaust gas to the second flow path 13 acts to raise the gas-liquid two-phase fluid remaining in the heat transfer tube 1C installed downstream of the high temperature exhaust gas. Is believed to be giving. Therefore, the flow of the heat transfer tube can always be an upward flow.

このように、それぞれの伝熱管1A,1B,1Cで発生した気液
二相流体を互いに独立した経路を通して流すように構成
することにより、各列の伝熱管を流れる気液二相流体の
すべてを上昇流とすることができ、不安定な流動状態を
回避することができる。
In this way, by configuring the gas-liquid two-phase fluid generated in each heat transfer tube 1A, 1B, 1C to flow through paths independent from each other, all of the gas-liquid two-phase fluid flowing in each row heat transfer tube It can be an upflow, and an unstable flow state can be avoided.

〔考案の効果〕[Effect of device]

以上説明したように本考案は、ドラム外胴とドラム内胴
との間に形成される流路に、高温排ガス上流側設置の伝
熱管と連通する第1の流路と、高温排ガスの比較的上流
側および下流側設置の伝熱管と連通する第2の流路とを
互に隔てる仕切板を設けたから、各列の伝熱管を通る気
液二相流体の流れを、すべて第1の流路および第2の流
路に良好に導びくことができ、したがって各列に伝熱管
は熱疲労等による破損を防止できるという優れた効果を
奏する。
As described above, according to the present invention, the flow passage formed between the outer drum body and the inner drum body has the first flow passage communicating with the heat transfer pipe installed on the upstream side of the high temperature exhaust gas and the relatively high temperature exhaust gas. Since the partition plate that separates the second flow path communicating with the heat transfer tubes installed on the upstream side and the downstream side from each other is provided, the flow of the gas-liquid two-phase fluid passing through the heat transfer tubes in each row is entirely changed to the first flow path. Further, it is possible to satisfactorily lead to the second flow path, so that the heat transfer tubes in each row have an excellent effect of preventing damage due to thermal fatigue or the like.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案による自然循環型ボイラ用蒸気ドラムの
一実施例を示す断面図、第2図は本考案の自然循環型ボ
イラの水循環作用を説明するための図、第3図は従来の
蒸気ドラムを示す断面図、第4図は伝熱管位置とガス温
度との関係を示す特性線図、第5図は従来の自然循環型
ボイラの水循環作用を説明するため図である。 1A,1B,1C……伝熱管 2……蒸気ドラム 3……降水管 4……水ドラム 5……ドラム外胴 6……ドラム内胴 8a,8b……サイクロンセパレータ 11……仕切板 12……第1の流路 13……第2の流路 S……流路
FIG. 1 is a sectional view showing an embodiment of a steam drum for a natural circulation type boiler according to the present invention, FIG. 2 is a view for explaining a water circulation action of the natural circulation type boiler of the present invention, and FIG. FIG. 4 is a sectional view showing a steam drum, FIG. 4 is a characteristic diagram showing a relationship between a heat transfer tube position and a gas temperature, and FIG. 5 is a view for explaining a water circulation action of a conventional natural circulation boiler. 1A, 1B, 1C ...... Heat transfer tube 2 ...... Steam drum 3 ...... Precipitation tube 4 ...... Water drum 5 …… Drum outer body 6 …… Drum inner body 8a, 8b …… Cyclone separator 11 …… Partition plate 12… … First flow path 13 …… Second flow path S …… Flow path

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】横長円筒の蒸気ドラムであって、この蒸気
管ドラムにはドラム外胴に同芯配置のドラム内胴を備
え、このドラム内胴にサイクロンセパレータを設け、こ
のサイクロンセパレータに導通され、上記ドラム外胴、
ドラム内胴間に形成された流路と、この流路に連通さ
れ、水ドラムからの気液二相流体を案内する伝熱管とを
備える一方、伝熱管は高温排ガスの流れに沿って、かつ
横断して列状に設置した自然循環型ボイラ用蒸気ドラム
において、上記流路を第1の流路と第2の流路とに区分
けする仕切板を設け、区分けされた流路のうち、第1の
流路に、高温排ガス上流側に設置した伝熱管により生成
された蒸気の上昇力を利用して水ドラムからの気液二相
流体を導くようにする一方、区分けされた第2の流路
に、高温排ガスの比較的上流側設置の伝熱管により生成
された蒸気の吸引力を利用して高温排ガス下流側設置の
伝熱管にとどまっている気液二相流体を導くようにした
ことを特徴とする自然循環型ボイラ用蒸気ドラム。
1. A horizontally elongated steam drum, wherein the steam pipe drum is provided with a drum inner cylinder having a concentric arrangement on an outer drum body, a cyclone separator is provided on the drum inner cylinder, and the cyclone separator is electrically connected to the cyclone separator. , The drum outer body,
A flow path formed between the drum inner shell and a heat transfer tube communicating with the flow path and guiding the gas-liquid two-phase fluid from the water drum are provided, while the heat transfer tube is along the flow of the high-temperature exhaust gas, and In a steam drum for a natural circulation type boiler installed in a row across, a partition plate that divides the above flow passage into a first flow passage and a second flow passage is provided, and among the divided flow passages, In the first flow path, the vapor-liquid two-phase fluid from the water drum is guided by using the ascending force of the steam generated by the heat transfer tube installed on the upstream side of the high-temperature exhaust gas, while the second flow section is divided. The gas-liquid two-phase fluid remaining in the heat transfer pipe installed on the downstream side of the high-temperature exhaust gas is guided to the passage by using the suction force of the steam generated by the heat transfer pipe installed on the relatively upstream side of the high-temperature exhaust gas. A steam drum for natural circulation type boilers.
JP1988003918U 1988-01-18 1988-01-18 Natural circulation boiler steam drum Expired - Lifetime JPH0616243Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1988003918U JPH0616243Y2 (en) 1988-01-18 1988-01-18 Natural circulation boiler steam drum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1988003918U JPH0616243Y2 (en) 1988-01-18 1988-01-18 Natural circulation boiler steam drum

Publications (2)

Publication Number Publication Date
JPH01111906U JPH01111906U (en) 1989-07-27
JPH0616243Y2 true JPH0616243Y2 (en) 1994-04-27

Family

ID=31205976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1988003918U Expired - Lifetime JPH0616243Y2 (en) 1988-01-18 1988-01-18 Natural circulation boiler steam drum

Country Status (1)

Country Link
JP (1) JPH0616243Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI101737B1 (en) * 1996-10-24 1998-08-14 Pipemasters Oy Ltd Regulating exhaust boiler

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0619928Y2 (en) * 1986-02-14 1994-05-25 三菱重工業株式会社 Steam drum

Also Published As

Publication number Publication date
JPH01111906U (en) 1989-07-27

Similar Documents

Publication Publication Date Title
JP4540719B2 (en) Waste heat boiler
CN101684937B (en) Steam generator
JP2952102B2 (en) Heat exchanger
US5979370A (en) Continuous-flow steam generator
RU2123634C1 (en) Method of operation of flow-type steam generator and steam generator used for realization of this method
EP2282151A2 (en) Multistage pressure condenser
RO117733B1 (en) Steam boiler
JP2516661B2 (en) Reheat type exhaust gas boiler
JPH0616243Y2 (en) Natural circulation boiler steam drum
JPS5943681B2 (en) Inclined branch type water tube boiler
JPS6115001A (en) Steam generator
US4047562A (en) Heat exchanger utilizing a vaporized heat-containing medium
JP4489775B2 (en) Horizontal once-through boiler and its operation method
JPS5828481B2 (en) joukihatsuseiki
JP3916784B2 (en) Boiler structure
JP3190939B2 (en) Steam generator
US2897794A (en) Steam generating unit with plural combustion chambers separated by a partition wall of steam generating tubes
JPH1194204A (en) Boiler
JP2000337604A (en) Desuperheating device
JP2782414B2 (en) Multi-tube type once-through boiler with multiple upper headers
JPS60251388A (en) Waste heat retrieving heat exchanger
JPH01184302A (en) Steam generator
JPS602514Y2 (en) Once-through hot water boiler
US799083A (en) Steam-generator.
JPS6241502A (en) Once-through boiler