[go: up one dir, main page]

JPH06160019A - Positional shift measuring device - Google Patents

Positional shift measuring device

Info

Publication number
JPH06160019A
JPH06160019A JP4328675A JP32867592A JPH06160019A JP H06160019 A JPH06160019 A JP H06160019A JP 4328675 A JP4328675 A JP 4328675A JP 32867592 A JP32867592 A JP 32867592A JP H06160019 A JPH06160019 A JP H06160019A
Authority
JP
Japan
Prior art keywords
diffraction grating
diffraction gratings
pattern
wafer
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4328675A
Other languages
Japanese (ja)
Inventor
Tetsushi Nose
哲志 野瀬
Koichi Chitoku
孝一 千徳
Takahiro Matsumoto
隆宏 松本
Kenji Saito
謙治 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP4328675A priority Critical patent/JPH06160019A/en
Publication of JPH06160019A publication Critical patent/JPH06160019A/en
Priority to US08/314,444 priority patent/US5585923A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

PURPOSE:To measure positional shift with high accuracy of nm order by eliminating the error of an optical detection system even when the mutual fluctuations of the in-plane rotation of an object to be inspected are generated between the optical detection system and the object to be inspected. CONSTITUTION:Diffraction gratings 21, 22 to be inspected are provided on a wafer in order to calculate the mutual pattern shift of the gratings. The diffraction gratings 21, 22 correspond to the N-th and (N+1)-th baked patterns of a reticle or mask at the time of the formation of a semiconductor. Further, reference diffraction gratings 25, 26 are formed in the vicinity of the diffraction gratings 21, 22 to be inspected and a mask or reticle for backing is preliminarily formed as an EB image so that the mutual shift quantity of the gratings become zero. At this time, the measured values of the diffraction gratings 25, 26 are set to reference values at each time setting the shift quantity to a zero value to suppress the generation of the error generated by the in-plane rotary component of the water to realize highly accurate pattern measurement.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば半導体製造用の
露光装置の位置合わせ装置、或いは半導体パターンの重
ね合わせ精度の計測等に用いられる位置ずれ測定装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alignment apparatus for an exposure apparatus for manufacturing semiconductors, or a positional deviation measuring apparatus used for measuring the overlay accuracy of semiconductor patterns.

【0002】[0002]

【従来の技術】従来2つの被測定回折格子のずれを測定
するために、各格子パターンのそれぞれに可干渉光を入
射し、得られた回折光を用いて干渉光を形成し、この干
渉光を含む干渉光から得られる2つのビート信号の位相
差を基に2つの回折格子の位相差を測定する方法が知ら
れている。
2. Description of the Related Art Conventionally, in order to measure the shift between two diffraction gratings to be measured, coherent light is made incident on each of the grating patterns, and the obtained diffracted light is used to form interference light. There is known a method of measuring the phase difference between two diffraction gratings based on the phase difference between two beat signals obtained from interference light including.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、2つの
被測定パターンへのそれぞれの入射光束とパターンとの
相対関係のうち、これら被測定パターンが形成されるウ
エハの面内回転量と位相差Δφの変動について次のよう
な問題がある。これについて、図13、図14を参照し
ながら説明する。図13、図14は被検パターンに光束
が入る状態を取り出して示した説明図であり、被測定回
折格子パターン1と2の中心間距離をd、パターン1の
中心点をP1、パターン2の中心点をP2とし、パターン1
と2には、共に図面右側から紙面に斜めに光束L1(角周
波数ω1)が、また図面右側から同様に光束L2(角周波数
ω2)が入射し、同じ格子から出射する回折光同志を干渉
させて2ビート信号を得るものとする。
However, in the relative relationship between the incident light fluxes on the two measured patterns and the patterns, the in-plane rotation amount and the phase difference Δφ of the wafer on which these measured patterns are formed are determined. There are the following problems regarding fluctuations. This will be described with reference to FIGS. 13 and 14. 13 and 14 are explanatory views showing a state in which a light flux enters the test pattern, where the distance between the centers of the diffraction grating patterns 1 and 2 to be measured is d, the center point of the pattern 1 is P1, and the pattern 2 is Pattern 1 with the center point as P2
2 and 2, a light beam L1 (angular frequency ω1) obliquely enters the paper from the right side of the drawing, and a light beam L2 (angular frequency ω2) similarly enters from the right side of the drawing, causing diffracted light beams emitted from the same grating to interfere with each other. To obtain a 2-beat signal.

【0004】そして、パターン1、2への光束入射角が
図13に示すようにz方向から見て、格子配列方向より
θz だけずれた場合について示している。このとき、点
P1から光束L2が点P2に入る光線上に下ろした垂線の交点
をHとすると、光束L2は平面波であるとすれば線分HP1
が等位相面に含まれる。また、点P1に入る光束L2の光線
をL3、点P2に入る光束L2の光線をL4とし、光線L3、L4の
進行方向の方向余弦を(α、β、γ)とすると、線分H
P2の長さは、次式となる。 HP2=β・d … (1)
Then, as shown in FIG. 13, there is shown a case where the incident angle of the light flux on the patterns 1 and 2 is deviated from the lattice arrangement direction by θz as viewed from the z direction. At this time, the point
Let H be the intersection of the perpendiculars drawn from P1 to the ray L2 entering point P2. If ray L2 is a plane wave, then line segment HP1
Is included in the equiphase surface. If the ray of light flux L2 entering point P1 is L3, the ray of light flux L2 entering point P2 is L4, and the direction cosines of the traveling directions of light rays L3 and L4 are (α, β, γ), the line segment H
The length of P2 is as follows. HP2 = β ・ d (1)

【0005】更に、光束L1のうち点P1に入る光線をL5、
点P2に入る光線をL6とすると、光線L3の1次回折光の複
素振幅表示は次式のようになる。 Ea'(f1) =A・exp{i(ω1・t+φ1 +φa)} … (2)
Further, the light ray entering the point P1 of the light flux L1 is L5,
If the ray entering the point P2 is L6, the complex amplitude display of the first-order diffracted ray of ray L3 is as follows. Ea '(f1) = A · exp {i (ω1 · t + φ1 + φa)}… (2)

【0006】同様に、光線L5、L4、L6の回折光の複素振
幅表示は、式(2) 、(3) 、(4) に対応してそれぞれ次の
ようになる。 Ea'(f2) =B・exp{i(ω2・t+φ2 −φa)} … (3) Eb'(f1) =A・exp[i{ω1・t+φ1 +φb +(2π/λ)β・d}] … ( 4) Eb'(f2) =B・exp[i{ω2・t+φ2 −φb +(2π/λ)β・d}] … ( 5)
Similarly, the complex amplitude display of the diffracted lights of the light rays L5, L4 and L6 is as follows corresponding to the equations (2), (3) and (4). Ea '(f2) = B · exp {i (ω2 · t + φ2-φa)} (3) Eb' (f1) = A · exp [i {ω1 · t + φ1 + φb + (2π / λ) β · d}] … (4) Eb '(f2) = B · exp [i {ω2 · t + φ2 −φb + (2π / λ) β · d}] (5)

【0007】Ea'(f1) とEa'(f2) の干渉により、ビート
信号は次式のようになる。 Ia' =|Ea'(f1) +Ea'(f2) |2 =A2 +B2 +2A・B cos{(ω1 −ω2)t +( φ1 −φ2)+2φa } … (6)
Due to the interference between Ea '(f1) and Ea' (f2), the beat signal becomes as follows. Ia '= | Ea' (f1 ) + Ea '(f2) | 2 = A 2 + B 2 + 2A · B cos {(ω1 -ω2) t + (φ1 -φ2) + 2φa} ... (6)

【0008】同様に、Eb'(f1) とEb'(f2) の干渉によ
り、ビート信号は次式のようになる。 Ib' =A2 +B2 +2A・B cos{(ω1 −ω2)t +( φ1 −φ2)+2φb − 2(2π/λ)β・d} … (7)
Similarly, due to the interference between Eb '(f1) and Eb' (f2), the beat signal is given by the following equation. Ib '= A 2 + B 2 + 2A · B cos {(ω1 -ω2) t + (φ1 -φ2) + 2φb - 2 (2π / λ) β · d} ... (7)

【0009】従って、式(6) 、(7) によりθz ≠0であ
る場合は、θz =0即ちβ=0の場合に比べ、(4π/
λ)β・dだけ位相が変化することになる。これより、
回折格子5と6の間のずれ量の測定値に含まれる誤差を
Δx'とすると、 Δx'=2β・d … (8) となり、Δx'=5nm相当の値は、d=100μmとす
ると、 β=Δx'/2d=5nm/{2×100(μm)}=2.
5×10-5 となる。
Therefore, when θz ≠ 0 according to the equations (6) and (7), compared with the case where θz = 0, that is, β = 0, (4π /
The phase changes by λ) β · d. Than this,
If the error included in the measured value of the amount of deviation between the diffraction gratings 5 and 6 is Δx ′, then Δx ′ = 2β · d (8), and the value corresponding to Δx ′ = 5 nm is d = 100 μm. β = Δx ′ / 2d = 5 nm / {2 × 100 (μm)} = 2.
It becomes 5 × 10 -5 .

【0010】ところで、θz =90°− cos-1β=5.
1”、即ち、θz の値が5.1”変動すると、格子パタ
ーン5と6間の検出値が5nmずれることになる。
[0010] By the way, θz = 90 ° - cos -1 β = 5.
When the value of 1z, that is, the value of θz fluctuates by 5.1 ″, the detection value between the grating patterns 5 and 6 deviates by 5 nm.

【0011】このことは、検出光学系とウエハがウエハ
面内の回転に相当する相対変動が5.1”あると、5n
mの変動誤差を生ずるということになり、ずれ量を高精
度に検出する場合には大きな問題となる。通常、ウエハ
ステージが6インチ或いは8インチのウエハを送る場合
には、200mm程度の長いストロークを移動させる必
要があり、秒オーダの回転を発生させないためには複雑
なモニタ機能と制御とを必要とする。また、単純な構成
でステージ送りを達成しようとすると、秒オーダの回転
つまりヨーイングが発生し、これに対応したパターン内
のずれ検出誤差が発生する。200mmストロークのス
テージでは通常10”〜20”程度のヨーイングが発生
し、それに伴って10nm〜20nmの計測誤差が発生
することになる。従って、所望の0.25μmラインア
ンドスペースのパターン(256MDRAM相当)に見
合った焼き付け精度評価である5nm以下が達成不可能
となる。また、ヨーイングの絶対値を小さくするには、
ステージを高精度に制御することが考えられるが、この
場合には系が複雑で高価なものとなる。
This means that if there is a relative fluctuation of 5.1 "between the detection optical system and the wafer, which corresponds to the rotation in the wafer plane, it is 5n.
This causes a variation error of m, which is a serious problem in detecting the deviation amount with high accuracy. Usually, when the wafer stage feeds a 6-inch or 8-inch wafer, it is necessary to move a long stroke of about 200 mm, and a complicated monitor function and control are required to prevent rotation on the order of seconds. To do. Further, when attempting to achieve stage feed with a simple configuration, rotation on the order of seconds, that is, yawing occurs, and a shift detection error in the pattern corresponding to this occurs. In a stage with a stroke of 200 mm, yawing of about 10 ″ to 20 ″ is usually generated, and a measurement error of 10 nm to 20 nm is generated accordingly. Therefore, it is not possible to achieve the printing accuracy evaluation of 5 nm or less, which is suitable for the desired 0.25 μm line and space pattern (equivalent to 256 MDRAM). Also, to reduce the absolute value of yawing,
It is conceivable to control the stage with high precision, but in this case the system becomes complicated and expensive.

【0012】なお、従来の問題点を図13〜図14まで
について、同一物体上の複数のパターン間のずれ計測に
ついて説明したが、2物体上のパターン間のずれ計測に
ついても全く同様の課題がある。
Although the conventional problems have been described with reference to FIGS. 13 to 14 regarding the displacement measurement between a plurality of patterns on the same object, the same problem is also encountered in the displacement measurement between patterns on two objects. is there.

【0013】本発明の目的は、光学的検出系と被検物と
の間で、被検物の面内回転の相互変動が発生してもその
誤差を解消し、nmオーダの高精度な位置ずれ測定装置
を提供することにある。
An object of the present invention is to eliminate the error between the optical detection system and the object to be inspected, even if there is mutual variation in in-plane rotation of the object to be inspected, and to provide a highly accurate position on the order of nm. It is to provide a deviation measuring device.

【0014】[0014]

【課題を解決するための手段】上述の目的を達成するた
めの本発明に係る位置ずれ測定装置は、1物体又は2物
体上に設けた複数の回折格子パターン間の位置ずれを計
測する装置において、可干渉光源、前記回折格子に光を
入射する系と、回折格子からの回折光を干渉光の少なく
とも1つに用いて干渉させる系、干渉信号に基づいて前
記回折格子の位相ずれを計測する手段、を備える光検出
系と、前記光検出系の少なくとも一部と前記物体を相対
移動させる手段とを備え、前記物体上に予めずれ量が既
知で位置ずれ計測を求めるべき前記回折格子パターンの
近傍に設けた基準パターンを前記光検出系で計測するこ
とにより、前記ずれ計測物体の格子面内の前記検出系と
前記物体間の相互面内回転による誤差を低減することを
特徴とする。
A position shift measuring apparatus according to the present invention for achieving the above object is an apparatus for measuring a position shift between a plurality of diffraction grating patterns provided on one object or two objects. A coherent light source, a system for injecting light into the diffraction grating, a system for interfering the diffracted light from the diffraction grating with at least one of the interference lights, and a phase shift of the diffraction grating is measured based on an interference signal. Means for moving at least a part of the photodetection system and the object relative to each other, of the diffraction grating pattern for which a displacement amount is known in advance on the object and displacement measurement should be obtained. By measuring a reference pattern provided in the vicinity by the photodetection system, an error due to mutual in-plane rotation between the detection system and the object in the lattice plane of the displacement measurement object is reduced.

【0015】[0015]

【作用】上述の構成を有する位置ずれ測定装置は、被検
物体上の回折格子パターン対の近傍にずれ量が予め既知
の基準パターンを設け、この基準パターンの計測値を参
照して角被検回折格子パターン組内のずれ計測をする位
置ずれ検出装置であり、これによりウエハ内に広く設け
られたパターンの計測をするためにステージ等で光学検
出系とウエハの相対移動を行う際に発生するウエハの面
内回転成分、即ちヨーイングによる誤差発生を抑える。
In the position shift measuring device having the above-mentioned structure, a reference pattern whose shift amount is known in advance is provided in the vicinity of the diffraction grating pattern pair on the object to be inspected, and the corner test is performed by referring to the measured value of the reference pattern. This is a position shift detection device that measures the shift within the diffraction grating pattern set, which is generated when the optical detection system and the wafer are moved relative to each other on a stage or the like in order to measure the pattern widely provided within the wafer. The in-plane rotation component of the wafer, that is, the occurrence of an error due to yawing is suppressed.

【0016】[0016]

【実施例】本発明を図1〜図12に図示の実施例に基づ
いて詳細に説明する。図1は第1の実施例の説明図であ
り、21、22は相互のパターンずれを求めるためにウ
エハ上に設けられた被検回折格子である。また、被検回
折格子21、22の−x方向にDx離れた位置には、被検
回折格子23、24が同様に評価するために焼き付け等
によって設けられている。従って、例えば被検回折格子
21、22は半導体の作成時のレチクル或いはマスクの
N番目とN+1番目の焼き付けパターンに相当し、この
部分を拡大すると図2に示すようになっている。同様
に、被検回折格子23、24もレチクル或いはマスクの
M番目とM+1番目の焼き付けパターンであり、M=N
でもよい。また、被検回折格子21、22の−y方向に
Dy離れた位置には、基準回折格子25、26が図3に示
すように形成され、予め相互のずれが0であるように焼
き付けのためのマスク或いはレチクルをEB画で作成し
たものが使用される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to the embodiments shown in FIGS. FIG. 1 is an explanatory view of the first embodiment, and reference numerals 21 and 22 are diffraction gratings to be inspected provided on a wafer for obtaining mutual pattern shifts. Further, test diffraction gratings 23 and 24 are provided at positions separated by Dx in the −x direction of the test diffraction gratings 21 and 22 by baking or the like for the same evaluation. Therefore, for example, the diffraction gratings 21 and 22 to be inspected correspond to the Nth and N + 1th printing patterns of the reticle or mask at the time of manufacturing a semiconductor, and when this portion is enlarged, it becomes as shown in FIG. Similarly, the inspected diffraction gratings 23 and 24 are the Mth and M + 1th printing patterns of the reticle or mask, and M = N.
But it's okay. In addition, in the -y direction of the diffraction gratings 21 and 22 to be tested.
The reference diffraction gratings 25 and 26 are formed at positions apart from Dy as shown in FIG. 3, and a mask or reticle for printing is prepared by EB drawing so that the mutual deviation is 0 in advance. It

【0017】ΔXはウエハ上に焼き付けられた被検回折
格子21、22のパターン焼き付けずれ量である。ここ
で、回折格子のピッチをPとする。図1において、S1、
S2、S3は何れも各被検回折格子21、22のペア、被検
回折格子23、24のペア、基準回折格子25、26の
ペアに光検出系の投射光が入射する場合のスポットを示
している。
ΔX is a pattern printing deviation amount of the diffraction gratings 21 and 22 to be inspected printed on the wafer. Here, the pitch of the diffraction grating is P. In FIG. 1, S1,
Each of S2 and S3 indicates a spot when the projection light of the photodetection system is incident on the pair of the test diffraction gratings 21 and 22, the pair of the test diffraction gratings 23 and 24, and the pair of the reference diffraction gratings 25 and 26. ing.

【0018】従って、後述する図5に示す光検出系と被
検ウエハを相互に移動する際に、被検回折格子21、2
2に光スポットを投射する状態から、例えば被検ウエハ
が支持されているステージをx方向に−Dxだけ駆動すれ
ば、被検回折格子23、24に光が投射され、スポット
S3の位置に移動するにはy方向に−Dyだけステージを駆
動すればよい。
Therefore, when the photodetection system shown in FIG. 5 and the wafer to be inspected are moved relative to each other, the diffraction gratings 21 and 2 to be inspected are moved.
From the state of projecting a light spot on 2, the stage on which the wafer under test is supported is driven by -Dx in the x direction, and the light is projected onto the diffraction gratings 23 and 24 under test, and the spot is spotted.
To move to the position of S3, it is sufficient to drive the stage by -Dy in the y direction.

【0019】図4は被測定ウエハをステージの上にセッ
トして計測する場合における斜視図であり、回折格子2
1〜26はウエハ上に形成され、ウエハの上方には光検
出系31が設けられている。また、ウエハはy軸ステー
ジ32及びx軸ステージ33上に配置され、y軸ステー
ジ32はy軸ステージ駆動機構34に接続され、x軸ス
テージ33はx軸ステージ駆動機構35に接続されてい
る。更に、光検出系31、y軸ステージ駆動機構34、
x軸ステージ駆動機構35は制御手段36によって制御
等されるべく回路的に接続されている。
FIG. 4 is a perspective view showing a case where the wafer to be measured is set on the stage for measurement, and the diffraction grating 2 is used.
1 to 26 are formed on a wafer, and a photodetection system 31 is provided above the wafer. The wafer is placed on the y-axis stage 32 and the x-axis stage 33, the y-axis stage 32 is connected to the y-axis stage drive mechanism 34, and the x-axis stage 33 is connected to the x-axis stage drive mechanism 35. Further, the light detection system 31, the y-axis stage drive mechanism 34,
The x-axis stage drive mechanism 35 is connected in a circuit so as to be controlled by the control means 36.

【0020】図5は光検出系31内の詳細を示してい
る。2周波直線偏光レーザー光源41の光路上にはミラ
ー42が設けられ、ミラー42の反射方向にはコリメー
タレンズ43、プリズム44が順次に配列されている。
プリズム44の出射方向には、ウエハが配置されてい
る。なお、ここではウエハは原理説明のため、図6に示
すような回折格子45、46を有するウエハ47とす
る。ウエハ47の反射方向にはミラー48が設けられ、
ミラー48の反射方向には、レンズ49、グラントムソ
ンプリズム50、図7に示すようなガラス部51aとミ
ラー部51bとを有するエッジミラー51、レンズ5
2、光検出器13が順次に配列され、光検出器53の出
力は位相差計54を介して演算器55に接続されてい
る。また、エッジミラー51の反射方向にはレンズ5
6、光検出器57が配置され、光検出器57の出力は位
相差計54に接続されている。
FIG. 5 shows details of the inside of the photodetection system 31. A mirror 42 is provided on the optical path of the two-frequency linearly polarized laser light source 41, and a collimator lens 43 and a prism 44 are sequentially arranged in the reflecting direction of the mirror 42.
A wafer is arranged in the emitting direction of the prism 44. For the purpose of explaining the principle, the wafer is a wafer 47 having diffraction gratings 45 and 46 as shown in FIG. A mirror 48 is provided in the reflection direction of the wafer 47,
In the reflection direction of the mirror 48, a lens 49, a Glan-Thompson prism 50, an edge mirror 51 having a glass portion 51a and a mirror portion 51b as shown in FIG.
2. The photodetectors 13 are sequentially arranged, and the output of the photodetector 53 is connected to the calculator 55 via the phase difference meter 54. Further, the lens 5 is arranged in the reflection direction of the edge mirror 51.
6. The photodetector 57 is arranged, and the output of the photodetector 57 is connected to the phase difference meter 54.

【0021】2周波直線偏光レーザー光源41から出射
された周波数f1のS偏光光、周波数f2のP偏光光はミラ
ー42により偏向され、コリメータレンズ43を介して
プリズム44に入射する。図8に示すように、プリズム
44の偏光ビームスプリッタ部44aをS偏光の周波数
f1の光束は反射し、P偏光の周波数f2の光束は透過し、
それぞれ反射部44b、44cで偏向され、図9に示す
ようにプリズム44から出射され、ウエハ47上の回折
格子45、46に入射し回折光となる。
The S-polarized light of frequency f1 and the P-polarized light of frequency f2 emitted from the dual-frequency linearly polarized laser light source 41 are deflected by the mirror 42 and enter the prism 44 through the collimator lens 43. As shown in FIG. 8, the polarization beam splitter section 44a of the prism 44 is set to the frequency of S-polarized light.
The light flux of f1 is reflected, and the light flux of P-polarized frequency f2 is transmitted,
The light is deflected by the reflecting portions 44b and 44c, emitted from the prism 44 as shown in FIG. 9, and enters the diffraction gratings 45 and 46 on the wafer 47 to become diffracted light.

【0022】ウエハ47上の回折格子45、46は、ウ
エハ47上に別々の焼き付けプロセスを経て形成された
隣接する2つの等間隔直線回折格子であり、ピッチは共
に等しくpである。回折格子45、46間には、図6に
示すようにx方向に焼き付け時の位置ずれΔXが生じて
いる。このとき、回折格子45による周波数f1の左側入
射光の1次回折光Ea(f1)、及び周波数f2の右側入射光の
−1次回折光Ea(f2)の複素振幅表示は、次式のようにな
る。 Ea(f1)=A・exp{i(ω1・t+φ1 +φa)} … (9) Ea(f2)=B・exp{i(ω2・t+φ2 −φa)} …(10)
The diffraction gratings 45 and 46 on the wafer 47 are two adjacent linear diffraction gratings at equal intervals formed on the wafer 47 through separate baking processes, and their pitches are both equal to each other. Between the diffraction gratings 45 and 46, as shown in FIG. 6, there is a positional deviation ΔX during printing in the x direction. At this time, the complex amplitude display of the first-order diffracted light Ea (f1) of the left-side incident light of the frequency f1 and the -1st-order diffracted light Ea (f2) of the right-side incident light of the frequency f2 by the diffraction grating 45 is as follows. . Ea (f1) = A ・ exp {i (ω1 ・ t + φ1 + φa)} (9) Ea (f2) = B ・ exp {i (ω2 ・ t + φ2−φa)} (10)

【0023】ここで、A、Bは振幅、ω1 、ω2 は角周
波数、φ1 、φ2 は2周波直線偏光レーザー光源41か
ら出射した光束の初期位相であり、φa =2πXa/pで
ある。また、Xaはウエハ47上の基準位置からの回折格
子45のx方向へのずれ量を表している。
Here, A and B are amplitudes, ω1 and ω2 are angular frequencies, φ1 and φ2 are initial phases of the light flux emitted from the dual frequency linearly polarized laser light source 41, and φa = 2πXa / p. Xa represents the amount of deviation of the diffraction grating 45 from the reference position on the wafer 47 in the x direction.

【0024】同様に、回折格子56による周波数f1の左
側入射光の1次回折光Eb(f1)及び周波数f2の右側入射光
の−1次回折光Eb(f2)の複素振幅表示は、次式のように
なる。 Eb(f1)=A・exp{i(ω1・t+φ1 +φb)} …(11) Eb(f2)=B・exp{i(ω2・t+φ2 −φb)} …(12)
Similarly, the complex amplitude display of the first-order diffracted light Eb (f1) of the left-side incident light of the frequency f1 and the -1st-order diffracted light Eb (f2) of the right-side incident light of the frequency f2 by the diffraction grating 56 is expressed by the following equation. become. Eb (f1) = A ・ exp {i (ω1 ・ t + φ1 + φb)} (11) Eb (f2) = B ・ exp {i (ω2 ・ t + φ2−φb)} (12)

【0025】ここで、φb =2πXb/pであり、Xbは基
準位置からの回折格子56のx方向へのずれ量を表して
いる。
Here, φb = 2πXb / p, and Xb represents the amount of deviation of the diffraction grating 56 from the reference position in the x direction.

【0026】回折格子45、46で回折された光束はミ
ラー48で偏向され、レンズ49、グラントムソンプリ
ズム50を通り、このグラントムソンプリズム50によ
り回折光の偏光面が揃えられ干渉する。それぞれの干渉
光Ea(f1)とEa(f2)とEb(f1)とEb(f2)の強度変化Ia、Ib、
つまりビート信号は次式のようになる。 Ia=A2 +B2 +2A・B cos{(ω1 −ω2)t+(φ1 −φ2)+2φa} … (13) Ib=A2 +B2 +2A・B cos{(ω1 −ω2)t+(φ1 −φ2)+2φb} … (14)
The light beams diffracted by the diffraction gratings 45 and 46 are deflected by the mirror 48, pass through the lens 49 and the Glan-Thompson prism 50, and the Glan-Thompson prism 50 aligns the polarization planes of the diffracted light and interferes with each other. The intensity changes Ia, Ib of the interference lights Ea (f1), Ea (f2), Eb (f1), and Eb (f2),
In other words, the beat signal is given by the following equation. Ia = A 2 + B 2 + 2A · B cos {(ω1 -ω2) t + (φ1 -φ2) + 2φa} ... (13) Ib = A 2 + B 2 + 2A · B cos {(ω1 -ω2) t + (φ1 -φ2) + 2φb} (14)

【0027】なお、2つの回折干渉光の分離は次のよう
にして行えばよい。即ち、2つの回折干渉光は空間的に
僅かに離れているため、エッジミラー51を用いて図8
に示すガラス部51aとミラー部51bの境界線Lが、
2つの回折格子45、46の回折光間の中心に至るよう
に設定し、回折格子45からの回折光はエッジミラー5
1で反射させてレンズ56を介して光検出器57に導
き、他方の回折格子56からの回折光はエッジミラー5
1を透過させてレンズ52を介して光検出器53に導
く。
The two diffracted interference light beams may be separated as follows. That is, since the two diffracted interference lights are spatially slightly separated from each other, the edge mirror 51 is used in FIG.
The boundary line L between the glass portion 51a and the mirror portion 51b shown in
The diffracted light from the diffraction grating 45 is set to reach the center between the diffracted lights of the two diffraction gratings 45 and 46, and the edge mirror 5
The light reflected by 1 is guided to the photodetector 57 via the lens 56, and the diffracted light from the other diffraction grating 56 is reflected by the edge mirror 5
1 is transmitted and guided to the photodetector 53 through the lens 52.

【0028】光検出器57、53で検出されたビート信
号は位相差計54に導入され、その位相差を検出する。
位相差をΔφとすると、Δφは次式のようになる。 Δφ=(φa −φb )=4π(Xa−Xb)/p …(15)
The beat signals detected by the photodetectors 57 and 53 are introduced into the phase difference meter 54 to detect the phase difference.
When the phase difference is Δφ, Δφ is given by the following equation. Δφ = (φa−φb) = 4π (Xa−Xb) / p (15)

【0029】即ち、回折格子45、46のx方向の相対
ずれ量ΔXは、次式のようになる。 ΔX=Xa−Xb=Δφ・p/4π …(16)
That is, the relative displacement amount ΔX of the diffraction gratings 45 and 46 in the x direction is as follows. ΔX = Xa−Xb = Δφ · p / 4π (16)

【0030】従って、位相差計54の出力Δφを演算器
55に入力して、式(16)の演算を行うことにより、回折
格子45、46の相対ずれ量を求めることができる。こ
のようにして、被検格子パターンとしての第1回目に焼
き付けられた格子パターン、例えば回折格子45と第2
回目に焼き付けられた格子パターン、例えば回折格子5
6とのずれ量を求めることにより、半導体露光装置の位
置合わせ精度、つまり第1回目と第2回目の焼き付けに
より形成された実素子パターン間のずれ量を検出するこ
とができる。
Therefore, by inputting the output Δφ of the phase difference meter 54 to the calculator 55 and calculating the equation (16), the relative shift amount of the diffraction gratings 45 and 46 can be obtained. In this way, the grating pattern that has been baked for the first time as the inspection grating pattern, for example, the diffraction grating 45 and the second grating pattern
The grating pattern that has been baked for the second time, for example, the diffraction grating 5
By obtaining the amount of deviation from No. 6, the alignment accuracy of the semiconductor exposure apparatus, that is, the amount of deviation between the actual element patterns formed by the first and second printings can be detected.

【0031】図1、図4に示したように、予めずれ量0
で設定した基準回折格子25、26を測定すべき被検回
折格子21、22及び被検回折格子23、24の近傍に
設け、基準回折格子25、26の計測値をずれ0の値と
してその都度参照値とすることにより、距離Dx、Dyが2
00mmよりも十分に小さい値であれば所望の高精度計
測が達成できる。
As shown in FIGS. 1 and 4, the deviation amount 0 is previously set.
The reference diffraction gratings 25 and 26 set in step 2 are provided in the vicinity of the test diffraction gratings 21 and 22 and the test diffraction gratings 23 and 24 to be measured, and the measurement values of the reference diffraction gratings 25 and 26 are set to values of zero deviation each time. By setting it as a reference value, the distances Dx and Dy are 2
If the value is sufficiently smaller than 00 mm, desired high precision measurement can be achieved.

【0032】即ち、先ず光検出系31を用いて基準回折
格子25と26で計測を行い、計測値を得る。ここでは
計測値として、本来ずれ量0が得られるはずである。し
かしながら、この時点で計測値として0以外の値が得ら
れた場合には、この値はヨーイングによる誤差成分であ
ると判断できる。そこで、この値を参照値として演算器
55に記憶させる。次に、ステージ移動誤差が問題にな
らない程度にステージ移動を行って、測定位置に基準回
折格子に代えて隣接する被検回折格子25、26を配置
し、光検出器31を用いてこの被検回折格子の測定を行
う。ここで得られる計測値には、前述の基準回折格子測
定時に得られたヨーイングによる誤差成分も同様に含ま
れているはずである。そこで、記憶された参照値をこの
計測値から差し引き、得られた計測値を正しい計測値と
して演算器55に記憶させる。これにより、常にヨーイ
ングの影響を除去した高精度な計測値が得られる。
That is, first, the photodetection system 31 is used to perform measurement with the reference diffraction gratings 25 and 26 to obtain a measured value. Here, as the measured value, the deviation amount of 0 should be originally obtained. However, if a value other than 0 is obtained as the measured value at this point, it can be determined that this value is an error component due to yawing. Therefore, this value is stored in the calculator 55 as a reference value. Next, the stage is moved to such an extent that the stage movement error does not pose a problem, the adjacent diffraction gratings 25 and 26 are arranged at the measurement position instead of the reference diffraction grating, and the photodetector 31 is used to perform this detection. Measure the diffraction grating. The measured value obtained here should include the error component due to the yawing obtained during the measurement of the reference diffraction grating described above. Therefore, the stored reference value is subtracted from this measured value, and the obtained measured value is stored in the calculator 55 as a correct measured value. As a result, it is possible to always obtain a highly accurate measured value with the influence of yawing removed.

【0033】例えば、距離Dx、Dyが共に20mm程度以
下とすれば、200mmのストローク中ヨーイングが1
0”〜20”存在し、10nm〜20nmの誤差をフル
ストロークで発生するステージを用いたとしても、平均
的に1”〜2”程度のヨーイングによる誤差発生に留め
られ、これに伴って発生する、即ち基準回折格子から被
検回折格子までのステージ移動に伴う測定誤差は1nm
〜2nmという小さい値となる。従って、基準回折格子
の計測値は充分に被検回折格子の計測時の参照値として
扱うことができる。
For example, if the distances Dx and Dy are both about 20 mm or less, the yawing during a stroke of 200 mm is 1
Even if a stage that has 0 "to 20" exists and an error of 10 nm to 20 nm is generated in a full stroke, the error is limited to an average of 1 "to 2" due to yawing, and this error occurs. That is, the measurement error due to the stage movement from the reference diffraction grating to the test diffraction grating is 1 nm.
The value is as small as 2 nm. Therefore, the measured value of the reference diffraction grating can be sufficiently treated as a reference value when measuring the test diffraction grating.

【0034】ウエハ全体の中に、このようなずれ量が既
知である1つのマスク(レチクル)で同時に焼き付けら
れた格子パターンのペアを適当に配置し、本来、ずれを
評価すべき被検パターンの格子がウエハ前面に展開して
焼き付けられる間に、この基準となる格子を設け、ステ
ップアンドリピート動作で各被検パターンの格子を順次
に測定する過程で、間に配置されている基準格子を測定
して、次の被検格子測定用の参照値を得るようにするこ
とにより、基準パターンの10mm〜20mm近傍に形
成された被検パターンの計測時のヨーイング成分の誤差
を抑えることができる。
A pair of lattice patterns simultaneously printed with one mask (reticle) whose displacement amount is known is appropriately arranged on the entire wafer, and the displacement of the test pattern to be evaluated is originally determined. While the grid is being developed and printed on the front surface of the wafer, a grid serving as a reference is provided, and in the process of sequentially measuring the grid of each pattern to be inspected by the step-and-repeat operation, the reference grid placed between the grids is measured. Then, by obtaining the reference value for the next measurement grating measurement, it is possible to suppress the error of the yawing component when measuring the measurement pattern formed in the vicinity of 10 mm to 20 mm of the reference pattern.

【0035】図10はこの様子を示すパターン配置図で
あり、ウエハ61には複数の1ショットサイズ62が形
成されている。また、1ショットサイズ62の内部には
N番目のレチクルとM番目(通常はN+1番目)のレチ
クルを用いて焼き付けられた被検回折格子63と基準回
折格子64が形成され、所謂スクライブラインにも基準
回折格子65が形成されている。このように、基準パタ
ーンを被検パターンの間に設けることにより、精度を向
上することができる。
FIG. 10 is a pattern layout showing this state, in which a plurality of one-shot sizes 62 are formed on the wafer 61. Further, inside the one-shot size 62, a test diffraction grating 63 and a reference diffraction grating 64, which are printed by using an Nth reticle and an Mth reticle (usually N + 1th reticle), are formed. A reference diffraction grating 65 is formed. By thus providing the reference pattern between the patterns to be inspected, the accuracy can be improved.

【0036】なお、図1〜図4はx軸方向のずれについ
てのみを示しているが、x、yの2軸方向のずれについ
ても配置をx、y各軸に配置することにより計測可能で
ある。
Although FIGS. 1 to 4 show only the displacement in the x-axis direction, the displacement in the biaxial directions of x and y can also be measured by arranging them on the x and y axes. is there.

【0037】図11、図12は第2の実施例を示し、マ
スク、ウエハの2物体上に設けられたパターンのずれ計
測を行う場合の回折格子パターンとビームの関係を示し
ている。なお、図11、図12はx軸方向のずれ検出の
例について示し、マスク71上には被検回折格子72が
形成され、ウエハ73上には被検回折格子74が形成さ
れており、これらはマスクとウエハの位置ずれ検出用回
折格子パターンである。そして、回折光及びその後の検
出系は全て省略している。被検回折格子72、74によ
って回折された光束を検出する光検出系31は、図1、
図5に示した系を用いる。
FIG. 11 and FIG. 12 show the second embodiment, and show the relationship between the diffraction grating pattern and the beam when the displacement measurement of the patterns provided on the two objects of the mask and the wafer is performed. 11 and 12 show an example of detecting the deviation in the x-axis direction, in which the inspection diffraction grating 72 is formed on the mask 71 and the inspection diffraction grating 74 is formed on the wafer 73. Is a diffraction grating pattern for detecting the positional deviation between the mask and the wafer. The diffracted light and the subsequent detection system are all omitted. The photodetection system 31 for detecting the light flux diffracted by the diffraction gratings 72 and 74 to be tested is shown in FIG.
The system shown in FIG. 5 is used.

【0038】図11において、基準回折格子76、77
はマスク71上にあり、予めずれ量を0にして作成し同
一マスクで焼き付けて設定された回折格子である。ま
た、基準回折格子78、79はウエハ73上にあり、同
様に互いのずれ量が0に設定されている。基準回折格子
76〜79は被検回折格子72、74のパターンに比較
的近く、例えば10mm〜20mm程度以内の距離に設
けられている。被検回折格子72、74から基準回折格
子76、77或いは基準回折格子78、79のパターン
に光束照射位置を移動するには、前述の光検出系31の
方を移動させればよい。その際には、照射位置を変えれ
ばよいので、光検出系の一部のみの移動でもよい。
In FIG. 11, reference diffraction gratings 76 and 77.
Is a diffraction grating which is present on the mask 71 and which is created by previously setting the shift amount to 0 and baked by the same mask. Further, the reference diffraction gratings 78 and 79 are on the wafer 73, and their mutual deviation amounts are similarly set to zero. The reference diffraction gratings 76 to 79 are relatively close to the patterns of the diffraction gratings 72 and 74 to be tested, and are provided at a distance of, for example, about 10 mm to 20 mm. In order to move the luminous flux irradiation position from the diffraction gratings 72 and 74 to be tested to the pattern of the reference diffraction gratings 76 and 77 or the reference diffraction gratings 78 and 79, the photodetection system 31 described above may be moved. In that case, since the irradiation position may be changed, only a part of the light detection system may be moved.

【0039】従って、本発明は2物体上に設けられたパ
ターン間のずれ計測においても同様に適用可能である。
また、基準パターンはずれ量が0でなくても、予め特定
の既知のずれ量を設定しておけば、同様に本発明の目的
は達成することができる。これにより、0.25μm〜
0.1μmパターンルールに要求されているDRAM
(Dynamic Random Access Memory) 等の半導体の焼き付
け精度を、所望の5nm以下で評価達成可能となる。
Therefore, the present invention can be similarly applied to the measurement of the deviation between the patterns provided on the two objects.
Further, even if the deviation amount of the reference pattern is not 0, the object of the present invention can be similarly achieved by setting a specific known deviation amount in advance. As a result, 0.25 μm
DRAM required for 0.1 μm pattern rule
It is possible to evaluate the printing accuracy of a semiconductor such as (Dynamic Random Access Memory) at a desired 5 nm or less.

【0040】[0040]

【発明の効果】以上説明したように本発明に係る位置ず
れ測定装置は、被検物体上の回折格子パターンの近くに
ずれ量が予め既知の基準パターンを設け、この基準パタ
ーンの計測値を利用して各被検パターンのずれ計測をす
ることにより、大口径ウエハ内に広く設けられたパター
ンの計測を、ウエハの面内回転成分により生ずる誤差の
発生を抑え高精度に実現する。
As described above, the position shift measuring apparatus according to the present invention provides a reference pattern with a known shift amount in the vicinity of the diffraction grating pattern on the object to be inspected, and uses the measured value of this reference pattern. By measuring the deviation of each pattern to be inspected, the measurement of a pattern widely provided in a large-diameter wafer can be realized with high accuracy while suppressing the occurrence of an error caused by the in-plane rotational component of the wafer.

【図面の簡単な説明】[Brief description of drawings]

【図1】1物体上のパターンずれの説明図である。FIG. 1 is an explanatory diagram of a pattern shift on one object.

【図2】格子部の詳細説明図である。FIG. 2 is a detailed explanatory diagram of a lattice unit.

【図3】格子部の詳細説明図である。FIG. 3 is a detailed explanatory diagram of a lattice unit.

【図4】実施例の装置の構成図である。FIG. 4 is a configuration diagram of an apparatus according to an embodiment.

【図5】光検出系の説明図である。FIG. 5 is an explanatory diagram of a light detection system.

【図6】格子パターンの拡大図である。FIG. 6 is an enlarged view of a lattice pattern.

【図7】エッジミラーと格子パターンとの関係図であ
る。
FIG. 7 is a relationship diagram between an edge mirror and a lattice pattern.

【図8】プリズムとウエハへの光入射の関係図である。FIG. 8 is a relationship diagram of light incident on a prism and a wafer.

【図9】ウエハへの入射、回折の状況の説明図である。FIG. 9 is an explanatory diagram of a state of incidence and diffraction on a wafer.

【図10】ウエハ上のパターン配置図である。FIG. 10 is a pattern layout diagram on a wafer.

【図11】2物体上のパターンずれの説明図である。FIG. 11 is an explanatory diagram of a pattern shift on two objects.

【図12】2物体上のパターンずれの測定説明図であ
る。
FIG. 12 is an explanatory diagram of measurement of a pattern shift on two objects.

【図13】ヨーイングと誤差の発生関係の説明図であ
る。
FIG. 13 is an explanatory diagram of a relationship between yawing and error generation.

【図14】ヨーイングと誤差の発生関係の説明図であ
る。
FIG. 14 is an explanatory diagram of a relationship between yawing and the occurrence of an error.

【符号の説明】[Explanation of symbols]

21、22、63、72、74 被検回折格子 23、24、25、26、64、65、76、77、7
8、79 基準回折格子 31 ケース 32 y軸ステージ 33 x軸ステージ 36 制御手段 61、73 ウエハ 71 マスク
21, 22, 63, 72, 74 Test diffraction grating 23, 24, 25, 26, 64, 65, 76, 77, 7
8, 79 Reference diffraction grating 31 Case 32 y-axis stage 33 x-axis stage 36 Control means 61, 73 Wafer 71 Mask

───────────────────────────────────────────────────── フロントページの続き (72)発明者 斉藤 謙治 東京都大田区下丸子三丁目30番2号 キヤ ノン株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kenji Saito 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 1物体又は2物体上に設けた複数の回折
格子パターン間の位置ずれを計測する装置において、可
干渉光源、前記回折格子に光を入射する系と、回折格子
からの回折光を干渉光の少なくとも1つに用いて干渉さ
せる系、干渉信号に基づいて前記回折格子の位相ずれを
計測する手段、を備える光検出系と、前記光検出系の少
なくとも一部と前記物体を相対移動させる手段とを備
え、前記物体上に予めずれ量が既知で位置ずれ計測を求
めるべき前記回折格子パターンの近傍に設けた基準パタ
ーンを前記光検出系で計測することにより、前記ずれ計
測物体の格子面内の前記検出系と前記物体間の相互面内
回転による誤差を低減することを特徴とする位置ずれ測
定装置。
1. An apparatus for measuring a positional deviation between a plurality of diffraction grating patterns provided on one object or two objects, a coherent light source, a system for making light incident on the diffraction grating, and diffracted light from the diffraction grating. Is used for at least one of the interference lights, a photodetection system including a means for measuring the phase shift of the diffraction grating based on the interference signal, and at least a part of the photodetection system and the object relative to each other. And a means for moving, the displacement amount is known in advance on the object by measuring the reference pattern provided in the vicinity of the diffraction grating pattern for which the displacement measurement should be obtained by the photodetection system, thereby measuring the displacement measurement object. A positional deviation measuring device, which reduces an error due to mutual in-plane rotation between the detection system and the object in a lattice plane.
【請求項2】 前記基準パターンを位置ずれ計測を求め
る前記回折格子パターンの20mm以内に設けた請求項
1に記載の位置ずれ測定装置。
2. The positional deviation measuring device according to claim 1, wherein the reference pattern is provided within 20 mm of the diffraction grating pattern for which positional deviation measurement is to be performed.
【請求項3】 前記可干渉光源は2周波光源とし、前記
回折格子の位相ずれ計測手段をヘテロダイン計測手段と
した請求項1に記載の位置ずれ測定装置。
3. The position shift measuring device according to claim 1, wherein the coherent light source is a dual frequency light source, and the phase shift measuring means of the diffraction grating is a heterodyne measuring means.
JP4328675A 1992-11-14 1992-11-14 Positional shift measuring device Pending JPH06160019A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4328675A JPH06160019A (en) 1992-11-14 1992-11-14 Positional shift measuring device
US08/314,444 US5585923A (en) 1992-11-14 1994-09-28 Method and apparatus for measuring positional deviation while correcting an error on the basis of the error detection by an error detecting means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4328675A JPH06160019A (en) 1992-11-14 1992-11-14 Positional shift measuring device

Publications (1)

Publication Number Publication Date
JPH06160019A true JPH06160019A (en) 1994-06-07

Family

ID=18212911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4328675A Pending JPH06160019A (en) 1992-11-14 1992-11-14 Positional shift measuring device

Country Status (1)

Country Link
JP (1) JPH06160019A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240337953A1 (en) * 2023-04-04 2024-10-10 Kla Corporation System and method for tracking real-time position for scanning overlay metrology

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240337953A1 (en) * 2023-04-04 2024-10-10 Kla Corporation System and method for tracking real-time position for scanning overlay metrology

Similar Documents

Publication Publication Date Title
US5369486A (en) Position detector for detecting the position of an object using a diffraction grating positioned at an angle
JP4583759B2 (en) Multi-degree-of-freedom interferometer
US5610718A (en) Apparatus and method for detecting a relative displacement between first and second diffraction gratings arranged close to each other wherein said gratings have different pitch sizes
US6819434B2 (en) Multi-axis interferometer
JP3352249B2 (en) Position shift detector
JP3364382B2 (en) Sample surface position measuring device and measuring method
US5682239A (en) Apparatus for detecting positional deviation of diffraction gratings on a substrate by utilizing optical heterodyne interference of light beams incident on the gratings from first and second light emitters
US5585923A (en) Method and apparatus for measuring positional deviation while correcting an error on the basis of the error detection by an error detecting means
JPH03216519A (en) Displacement detector
JP2007163479A (en) Interferometer
US7532330B2 (en) Angle interferometers
JPH06177013A (en) Position detecting device
JPH0749926B2 (en) Alignment method and alignment device
JP3335868B2 (en) Exposure equipment with optical position measuring device
JP2814538B2 (en) Alignment device and alignment method
JPH06160019A (en) Positional shift measuring device
JP4469609B2 (en) Multipath interferometer
JPH06207808A (en) Optical heterodyne interference measuring apparatus
JP2931082B2 (en) Method and apparatus for measuring small displacement
JPH07270123A (en) Dislocation detection method, and optical heterodyne interference measuring method as well as dislocation detection apparatus using them
JPH0587530A (en) Interference measurement device
JPH06160020A (en) Measuring device
JP2694045B2 (en) Positioning device using diffraction grating
JPH0587529A (en) Measurement method and device
JP2837532B2 (en) Method and apparatus for measuring small displacement