JPH06158291A - Thin film manufacturing method and manufacturing apparatus - Google Patents
Thin film manufacturing method and manufacturing apparatusInfo
- Publication number
- JPH06158291A JPH06158291A JP31820892A JP31820892A JPH06158291A JP H06158291 A JPH06158291 A JP H06158291A JP 31820892 A JP31820892 A JP 31820892A JP 31820892 A JP31820892 A JP 31820892A JP H06158291 A JPH06158291 A JP H06158291A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- thin film
- ion
- width
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Physical Vapour Deposition (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
Abstract
(57)【要約】
【目的】 本発明は薄膜の製造方法並びに製造装置に関
するもので、特に、長時間にわたって安定に製膜するこ
とを目的とする。
【構成】 真空中で基板上に直接或は下地層を介して連
続的に薄膜を形成する薄膜の製造方法において、前記基
板の幅よりも広いイオンビームを照射し、かつ前記基板
幅終端部近傍でのイオン強度を基板幅内でのイオン強度
の平均値よりも強くすることを特徴とするもの、及び、
排気系と製膜源系及び長尺基板を搬送するロ−ラ系を備
えた連続製膜型の薄膜の製造装置において、蒸着中に基
板を支持するキャンロ−ラ上の製膜前側においてイオン
を照射する複数台のイオン源を、基板幅終端部近傍での
イオン強度を基板幅内でのイオン強度の平均値よりも強
くなるように配置するものである。
(57) [Summary] [Object] The present invention relates to a method and an apparatus for manufacturing a thin film, and particularly, an object thereof is to stably form a film for a long time. In a method of manufacturing a thin film in which a thin film is formed directly on a substrate in a vacuum or continuously via an underlayer, an ion beam wider than the width of the substrate is irradiated, and the vicinity of the end portion of the substrate width. Characterized in that the ionic strength at is stronger than the average value of the ionic strength within the substrate width, and
In a continuous film forming type thin film manufacturing apparatus equipped with an exhaust system, a film forming source system, and a roller system for conveying a long substrate, ions are generated on the front side of the film forming on the can roller supporting the substrate during vapor deposition. A plurality of ion sources for irradiation are arranged so that the ion intensity near the terminal end portion of the substrate width is higher than the average value of the ion intensity within the substrate width.
Description
【0001】[0001]
【産業上の利用分野】本発明は薄膜の製造方法及び製造
装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film manufacturing method and manufacturing apparatus.
【0002】[0002]
【従来の技術】近年の社会における薄膜の利用分野は、
包装紙、回路部品、磁気テープなど、非常に多岐にわた
っている。こうした多量の薄膜の製造方法としては、長
尺基板上に薄膜を連続的に形成する連続巻き取り法が広
く用いられている。例えば蒸着法を用いる場合には、
(図7)のように長尺の高分子基板が円筒状キャンの周
面に沿って走行中に薄膜を蒸着することによって包装材
料や磁気テープの量産が出来る。スパッタ法やイオンプ
レーティング法など他の製膜法においても同様の方法で
連続的に薄膜が形成できる。2. Description of the Related Art The field of application of thin films in recent society is
There are a wide variety of wrapping paper, circuit parts, magnetic tapes, etc. As a method for producing such a large amount of thin film, a continuous winding method in which a thin film is continuously formed on a long substrate is widely used. For example, when using the vapor deposition method,
As shown in FIG. 7, a long polymer substrate can be mass-produced as a packaging material or a magnetic tape by depositing a thin film while traveling along the peripheral surface of a cylindrical can. A thin film can be continuously formed by the same method in other film forming methods such as the sputtering method and the ion plating method.
【0003】[0003]
【発明が解決しようとする課題】連続巻き取り法によっ
て薄膜を形成するときの一つの問題として長尺基板が沿
って走行するキャンの汚れがある。通常、キャン〜製膜
源間の基板幅終端部に設けられた遮蔽板によって基板幅
終端部とキャン表面上への薄膜の付着が防止されるが、
長時間の製膜を行うと、微量の回り込み成分が、次第に
基板幅終端部のすぐ外側に堆積して膜になる。即ち、製
膜時間の経過と共に、キャン上の基板走行部分とその外
側で段差が出来てしまうのである。この段差が生じると
長尺基板の走行に影響を与えて皺を発生したり、あるい
は基板とキャンの密着性が低下して基板の熱損傷を生じ
たりする。従ってこうした段差の防止法が望まれてい
た。One problem in forming a thin film by the continuous winding method is contamination of a can along which a long substrate runs. Normally, the shielding plate provided at the end of the substrate width between the can and the film forming source prevents the thin film from adhering to the end of the substrate width and the surface of the can.
When the film is formed for a long time, a small amount of the wraparound component gradually accumulates just outside the end portion of the substrate width to form a film. That is, as the film forming time elapses, a step is formed between the substrate running portion on the can and the outside thereof. When this step is generated, it affects the running of the long substrate and causes wrinkles, or the adhesion between the substrate and the can is deteriorated, causing thermal damage to the substrate. Therefore, a method of preventing such a step has been desired.
【0004】[0004]
【課題を解決するための手段】この課題を解決するため
本発明は、真空中で基板上に直接或は下地層を介して連
続的に薄膜を形成する薄膜の製造方法において、前記基
板の幅よりも広いイオンビームを照射し、かつ前記基板
幅終端部近傍でのイオン強度を基板幅内でのイオン強度
の平均値よりも強くするもの及び、排気系と製膜源系及
び長尺基板を搬送するロ−ラ系を備えた連続製膜型の薄
膜の製造装置において、蒸着中に基板を支持するキャン
ロ−ラ上の製膜前側においてイオンを照射する複数台の
イオン源を、基板幅終端部近傍でのイオン強度を基板幅
内でのイオン強度の平均値よりも強くなるように配置す
るものである。In order to solve this problem, the present invention provides a thin film manufacturing method for forming a thin film directly on a substrate in vacuum or continuously through an underlayer, wherein the width of the substrate is A method of irradiating a wider ion beam and making the ion intensity near the terminal end of the substrate width stronger than the average value of the ion intensity within the substrate width, and the exhaust system, the film forming source system, and the long substrate. In a continuous film-forming type thin film manufacturing apparatus equipped with a roller system for transporting, a plurality of ion sources for irradiating ions on the front side of film formation on a can roller supporting a substrate during vapor deposition are terminated with a substrate width termination. It is arranged so that the ionic strength near the portion is stronger than the average value of the ionic strength within the substrate width.
【0005】[0005]
【作用】基板幅終端部に、適当なエネルギーのイオン流
を照射することにより、基板幅終端外側のキャン上に堆
積する回り込み膜の成長を防止することが出来る。By irradiating the end portion of the substrate width with an ion stream of appropriate energy, it is possible to prevent the growth of the wraparound film deposited on the can outside the end portion of the substrate width.
【0006】[0006]
【実施例】以下、連続蒸着法における本発明の実施例に
ついて、(図2)を用いて説明する。排気系によって真
空排気された真空槽の中で巻き出しロール1から回転方
向2に沿って巻出された長尺の高分子基板4はキャン5
の周面に沿って走行中にイオン銃6からイオンビーム7
を照射された後、電子ビーム8を照射されている電子ビ
ーム蒸発源9より遮蔽板10の開口部において薄膜の蒸
着を受けた、巻き取りロール11に巻きとられる。ま
た、薄膜を多層化する場合は、この工程を繰り返し行う
ことによって行われる。EXAMPLE An example of the present invention in the continuous vapor deposition method will be described below with reference to FIG. The long polymer substrate 4 unwound along the rotational direction 2 from the unwinding roll 1 in the vacuum chamber evacuated by the evacuation system can 5
From the ion gun 6 to the ion beam 7 while traveling along the circumference of
After being irradiated with the electron beam, the electron beam evaporation source 9 which is being irradiated with the electron beam 8 receives the thin film vapor-deposited at the opening of the shielding plate 10 and is wound around the winding roll 11. Further, when the thin film is formed into multiple layers, this step is repeated.
【0007】高分子基板として厚さ2μm、幅1000
mmのポリエチレンテレフタレート基板を用い、アルミ
ニウム膜を100nm形成した。蒸着幅は970mmと
した。基板長10000mの蒸着後に、基板幅終端部付
近のキャン上に生じる段差を測定した。イオン源は2台
のイオン流直径3cmのカウフマン型のイオン銃を用
い、イオン銃の中心軸の延長が基板幅の両終端部に一致
するように設置した。イオン源から、キャン表面までの
距離は20cmとし、イオン流がキャン表面にほぼ垂直
入射するようなイオン源の向きにした。イオンビーム電
圧を1000V、加速電圧を500Vとして、イオン電
流を変化させた場合のキャン上の段差を(図3)に示
す。(図3)から分かるように、イオン電流が増加する
にしたがって、キャン表面に形成される段差は小さくな
る。一方、イオン銃を移動して、基板の幅中心にイオン
流を照射した場合にはイオン電流10mA以上で基板が
蒸着部で熱損傷した。従って、基板幅内部の蒸着部分に
照射するイオン強度は基板幅終端部に照射するイオンよ
りも小さくすることが必要である。Polymer substrate having a thickness of 2 μm and a width of 1000
An aluminum film having a thickness of 100 nm was formed using a polyethylene terephthalate substrate having a thickness of mm. The vapor deposition width was 970 mm. After vapor deposition with a substrate length of 10000 m, the step difference on the can near the terminal end of the substrate width was measured. As the ion source, two Kaufman type ion guns having an ion flow diameter of 3 cm were used, and they were installed so that the extension of the central axis of the ion gun coincided with both ends of the substrate width. The distance from the ion source to the can surface was set to 20 cm, and the ion source was oriented so that the ion flow was incident on the can surface almost vertically. The step difference on the can when the ion beam voltage is 1000 V and the acceleration voltage is 500 V and the ion current is changed is shown in FIG. As can be seen from FIG. 3, as the ionic current increases, the step formed on the can surface becomes smaller. On the other hand, when the ion gun was moved to irradiate the width center of the substrate with an ion current, the substrate was thermally damaged in the vapor deposition section at an ion current of 10 mA or more. Therefore, it is necessary to make the ion intensity irradiated to the vapor deposition portion inside the substrate width smaller than the ion irradiated to the end portion of the substrate width.
【0008】(図4)は、イオン電流を80mAで一定
として、イオンビーム電圧=2x加速電圧の関係を維持
したままで、イオンビーム電圧を変化させた場合の、蒸
着後のキャン上に生じる段差を示す図である。イオンビ
ーム電圧が400V以上で、キャン表面に生じる段差の
低減が顕著となる。FIG. 4 shows a step generated on the can after vapor deposition when the ion beam voltage is changed while maintaining the relationship of ion beam voltage = 2 × accelerating voltage with the ion current kept constant at 80 mA. FIG. When the ion beam voltage is 400 V or higher, the step difference on the can surface is significantly reduced.
【0009】(図5)は、基板幅内部の蒸着膜形成部に
も積極的にイオンを照射するために、イオン銃を増設し
た場合の一例を示す図である。蒸着膜形成部に前処理と
して照射するイオンは、12cmのカウフマン型イオン
銃から、デフォーカスグリッドを用いて、イオン銃径よ
りも広範囲に照射できるようにした。(図5)の構成を
用いて基板幅終端部に照射するイオンはビーム電圧10
00V、加速電圧500V、イオン電流80mAで一定
として、蒸着膜形成部に照射するイオンを加速電圧70
0V、加速電圧200Vで一定としてイオン電流のみを
変化させた。このとき、厚さ2μmのポリエチレンテレ
フタレート基板上に100nmの厚さに形成したアルミ
ニウム膜の付着強度をイオン電流0のときの付着強度で
規格化して表示した結果が(図6)である。(図6)か
ら分かるように蒸着膜形成部分に照射するイオン電流が
増加するにしたがって、付着力が増加する。しかし、イ
オン電流が40mA以上では付着力の向上は認められな
い。また、イオン電流が50mA以上では基板が熱損傷
した。従って、蒸着膜形成部分に照射するイオンの強度
は適当な値に選ぶ必要がある。FIG. 5 is a diagram showing an example in which an ion gun is additionally installed in order to positively irradiate the deposited film forming portion inside the substrate width with ions. Ions to be irradiated to the vapor deposition film forming portion as pretreatment were made to be able to be irradiated from a 12 cm Kauffman type ion gun in a wider range than the diameter of the ion gun by using a defocus grid. Ions with which the substrate width end portion is irradiated using the configuration of (FIG. 5) has a beam voltage of 10
The ion for irradiating the vapor deposition film forming part is accelerated with a constant voltage of 00 V, an acceleration voltage of 500 V and an ion current of 80 mA.
Only the ion current was changed while keeping the voltage constant at 0 V and the acceleration voltage of 200 V. At this time, the adhesion strength of the aluminum film formed to a thickness of 100 nm on the polyethylene terephthalate substrate having a thickness of 2 μm is normalized by the adhesion strength when the ionic current is 0, and the result is shown in FIG. As can be seen from (FIG. 6), the adhesive force increases as the ionic current with which the vapor deposition film forming portion is irradiated increases. However, when the ionic current is 40 mA or more, no improvement in adhesive strength is observed. Further, the substrate was thermally damaged when the ion current was 50 mA or more. Therefore, it is necessary to select an appropriate value for the intensity of the ions with which the vapor deposition film forming portion is irradiated.
【0010】(図1)に、本発明におけるイオンビーム
強度分布の模式図の一例を示す。なお、実施例としては
薄膜の形成法として連続蒸着法を用いた場合のみについ
て述べたが、連続スパッタ法、あるいは連続イオンプレ
ーティング法など、他の薄膜の連続製造法においても本
発明が有効であることに変わりはない。また、イオンビ
ーム電圧、加速電圧、イオン電流などの条件は、薄膜を
形成する材料をはじめとする製膜条件によって最適化す
る必要がある。更に、イオン照射時にフィラメント等を
用いて、熱電子でイオンを中和する、いわゆるニュート
ラライザーを併用すると、真空槽内での異常放電防止な
どに対して有効な場合がある。FIG. 1 shows an example of a schematic diagram of the ion beam intensity distribution in the present invention. Although only the case where the continuous vapor deposition method is used as the thin film forming method is described as an example, the present invention is also effective in other continuous thin film manufacturing methods such as a continuous sputtering method or a continuous ion plating method. There is no change. Further, the conditions such as the ion beam voltage, the acceleration voltage and the ion current need to be optimized depending on the film forming conditions including the material for forming the thin film. Further, when a so-called neutralizer is used in combination, in which a filament or the like is used during ion irradiation to neutralize the ions with thermoelectrons, it may be effective in preventing abnormal discharge in the vacuum chamber.
【0011】[0011]
【発明の効果】以上の様に本発明の薄膜の製造方法及び
製造装置によれば、長尺にわたって薄膜を安定に形成す
ることが出来る。As described above, according to the thin film manufacturing method and manufacturing apparatus of the present invention, a thin film can be stably formed over a long length.
【図1】本発明におけるイオンビーム強度分布の模式図
の一例を示す図FIG. 1 is a diagram showing an example of a schematic diagram of an ion beam intensity distribution in the present invention.
【図2】本発明の薄膜の製造装置の一例を示す模式図FIG. 2 is a schematic view showing an example of a thin film manufacturing apparatus of the present invention.
【図3】イオン電流とキャン上の段差の関係を示す図FIG. 3 is a diagram showing a relationship between an ion current and a step on a can.
【図4】イオンビーム電圧とキャン上の段差の関係を示
す図FIG. 4 is a diagram showing a relationship between an ion beam voltage and a step on a can.
【図5】本発明の薄膜の製造装置の一例を示す模式図FIG. 5 is a schematic diagram showing an example of a thin film manufacturing apparatus of the present invention.
【図6】蒸着膜形成部分に照射するイオン電流と付着強
度の関係の一例を示す図FIG. 6 is a diagram showing an example of a relation between an ion current applied to a vapor deposition film formation portion and adhesion strength.
【図7】従来の薄膜の製造装置の一例を示す模式図FIG. 7 is a schematic diagram showing an example of a conventional thin film manufacturing apparatus.
1 巻き出しロール 2 回転方向 3 ガイドロール 4 高分子基板 5 キャン 6 イオン銃 7 イオンビーム 8 電子ビーム 9 電子ビーム蒸発源 10 遮蔽板 11 巻き取りロール 1 Unwinding Roll 2 Rotation Direction 3 Guide Roll 4 Polymer Substrate 5 Can 6 Ion Gun 7 Ion Beam 8 Electron Beam 9 Electron Beam Evaporation Source 10 Shielding Plate 11 Winding Roll
Claims (2)
連続的に薄膜を形成する薄膜の製造方法において、前記
基板の幅よりも広いイオンビームを照射し、かつ前記基
板幅終端部近傍でのイオン強度を基板幅内でのイオン強
度の平均値よりも強くすることを特徴とする薄膜の製造
方法。1. A method of manufacturing a thin film, which comprises forming a thin film directly on a substrate in a vacuum or continuously through an underlayer, irradiating an ion beam wider than the width of the substrate, and terminating the substrate width. A method for producing a thin film, characterized in that the ionic strength in the vicinity of the portion is made stronger than the average value of the ionic strength in the width of the substrate.
ロ−ラ系を備えた連続製膜型の薄膜の製造装置におい
て、蒸着中に基板を支持するキャンロ−ラ上の製膜前側
においてイオンを照射する複数台のイオン源を、基板幅
終端部近傍でのイオン強度を基板幅内でのイオン強度の
平均値よりも強くなるように配置した薄膜の製造装置。2. A continuous film-forming type thin film manufacturing apparatus equipped with an exhaust system, a film forming source system, and a roller system for conveying a long substrate, and a film on a can roller for supporting the substrate during vapor deposition. A thin film manufacturing apparatus in which a plurality of ion sources that irradiate ions on the front side of the film are arranged so that the ion intensity near the terminal end of the substrate width is higher than the average value of the ion intensity within the substrate width.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31820892A JPH06158291A (en) | 1992-11-27 | 1992-11-27 | Thin film manufacturing method and manufacturing apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31820892A JPH06158291A (en) | 1992-11-27 | 1992-11-27 | Thin film manufacturing method and manufacturing apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06158291A true JPH06158291A (en) | 1994-06-07 |
Family
ID=18096646
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31820892A Pending JPH06158291A (en) | 1992-11-27 | 1992-11-27 | Thin film manufacturing method and manufacturing apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06158291A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006103134A (en) * | 2004-10-05 | 2006-04-20 | Konica Minolta Holdings Inc | Method for forming electrode of ink jet head |
-
1992
- 1992-11-27 JP JP31820892A patent/JPH06158291A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006103134A (en) * | 2004-10-05 | 2006-04-20 | Konica Minolta Holdings Inc | Method for forming electrode of ink jet head |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4543275A (en) | Method of forming thin vapor deposited film of organic material | |
US6919107B2 (en) | Method and device for treating surfaces using a glow discharge plasma | |
US4815415A (en) | Apparatus for producing coils from films of insulating material, conductively coated under vacuum | |
US5065697A (en) | Laser sputtering apparatus | |
US20160045934A1 (en) | Method for processing a flexible substrate | |
EP0041850B1 (en) | A method of vacuum depositing a layer on a plastics film substrate | |
CN106893134B (en) | Method for processing flexible substrate | |
US4395465A (en) | Magnetic recording medium and process for production thereof | |
JP6413832B2 (en) | Sheet thin film forming apparatus and method for manufacturing sheet with thin film | |
JPH06158291A (en) | Thin film manufacturing method and manufacturing apparatus | |
JP2007297712A (en) | Metallization through a thin seed layer deposited using plasma | |
JP2017014618A (en) | Method for processing a flexible substrate | |
JPH1060643A (en) | Continuous vapor deposition device and continuous vapor deposition producing method | |
JP4161607B2 (en) | Retractable electron beam vacuum evaporation system | |
KR102422431B1 (en) | Vacuum vapor deposition apparatus having friction charging units | |
JP3818719B2 (en) | Vapor deposition method on flexible support | |
DE102020118522A1 (en) | Transport arrangement, vacuum arrangement, control device, method and use | |
JPH0742586B2 (en) | Thin film manufacturing method | |
JPH089163Y2 (en) | Roll-up type vapor deposition device | |
JPS6081814A (en) | Manufacture of magnetic thin film | |
JPH0693447A (en) | Device for producing vapor deposited film | |
JP2000273620A (en) | Method of forming transparent conductive thin film coating film | |
JPH07150355A (en) | Electron beam heating type winding vapor deposition equipment | |
JPH10298758A (en) | Thin film manufacturing method and apparatus | |
JPH04346664A (en) | Electron beam heating type evaporation equipment |