JPH06157037A - Manufacturing method of zirconium oxide powder - Google Patents
Manufacturing method of zirconium oxide powderInfo
- Publication number
- JPH06157037A JPH06157037A JP31180192A JP31180192A JPH06157037A JP H06157037 A JPH06157037 A JP H06157037A JP 31180192 A JP31180192 A JP 31180192A JP 31180192 A JP31180192 A JP 31180192A JP H06157037 A JPH06157037 A JP H06157037A
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- zirconium oxide
- particle size
- aqueous solution
- reaction tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 title claims abstract description 48
- 229910001928 zirconium oxide Inorganic materials 0.000 title claims abstract description 48
- 239000000843 powder Substances 0.000 title claims abstract description 37
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 238000006243 chemical reaction Methods 0.000 claims abstract description 105
- 239000007864 aqueous solution Substances 0.000 claims abstract description 38
- 239000002244 precipitate Substances 0.000 claims abstract description 33
- 150000003754 zirconium Chemical class 0.000 claims abstract description 11
- 239000003381 stabilizer Substances 0.000 claims abstract description 10
- 239000002243 precursor Substances 0.000 claims abstract description 9
- 239000007788 liquid Substances 0.000 claims description 24
- 238000001035 drying Methods 0.000 claims description 4
- 238000010304 firing Methods 0.000 claims description 4
- 239000002245 particle Substances 0.000 abstract description 62
- 239000000243 solution Substances 0.000 abstract description 23
- 239000000203 mixture Substances 0.000 abstract description 22
- 239000003513 alkali Substances 0.000 abstract 1
- GGROONUBGIWGGS-UHFFFAOYSA-N oxygen(2-);zirconium(4+);hydrate Chemical compound O.[O-2].[O-2].[Zr+4] GGROONUBGIWGGS-UHFFFAOYSA-N 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 35
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 27
- 238000009826 distribution Methods 0.000 description 24
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 22
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 13
- 239000000292 calcium oxide Substances 0.000 description 13
- 235000012255 calcium oxide Nutrition 0.000 description 13
- 239000012535 impurity Substances 0.000 description 13
- 238000000034 method Methods 0.000 description 13
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 12
- 235000011114 ammonium hydroxide Nutrition 0.000 description 12
- 239000000395 magnesium oxide Substances 0.000 description 11
- CMOAHYOGLLEOGO-UHFFFAOYSA-N oxozirconium;dihydrochloride Chemical compound Cl.Cl.[Zr]=O CMOAHYOGLLEOGO-UHFFFAOYSA-N 0.000 description 11
- 238000001556 precipitation Methods 0.000 description 11
- 238000004062 sedimentation Methods 0.000 description 11
- 238000003756 stirring Methods 0.000 description 11
- 238000006386 neutralization reaction Methods 0.000 description 9
- 239000002994 raw material Substances 0.000 description 9
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 7
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 6
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 5
- OBOSXEWFRARQPU-UHFFFAOYSA-N 2-n,2-n-dimethylpyridine-2,5-diamine Chemical compound CN(C)C1=CC=C(N)C=N1 OBOSXEWFRARQPU-UHFFFAOYSA-N 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 239000001110 calcium chloride Substances 0.000 description 3
- 229910001628 calcium chloride Inorganic materials 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000005755 formation reaction Methods 0.000 description 3
- 229910001629 magnesium chloride Inorganic materials 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 239000003643 water by type Substances 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical class [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical class [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 230000003139 buffering effect Effects 0.000 description 2
- 239000011575 calcium Chemical class 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000012295 chemical reaction liquid Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000011777 magnesium Chemical class 0.000 description 2
- 229910052749 magnesium Chemical class 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical class [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 2
- OHVLMTFVQDZYHP-UHFFFAOYSA-N 1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-2-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound N1N=NC=2CN(CCC=21)C(CN1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)=O OHVLMTFVQDZYHP-UHFFFAOYSA-N 0.000 description 1
- LDXJRKWFNNFDSA-UHFFFAOYSA-N 2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound C1CN(CC2=NNN=C21)CC(=O)N3CCN(CC3)C4=CN=C(N=C4)NCC5=CC(=CC=C5)OC(F)(F)F LDXJRKWFNNFDSA-UHFFFAOYSA-N 0.000 description 1
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 238000009283 thermal hydrolysis Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G25/00—Compounds of zirconium
- C01G25/02—Oxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
- C01P2002/54—Solid solutions containing elements as dopants one element only
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、組成および粒径が均一
に制御され、かつ、分散性に優れた高純度の酸化ジルコ
ニウム粉末の製法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-purity zirconium oxide powder having a composition and a particle size which are uniformly controlled and excellent in dispersibility.
【0002】酸化ジルコニウム粉末は、弱電用材料、光
学レンズ、薄膜形成用焼結体、特殊耐火物、靭性強化体
等に用いられる。Zirconium oxide powder is used as a material for weak electricity, an optical lens, a sintered body for forming a thin film, a special refractory material, a toughness-reinforced material and the like.
【0003】これらの用途に使用される酸化ジルコニウ
ム系粉末には、組成が均一であること、粉体の大き
さが微小であること、粒子径が均一であること、粒
子の分散性がよいこと、純度が高いこと等の諸特性が
要求されている。The zirconium oxide powder used for these purposes has a uniform composition, a fine powder size, a uniform particle size, and good particle dispersibility. Various characteristics such as high purity are required.
【0004】[0004]
【従来の技術】比較的粒径分布の均一な酸化ジルコニウ
ム粉末を製造することを目的とする、ないしはその効果
が期待される方法として、所定のpH値に調整された液
の準備された反応槽内へジルコニウム塩およびイットリ
ウム、カルシウム、マグネシウムの水溶性塩のうちの少
なくとも1種を含む混合水溶液とアンモニア水等のアル
カリ水溶液とをそれぞれ別々に定量的に送り、反応槽内
のpHを一定の範囲に調整しながら反応を行い、該沈澱
物を生成させる方法(特公平2−8968号公報)、こ
の沈澱生成反応を反応槽内の液量が一定になるように該
沈澱物を含む反応生成液を流出させながら連続的に行う
方法(特公平2−35694号公報)などが提案されて
いる。2. Description of the Related Art As a method for producing zirconium oxide powder having a relatively uniform particle size distribution, or as a method expected to be effective, a reaction tank provided with a liquid adjusted to a predetermined pH value. A zirconium salt and a mixed aqueous solution containing at least one of water-soluble salts of yttrium, calcium, and magnesium and an alkaline aqueous solution such as ammonia water are separately quantitatively sent to each other, and the pH in the reaction tank is kept within a certain range. And a reaction product solution containing the precipitate so that the amount of liquid in the reaction vessel is constant. It is proposed that the method is performed continuously while flowing out the water (Japanese Patent Publication No. 2-35694).
【0005】[0005]
【発明が解決しようとする課題】しかしながら、本発明
者らは、このような反応槽内の液のpHや供給液流量の
調整だけでは、酸化ジルコニウム粉末の組成および粒径
分布を均一なものにするには不十分であり、かつ該粉末
の純度をさらに向上させる余地のあることを見出だし
た。However, the present inventors have made the composition and particle size distribution of the zirconium oxide powder uniform by only adjusting the pH of the liquid in the reaction tank and the flow rate of the liquid supplied. However, it has been found that there is room to further improve the purity of the powder.
【0006】本発明は、以上の問題点を解決すること、
すなわち、組成および粒径がより均一に制御され、分散
性に優れた高純度の酸化ジルコニウム粉末を得る方法の
提供を目的とするものである。The present invention solves the above problems,
That is, it is an object of the present invention to provide a method for obtaining a highly pure zirconium oxide powder having a composition and a particle size controlled more uniformly and excellent dispersibility.
【0007】[0007]
【課題を解決するための手段】本発明者らは、水和酸化
ジルコニウムの存在下で中和沈澱生成反応をpHを一定
に保ちながら行なうことにより、上記目標の微粉末が得
られることを見出し、本発明を完成させるに至った。The present inventors have found that the above target fine powder can be obtained by carrying out the neutralization precipitation forming reaction in the presence of hydrated zirconium oxide while keeping the pH constant. The present invention has been completed.
【0008】すなわち、本発明は、水和酸化ジルコニウ
ムを含むジルコニウム塩の水溶液、安定化剤前駆体水溶
液およびアルカリ水溶液をそれぞれ反応槽に供給し、該
反応槽内の液のpHを実質上一定の値に維持しつつこれ
らを接触させ、えられた沈澱物を分離し、乾燥し、焼成
することからなる、酸化ジルコニウム粉末の製法、を要
旨とするものである。That is, according to the present invention, an aqueous solution of a zirconium salt containing hydrated zirconium oxide, a stabilizer precursor aqueous solution and an alkaline aqueous solution are respectively supplied to a reaction vessel, and the pH of the solution in the reaction vessel is kept substantially constant. The gist of the present invention is a process for producing a zirconium oxide powder, which comprises contacting these while maintaining the values, separating the obtained precipitate, drying and firing.
【0009】本明細書において、「安定化剤前駆体」と
は焼成することによって酸化ジルコニウムの安定化剤と
なる水溶性塩をいい、「安定化剤前駆体水溶液」とはそ
の水溶液をいう。In the present specification, the "stabilizer precursor" means a water-soluble salt which becomes a stabilizer of zirconium oxide by firing, and the "stabilizer precursor aqueous solution" means its aqueous solution.
【0010】以下本発明をさらに詳細に説明する。The present invention will be described in more detail below.
【0011】安定化剤前駆体としては、イットリウム、
セリウム、ランタン、イッテルビウム等の稀土類元素や
カルシウム、マグネシウム等のIIa族元素等の塩化
物、硫酸塩、硝酸塩等の水溶性塩をあげることができ
る。As the stabilizer precursor, yttrium,
Examples thereof include rare earth elements such as cerium, lanthanum and ytterbium, and chlorides such as group IIa elements such as calcium and magnesium, and water-soluble salts such as sulfates and nitrates.
【0012】水和酸化ジルコニウムとしては、非結晶性
水和酸化ジルコニウムおよび結晶性水和酸化ジルコニウ
ムのいずれも使用しうる。結晶性水和酸化ジルコニウム
は、加熱加水分解法によって得られる高純度・高結晶性
のものがよく、例えば、ZrO2濃度が0.2mol/
リットルのオキシ塩化ジルコニウムを80時間煮沸加水
分解して得られる。また、アルカリ水溶液としては、ア
ンモニア、水酸化ナトリウム、水酸化カリウム等の水溶
液をあげることができる。As the hydrated zirconium oxide, both amorphous hydrated zirconium oxide and crystalline hydrated zirconium oxide can be used. The crystalline hydrated zirconium oxide is preferably a highly pure and highly crystalline one obtained by a thermal hydrolysis method, for example, a ZrO 2 concentration of 0.2 mol / mol.
It is obtained by boiling liter of zirconium oxychloride for 80 hours. Further, as the alkaline aqueous solution, an aqueous solution of ammonia, sodium hydroxide, potassium hydroxide or the like can be used.
【0013】本発明による反応は、回分式、連続式等の
いずれによっても行なうことができるが、工業的・経済
的な観点から連続式反応方式による操作が好ましい。ま
た、反応槽の型式については特別な制約はないが、沈澱
物濃度が高くなると、反応液の粘度が上昇するので、混
合状態を均一に保つことができるように撹拌機を備えた
反応槽が好ましい。The reaction according to the present invention can be carried out batchwise or continuously, but from the industrial and economical viewpoint, the continuous reaction is preferred. Also, there is no particular restriction on the type of reaction tank, but as the precipitate concentration increases, the viscosity of the reaction solution increases, so a reaction tank equipped with a stirrer can be used to keep the mixed state uniform. preferable.
【0014】反応操作方法は、反応系のpHが実質上一
定の値に維持されるのであれば、どのような方法でもよ
いが、以下に説明する方法であればそのpHの調整が容
易である。すなわち、まず反応を開始るす前に、予め反
応槽内に、反応開始後の液のpHと同じpHに調整した
水を準備する。この水として、所定の生成沈澱物の最終
到達濃度を越えない範囲の濃度の水和酸化ジルコニウム
懸濁液を、予め反応槽内に準備しておくと、後述のよう
に効果がよりよく発揮される。このように調製された水
に、所定のpHおよび組成が維持されるように、水和酸
化ジルコニウムを含むジルコニウム塩水溶液、安定化剤
前駆体水溶液およびアルカリ水溶液を同時に供給する。
これらを別々に供給することもできるが、前二者からな
る液すなわち水和酸化ジルコニウムが懸濁しており、か
つ、ジルコニウム塩および安定化剤前駆体が溶解してい
る液とアルカリ水溶液とを供給する形をとれば反応槽内
でよりよく均一に混合することができる。これらそれぞ
れを一定濃度および一定組成にし、一定流量比で供給す
ることによって、反応槽内の生成液のpHおよび組成を
一定の値に維持することができる。連続操作において
は、反応槽内で液量が一定となるように定量ポンプ、オ
ーバーフロー方式等により生成液を連続的に抜き出す。
回分操作の場合は、反応槽内の液が所定の量となった時
点で原料液の供給を停止する。The reaction operation method may be any method as long as the pH of the reaction system is maintained at a substantially constant value, but the method described below facilitates the adjustment of the pH. . That is, first, before starting the reaction, water adjusted in advance to the same pH as the pH of the liquid after the reaction is prepared is prepared in the reaction tank. As this water, if a hydrated zirconium oxide suspension having a concentration within a range not exceeding the final ultimate concentration of a predetermined formed precipitate is prepared in the reaction tank in advance, the effect will be better exhibited as described below. It To the water thus prepared, a zirconium salt aqueous solution containing hydrated zirconium oxide, a stabilizer precursor aqueous solution and an alkaline aqueous solution are simultaneously supplied so that a predetermined pH and composition are maintained.
Although these can be supplied separately, a liquid consisting of the former two, that is, a hydrated zirconium oxide suspension and a liquid in which a zirconium salt and a stabilizer precursor are dissolved, and an alkaline aqueous solution are supplied. By adopting such a form, it is possible to mix more uniformly in the reaction tank. The pH and composition of the product liquid in the reaction tank can be maintained at constant values by supplying each of them at a constant concentration and a constant composition and at a constant flow rate ratio. In the continuous operation, the product liquid is continuously withdrawn by a metering pump, an overflow system or the like so that the liquid amount becomes constant in the reaction tank.
In the case of batch operation, the supply of the raw material liquid is stopped when the liquid in the reaction tank reaches a predetermined amount.
【0015】このようにしてえられた反応液から沈澱物
を分離し、洗浄し、乾燥し、焼成することにより、組成
および粒径分布の均一に制御され、分散性に優れた、カ
チオンやアニオンの不純物を含まない高濃度の酸化ジル
コニウム粉末がえられる。また、予め原料のジルコニウ
ム塩の水溶液中に水和酸化ジルコニウムを含有させてお
くことにより、これが反応開始直後(溶液添加開始直
後)に起こりがちの流量の若干のアンバランスより生ず
る系のpHの変動あるいは反応槽内の粘度の上昇に対し
て緩衝作用の役目を果たして、反応開始時からpHが実
質上一定に維持され、かつ常に均一な混合状態が保た
れ、それによって組成および粒径が均一に制御され、分
散性に優れた高純度の酸化ジルコニウム微粉末が得られ
る。この粉末の粒径は、遠心沈降式粒度分布測定装置等
により測定でき、分散性は電子顕微鏡写真等の観察によ
り判断できる。本発明により得られたサンプルの一例に
よれば、850℃で焼成してえられたものは、0.10
〜1.00μmの粒径範囲のものが95%以上を占め、
また球状粒子がほぼ一粒子ずつ分散した状態となってい
る。By separating the precipitate from the reaction solution thus obtained, washing, drying and baking, the composition and particle size distribution are uniformly controlled, and the cations and anions excellent in dispersibility are obtained. A high-concentration zirconium oxide powder containing no impurities is obtained. In addition, since the hydrated zirconium oxide is contained in the aqueous solution of the zirconium salt as a raw material in advance, the pH of the system fluctuates due to a slight imbalance in the flow rate which tends to occur immediately after the reaction starts (immediately after the solution addition starts). Alternatively, it plays a buffering role against the increase in viscosity in the reaction tank, the pH is maintained substantially constant from the start of the reaction, and a uniform mixed state is always maintained, whereby the composition and particle size become uniform. A high-purity fine zirconium oxide powder having a controlled and excellent dispersibility can be obtained. The particle size of this powder can be measured by a centrifugal sedimentation type particle size distribution measuring device or the like, and the dispersibility can be judged by observing an electron micrograph or the like. According to an example of the sample obtained according to the present invention, the one obtained by firing at 850 ° C. is 0.10
95% or more of particles having a particle size range of up to 1.00 μm
Also, the spherical particles are in a state of being dispersed almost one by one.
【0016】生成液中の沈澱物はろ過後水洗し、次いで
この沈澱物を脱水乾燥し、500〜1300℃の範囲で
焼成して微粉末を得る。The precipitate in the product solution is filtered, washed with water, dehydrated and dried, and calcined at a temperature of 500 to 1300 ° C. to obtain a fine powder.
【0017】また、予め反応槽内に準備される所定のp
Hの水の量は、特に制約はなく撹拌が可能なものであれ
ばよい。この予め反応槽内に準備される所定のpHの水
は、水にアルカリ性物質を添加してpHを本運転におけ
るそれに調整すればよい。この水に水和酸化ジルコニウ
ムをも加えておく場合、水和酸化ジルコニウムを添加し
た水のpHが高すぎることがあるので、そのような場合
は酸性物質でpHを調整する必要がある。Further, a predetermined p prepared in advance in the reaction tank is used.
The amount of H water is not particularly limited as long as stirring is possible. The water having a predetermined pH prepared in advance in the reaction tank may be adjusted by adding an alkaline substance to the water to adjust the pH to that in the main operation. When hydrated zirconium oxide is also added to this water, the pH of the water to which the hydrated zirconium oxide is added may be too high. In such a case, it is necessary to adjust the pH with an acidic substance.
【0018】ジルコニウム塩水溶液中の(ジルコニウム
塩および安定化剤前駆体の混合水溶液中に含ませる場合
は、その混合水溶液中の)水和酸化ジルコニウムは、Z
r換算で1%以上であればよく、上限は生産性を考慮し
決定すればよい。含有率が1%より低くなると、緩衝作
用が低く、したがって、反応系のpHの均一性に劣り、
それによってえられる酸化ジルコニウム粉末の組成およ
び粒径の均一性および純度が低くなりがちである。The hydrated zirconium oxide in the aqueous solution of zirconium salt (in the mixed aqueous solution of the zirconium salt and the stabilizer precursor, if included) is Z
It may be 1% or more in terms of r, and the upper limit may be determined in consideration of productivity. If the content is lower than 1%, the buffering effect is low, and therefore the pH uniformity of the reaction system is poor.
The resulting zirconium oxide powder tends to have low composition and particle size uniformity and purity.
【0019】また、生成沈澱物の最終到達濃度は、特に
制限はないが、組成および粒径が均一に制御され、分散
性に優れた高純度の微粉末を得るには、ZrO2換算で
10〜300g/リットルの範囲が好ましい。10g/
リットルより濃度が低い場合には、該沈澱乾燥物中の水
分等が除去されにくく、これが原因と考えられるが、焼
成後の粉末は組成および粒径の不均一な、分散性および
純度の悪い微粉末となりがちであり、300g/リット
ルを越えると生成液の粘度が高く流動性が悪くなり、組
成および粒径の均一な、分散性のよい、かつ純度の高い
粉末がえにくくなる。The final concentration of the produced precipitate is not particularly limited, but in order to obtain a fine powder of high purity whose composition and particle size are uniformly controlled and which is excellent in dispersibility, it is 10 in terms of ZrO 2. The range of up to 300 g / liter is preferred. 10 g /
When the concentration is lower than 1 liter, it is difficult to remove water and the like in the dried precipitate, which is considered to be the cause. However, the powder after calcination has a non-uniform composition and particle size, and has poor dispersibility and purity. If it exceeds 300 g / liter, the resulting liquid has a high viscosity and poor fluidity, and it becomes difficult to obtain a powder having a uniform composition and particle size, good dispersibility, and high purity.
【0020】pHは、7〜13の範囲のうち、目的の沈
澱生成物の沈澱生成領域から選ぶのがよい。pHが7よ
り低くなると目的のすなわち組成および粒径の均一な、
分散性のよい、かつ純度の高い粉末を得ることが困難と
なり、また13を越えると該沈澱物から水、不純物等の
除去が困難になり、これが原因と考えられるが、組成お
よび粒径の均一な、分散性のよいかつ純度の高い微粉末
を得ることが困難となる。The pH is preferably selected from the range of 7 to 13 from the precipitation forming region of the target precipitation product. When the pH is lower than 7, the purpose, that is, the composition and the particle size are uniform,
It is difficult to obtain a powder having good dispersibility and high purity, and when it exceeds 13, it becomes difficult to remove water, impurities and the like from the precipitate, which is considered to be the cause, but the composition and particle size are uniform. However, it becomes difficult to obtain fine powder having good dispersibility and high purity.
【0021】[0021]
【作用】前記の反応液のpHおよび原料液の供給流量を
一定にする従来方法においては、反応開始直後の沈殿物
濃度が薄い時点で、ジルコニウム塩とアルカリ水溶液と
の反応が反応槽内において局部的に起こるために、組成
および粒径が不均一になるだけでなく、凝集が激しくな
り、その凝集の際液中の不純物アニオンおよびカチオン
がこの凝集物中に取込まれてしまい、得られる酸化ジル
コニウム粉末の純度が悪くなる。In the conventional method in which the pH of the reaction solution and the supply flow rate of the raw material solution are constant, the reaction between the zirconium salt and the alkaline aqueous solution is locally carried out in the reaction tank when the precipitate concentration is low immediately after the start of the reaction. Not only the composition and particle size become non-uniform, but also the agglomeration becomes vigorous, and during the agglomeration, the impurity anions and cations in the liquid are taken into the agglomerate, and the resulting oxidation occurs. The purity of zirconium powder deteriorates.
【0022】本発明では、ジルコニウム塩の水溶液中に
水和酸化ジルコニウムを含有させるので、上記従来方法
における欠点がすべて解消されるものと推定される。In the present invention, since hydrated zirconium oxide is contained in the aqueous solution of zirconium salt, it is presumed that all the drawbacks of the above conventional method can be solved.
【0023】[0023]
【発明の効果】以上の説明から明らかなように本発明に
よれば、組成および粒径が均一に制御され、粒子の分散
性に優れた高純度の酸化ジルコニウム粉末を得ることが
できる。As is apparent from the above description, according to the present invention, it is possible to obtain a high-purity zirconium oxide powder whose composition and particle size are uniformly controlled and which is excellent in particle dispersibility.
【0024】[0024]
【実施例】以下、実施例によって本発明を具体的に説明
する。EXAMPLES The present invention will be specifically described below with reference to examples.
【0025】実施例1 オーバーフロー流出管までの容積5リットルの反応槽内
に、アンモニア水によってpHを9に調整した水を2リ
ットル入れ、撹拌した。この水撹拌下の反応槽内に、全
Zr量の10%を結晶性水和酸化ジルコニウムとして含
むオキシ塩化ジルコニウム1.54mol/リットルと
塩化イットリウム0.10mol/リットルとの混合水
溶液を42ml/minの流量でおよび濃度9.1wt
%のアンモニア水を42ml/minの流量で定流量ポ
ンプで同時に供給を開始し、オーバーフロー管より反応
液を原料溶液換算値で84ml/minの流量で流出さ
せるオーバーフロー方式により連続的に中和沈澱生成反
応を2.6時間行なった。反応槽内の液は、pH9に維
持された。オーバーフロー流出液中の沈澱物を分離し、
水洗することにより不純物を除去した。反応操作開始直
後、反応操作終了直前および反応操作時間中の等間隔時
点の3点計5点の沈澱物のサンプルを各々110℃で2
4時間乾燥した後、800℃で1時間焼成して、遠心沈
降式粒度分布測定装置による平均粒径0.53〜0.6
4μm、粒径範囲0.10〜1.00μmの範囲のもの
90〜94%および粒度分布幅いずれも0.10〜2.
00μm、比表面積いずれも21m2/gならびにZr
O2+Y2O3の純度がいずれも99.9wt%以上、Y2
O3/(ZrO2+Y2O3)3モル%のイットリア部分安
定化酸化ジルコニウム微粉末が得られた。Example 1 Into a reaction tank having a volume of 5 liters up to an overflow outflow pipe, 2 liters of water whose pH was adjusted to 9 with ammonia water was put and stirred. 42 ml / min of a mixed aqueous solution of 1.54 mol / liter of zirconium oxychloride containing 10% of the total Zr amount as crystalline hydrated zirconium oxide and 0.10 mol / liter of yttrium chloride was placed in the reaction tank under water stirring. At flow rate and concentration 9.1 wt
% Aqueous ammonia at a flow rate of 42 ml / min at the same time by a constant flow pump, and the reaction solution is flowed out from the overflow pipe at a flow rate of 84 ml / min in terms of the raw material solution to continuously produce a neutralized precipitate. The reaction was run for 2.6 hours. The liquid in the reaction tank was maintained at pH 9. Separate the precipitate in the overflow effluent,
Impurities were removed by washing with water. Immediately after the start of the reaction operation, immediately before the end of the reaction operation, and at equal intervals during the reaction operation time, a total of 5 samples of precipitates were sampled at 110 ° C. for 2 times each.
After drying for 4 hours, it is baked at 800 ° C. for 1 hour, and the average particle size is 0.53 to 0.6 by a centrifugal sedimentation type particle size distribution measuring device.
4 μm, particle size range of 0.10 to 1.00 μm, 90 to 94%, and particle size distribution width of 0.10 to 2.
00 μm, specific surface area is 21 m 2 / g and Zr
The purity of O 2 + Y 2 O 3 is 99.9 wt% or more, Y 2
3 mol% of O 3 / (ZrO 2 + Y 2 O 3 ) yttria partially stabilized zirconium oxide fine powder was obtained.
【0026】実施例2 反応槽内にアンモニア水によってpH12に調整した水
を2リットル入れ、撹拌した。この水撹拌下の反応槽内
に、全Zr量の10%を結晶性水和酸化ジルコニウムと
して含むオキシ塩化ジルコニウム0.78mol/リッ
トルと塩化カルシウム0.07mol/リットルとの混
合水溶液を42ml/minの流量でおよび濃度10.
2wt%のアンモニア水を42ml/minの流量で定
流量ポンプで同時に供給を開始し、回分式反応方式によ
り中和沈澱生成反応を0.6時間行なった。反応槽内の
液は、pHが12に維持された。生成した沈澱物を分離
し、水洗することにより不純物を除去した。反応操作開
始直後、反応操作終了直前および反応操作時間中の等間
隔時点の3点計5点の反応槽内の沈澱物サンプルを各々
110℃で24時間乾燥した後、700℃で1時間焼成
して、遠心沈降式粒度分布測定装置による平均粒径0.
42〜0.60μm、粒径範囲0.10〜1.00μm
の範囲のもの92〜95%および粒度分布幅いずれも
0.10〜2.00μm、比表面積いずれも27m2/
gならびにZrO2+CaOの純度がいずれも99.9
wt%以上、CaO/(ZrO2+CaO)が8モル%
のカルシア部分安定化酸化ジルコニウム微粉末が得られ
た。Example 2 2 liters of water adjusted to pH 12 with aqueous ammonia was placed in a reaction tank and stirred. 42 ml / min of a mixed aqueous solution of 0.78 mol / liter of zirconium oxychloride containing 10% of the total Zr amount as crystalline hydrated zirconium oxide and 0.07 mol / liter of calcium chloride was placed in the reaction tank under water stirring. At flow rate and concentration 10.
At the same time, 2 wt% ammonia water was started to be supplied at a flow rate of 42 ml / min by a constant flow pump, and a neutralization precipitation forming reaction was carried out for 0.6 hours by a batch reaction system. The pH of the liquid in the reaction tank was maintained at 12. The formed precipitate was separated and washed with water to remove impurities. Immediately after the start of the reaction operation, immediately before the end of the reaction operation, and at equidistant intervals during the reaction operation time, the three samples of the precipitates in the reaction vessel at a total of 5 points were dried at 110 ° C. for 24 hours and then calcined at 700 ° C. for 1 hour. Then, the average particle size measured by the centrifugal sedimentation type particle size distribution measuring device is 0.
42 to 0.60 μm, particle size range 0.10 to 1.00 μm
In the range of 92 to 95%, the particle size distribution width is 0.10 to 2.00 μm, and the specific surface area is 27 m 2 /
The purity of g and ZrO 2 + CaO are both 99.9.
wt% or more, CaO / (ZrO 2 + CaO) 8 mol%
A calcia partially stabilized zirconium oxide fine powder was obtained.
【0027】実施例3 オーバーフロー流出管までの容積5リットルの反応槽内
に、NaOH水溶液によってpH11に調整した水を2
リットル入れ、撹拌した。この水撹拌下の反応槽内に、
全Zr量の90%を結晶性水和酸化ジルコニウムとして
含むオキシ塩化ジルコニウム1.60mol/リットル
と塩化マグネシウム0.08mol/リットルとの混合
水溶液を42ml/minの流量でおよび濃度3.5m
ol/リットルのNaOH水溶液を42ml/minの
流量で定流量ポンプで同時に供給を開始し、オーバーフ
ロー管より反応液を原料溶液換算値で84ml/min
の割合で流出させるオーバーフロー方式により連続的に
中和沈澱生成反応を4.6時間行なった。反応槽内の液
は、pHが11に維持された。オーバーフロー流出液中
の沈澱物を分離し、水洗することにより不純物を除去し
た。反応操作開始直後、反応操作終了直前および反応操
作時間中の等間隔時点の3点計5点の沈澱物のサンプル
を各々110℃で24時間乾燥した後、850℃で1時
間焼成して、遠心沈降式粒度分布測定装置による平均粒
径0.30〜0.42μm、粒径範囲0.10〜1.0
0μmの範囲のもの94〜98%および粒度分布幅いず
れも0.10〜2.00μm、比表面積いずれも32m
2/gならびにZrO2+ MgOの純度がいずれも9
9.9wt%以上、MgO/(ZrO2+MgO)が5
mol%のマグネシア部分安定化酸化ジルコニウム微粉
末が得られた。Example 3 Into a reaction tank having a volume of 5 liters up to an overflow outflow pipe, 2 waters adjusted to pH 11 with an aqueous NaOH solution were added.
1 liter was added and stirred. In this reaction tank under water stirring,
A mixed aqueous solution of 1.60 mol / liter of zirconium oxychloride containing 90% of the total Zr amount as crystalline hydrated zirconium oxide and 0.08 mol / liter of magnesium chloride at a flow rate of 42 ml / min and a concentration of 3.5 m.
At the same time, supply of ol / l NaOH aqueous solution at a flow rate of 42 ml / min was started by a constant flow pump, and the reaction liquid was supplied from the overflow pipe at 84 ml / min as a raw material solution conversion value.
The neutralization precipitation formation reaction was continuously carried out for 4.6 hours by an overflow method of flowing out at a ratio of. The pH of the liquid in the reaction tank was maintained at 11. The precipitate in the overflow effluent was separated and washed with water to remove impurities. Immediately after the start of the reaction operation, immediately before the end of the reaction operation, and at three points at equal intervals during the reaction operation time, a total of 5 samples of the precipitates were dried at 110 ° C. for 24 hours, then calcined at 850 ° C. for 1 hour, and centrifuged. Average particle size of 0.30 to 0.42 μm by sedimentation type particle size distribution measuring device, particle size range of 0.10 to 1.0
94 to 98% in the range of 0 μm, particle size distribution width of 0.10 to 2.00 μm, specific surface area of 32 m
The purity of 2 / g and ZrO 2 + MgO are both 9
9.9 wt% or more, MgO / (ZrO 2 + MgO) is 5
A mol% magnesia partially stabilized zirconium oxide fine powder was obtained.
【0028】実施例4 オーバーフロー流出管までの容積5リットルの反応槽内
に、NaOH水溶液によってpH9に調整した水を2リ
ットル入れ、撹拌した。この水撹拌下の反応槽内に、濃
度0.8mol/リットルの加水分解反応率96%の結
晶性水和酸化ジルコニウムゾルすなわちオキシ塩化ジル
コニウム0.032mol/リットルおよび結晶性水和
酸化ジルコニウムゾル0.768mol/リットルと塩
化イットリウム0.14mol/リットルの混合水溶液
を42ml/minの流量でならびに濃度1.9mol
/リットルのNaOH水溶液を42ml/minの流量
で定流量ポンプで同時に供給を開始し、オーバーフロー
管より反応液を原料溶液換算値で84ml/minの割
合で流出させるオーバーフロー方式により連続的に中和
沈澱生成反応を2.6時間行なった。反応槽内の液は、
pHが9に維持された。オーバーフロー流出液中の沈澱
物を分離し、水洗することにより不純物を除去した。反
応操作開始直後、反応操作終了直前および反応操作時間
中の等間隔時点の3点計5点の沈澱物のサンプルを各々
110℃で24時間乾燥した後、850℃で1時間焼成
して、遠心沈降式粒度分布測定装置による平均粒径0.
60〜0.92μm、粒径範囲0.10〜1.00μm
の範囲のもの80〜84%および粒度分布幅いずれも
0.10〜2.00μm、比表面積いずれも25m2/
gならびにZrO2+Y2O3の純度がいずれも99.
9wt%以上、Y2O3/(ZrO2+Y2O3)が8モル
%のイットリア部分安定化酸化ジルコニウム微粉末が得
られた。Example 4 2 liters of water adjusted to pH 9 with an aqueous NaOH solution was placed in a reaction vessel having a volume of 5 liters up to an overflow outflow tube and stirred. A crystalline hydrated zirconium oxide sol having a concentration of 0.8 mol / liter and a hydrolysis reaction rate of 96%, that is, 0.032 mol / l of zirconium oxychloride and a crystalline hydrated zirconium oxide sol in a concentration of 0.8 mol / liter was added to the reaction tank under water stirring. A mixed aqueous solution of 768 mol / liter and yttrium chloride 0.14 mol / liter was applied at a flow rate of 42 ml / min and a concentration of 1.9 mol.
/ Liter NaOH aqueous solution at a flow rate of 42 ml / min at the same time with a constant flow pump to start the supply, and the reaction solution is flown out at a rate of 84 ml / min in terms of raw material solution continuously by an overflow method for neutralization and precipitation. The production reaction was carried out for 2.6 hours. The liquid in the reaction tank is
The pH was maintained at 9. The precipitate in the overflow effluent was separated and washed with water to remove impurities. Immediately after the start of the reaction operation, immediately before the end of the reaction operation, and at three points at equal intervals during the reaction operation time, a total of 5 samples of the precipitates were dried at 110 ° C. for 24 hours, then calcined at 850 ° C. for 1 hour, and centrifuged. Average particle size measured by sedimentation type particle size distribution analyzer
60 to 0.92 μm, particle size range 0.10 to 1.00 μm
In the range of 80 to 84%, the particle size distribution width is 0.10 to 2.00 μm, and the specific surface area is 25 m 2 /
and the purity of ZrO 2 + Y 2 O 3 is 99.
Yttria partially stabilized zirconium oxide fine powder containing 9 wt% or more of Y 2 O 3 / (ZrO 2 + Y 2 O 3 ) of 8 mol% was obtained.
【0029】実施例5 オーバーフロー流出管までの容積5リットルの反応槽内
に、NaOH水溶液によってpH12に調整した水を2
リットル入れ、撹拌した。この水撹拌下の反応槽内に、
全Zr量の1%を非結晶性水和酸化ジルコニウムとして
含むオキシ塩化ジルコニウム1.6mol/リットルと
塩化カルシウム0.14mol/リットルとの混合水溶
液を42ml/minの流量でおよび濃度3.7mol
/リットルのNaOH水溶液を42ml/minの流量
で定流量ポンプで同時に供給を開始し、オーバーフロー
管より反応液を原料溶液換算値で84ml/minの割
合で流出させるオーバーフロー方式により連続的に中和
沈澱生成反応を4.6時間行なった。反応槽内の液は、
pHが12に維持された。オーバーフロー流出液中の沈
澱物を分離し、水洗することにより不純物を除去した。
反応操作開始直後、反応操作終了直前および反応操作時
間中の等間隔時点の3点計5点の沈澱物のサンプルを各
々110℃で24時間乾燥した後、900℃で1時間焼
成して、遠心沈降式粒度分布測定装置による平均粒径
1.01〜1.24μm、粒径範囲0.10〜2.00
μmの範囲のもの88〜91%および粒度分布幅いずれ
も0.10〜3.00μm、比表面積いずれも15m2
/gならびにZrO2+ CaOの純度がいずれも9
9.9wt%以上、CaO/(ZrO2+CaO)が8
モル%のカルシア部分安定化酸化ジルコニウム微粉末が
得られた。Example 5 Into a reaction tank having a volume of 5 liters up to an overflow outflow pipe, 2 waters adjusted to pH 12 with an aqueous NaOH solution were added.
1 liter was added and stirred. In this reaction tank under water stirring,
A mixed aqueous solution of 1.6 mol / liter of zirconium oxychloride containing 0.1% of total Zr amount as amorphous hydrated zirconium oxide and 0.14 mol / liter of calcium chloride at a flow rate of 42 ml / min and a concentration of 3.7 mol.
/ Liter NaOH aqueous solution at a flow rate of 42 ml / min at the same time with a constant flow pump to start the supply, and the reaction solution is flown out at a rate of 84 ml / min in terms of raw material solution continuously by an overflow method for neutralization and precipitation. The production reaction was carried out for 4.6 hours. The liquid in the reaction tank is
The pH was maintained at 12. The precipitate in the overflow effluent was separated and washed with water to remove impurities.
Immediately after the start of the reaction operation, immediately before the end of the reaction operation, and at equal intervals during the reaction operation time, a total of 5 samples of the precipitates were dried at 110 ° C. for 24 hours, then calcined at 900 ° C. for 1 hour, and centrifuged. Average particle size of 1.01 to 1.24 μm and particle size range of 0.10 to 2.00 measured by sedimentation type particle size distribution analyzer
88 to 91% in the range of μm, particle size distribution width of 0.10 to 3.00 μm, specific surface area of 15 m 2
/ G and the purity of ZrO 2 + CaO are both 9
9.9 wt% or more, CaO / (ZrO 2 + CaO) 8
A mol% calcia partially stabilized zirconium oxide fine powder was obtained.
【0030】実施例6 オーバーフロー流出管までの容積5リットルの反応槽内
に、NaOH水溶液によってpH11に調整した水を2
リットル入れ、撹拌した。この水撹拌下の反応槽内に、
全Zr量の10%を非結晶性水和酸化ジルコニウムとし
て含むオキシ塩化ジルコニウム2.4mol/リットル
と塩化マグネシウム0.13mol/リットルとの混合
水溶液を42ml/minの流量でおよび濃度5.3m
ol/リットルのNaOH水溶液を42ml/minの
流量で定流量ポンプで同時に供給を開始し、オーバーフ
ロー管より反応液を原料溶液換算値で84ml/min
の割合で流出させるオーバーフロー方式により連続的に
中和沈澱生成反応を2.6時間行なった。反応槽内の液
は、pHが11に維持された。オーバーフロー流出液中
の沈澱物を分離し、水洗することにより不純物を除去し
た。反応操作開始直後、反応操作終了直前および反応操
作時間中の等間隔時点の3点計5点の沈澱物のサンプル
を各々110℃で24時間乾燥した後、900℃で1時
間焼成して、遠心沈降式粒度分布測定装置による平均粒
径1.12〜1.47μm、粒径範囲0.10〜2.0
0μmの範囲のもの87〜92%および粒度分布幅いず
れも0.10〜3.00μm、比表面積いずれも17m
2/gならびにZrO2+ MgO純度がいずれも99.
9wt%以上、MgO/(ZrO2+MgO)が5モル
%のマグネシア部分安定化酸化ジルコニウム微粉末が得
られた。Example 6 Into a reaction tank having a volume of 5 liters up to an overflow outflow pipe, 2 waters adjusted to pH 11 with an aqueous NaOH solution were added.
1 liter was added and stirred. In this reaction tank under water stirring,
A mixed aqueous solution of 2.4 mol / l of zirconium oxychloride containing 10% of the total Zr amount as non-hydrated zirconium oxide and 0.13 mol / l of magnesium chloride at a flow rate of 42 ml / min and a concentration of 5.3 m.
At the same time, supply of ol / l NaOH aqueous solution at a flow rate of 42 ml / min was started by a constant flow pump, and the reaction liquid was supplied from the overflow pipe at 84 ml / min as a raw material solution conversion value.
The neutralization precipitation formation reaction was continuously carried out for 2.6 hours by the overflow method of flowing out at a ratio of. The pH of the liquid in the reaction tank was maintained at 11. The precipitate in the overflow effluent was separated and washed with water to remove impurities. Immediately after the start of the reaction operation, immediately before the end of the reaction operation, and at three equally spaced points during the reaction operation time, a total of 5 samples of the precipitates were dried at 110 ° C. for 24 hours, and then calcined at 900 ° C. for 1 hour and centrifuged. Average particle size of 1.12 to 1.47 μm by sedimentation type particle size distribution measuring device, particle size range of 0.10 to 2.0
87-92% in the range of 0 μm, particle size distribution width of 0.10 to 3.00 μm, specific surface area of 17 m
2 / g and ZrO 2 + MgO purity are 99.
A magnesia partially stabilized zirconium oxide fine powder having a MgO / (ZrO 2 + MgO) content of 9 mol% or more and 5 mol% was obtained.
【0031】実施例7 反応槽内に、アンモニア水によってpH9に調整した水
を2リットル入れ、撹拌した。この水撹拌下の反応槽内
に、全Zr量の1%を非結晶性水和酸化ジルコニウムと
して含むオキシ塩化ジルコニウム1.54mol/リッ
トルと塩化イットリウム0.10mol/リットルとの
混合水溶液を42ml/minの流量でおよび濃度9.
1wt%のアンモニア水を42ml/minの流量で定
流量ポンプで同時に供給を開始し、回分式反応方式によ
り中和沈澱生成反応を0.6時間行なった。反応槽内の
液は、pHが9に維持された。生成した沈澱物を分離
し、水洗することにより不純物を除去した。反応操作開
始直後、反応操作終了直前および反応操作時間中の等間
隔時点の3点計5点の反応槽内の沈澱物サンプルを各々
110℃で24時間乾燥した後、900℃で1時間焼成
して、遠心沈降式粒度分布測定装置による平均粒径1.
09〜1.28μm、粒径範囲0.10〜2.00μm
の範囲のもの79〜81%および粒度分布幅いずれも
0.10〜3.00μm、比表面積いずれも16m2/
gならびにZrO2+Y2O3の純度がいずれも99.9
wt%以上、Y2O3/(ZrO2+Y2O3)が3モル
%のイットリア部分安定化酸化ジルコニウム微粉末が得
られた。Example 7 2 liters of water adjusted to pH 9 with aqueous ammonia was placed in a reaction vessel and stirred. 42 ml / min of a mixed aqueous solution of 1.54 mol / liter of zirconium oxychloride containing 1% of the total Zr amount as amorphous hydrated zirconium oxide and 0.10 mol / liter of yttrium chloride was placed in the reaction tank under water stirring. Flow rate and concentration 9.
At the same time, 1 wt% aqueous ammonia was supplied at a flow rate of 42 ml / min by a constant flow rate pump, and a neutralization precipitation forming reaction was carried out for 0.6 hours by a batch reaction system. The pH of the liquid in the reaction tank was maintained at 9. The formed precipitate was separated and washed with water to remove impurities. Immediately after the start of the reaction operation, immediately before the end of the reaction operation, and at equidistant intervals during the reaction operation time, three samples of the precipitates in each of the five reaction vessels were dried at 110 ° C. for 24 hours and then calcined at 900 ° C. for 1 hour. Then, the average particle size by the centrifugal sedimentation type particle size distribution measuring device 1.
09 to 1.28 μm, particle size range 0.10 to 2.00 μm
In the range of 79 to 81%, particle size distribution width of 0.10 to 3.00 μm, specific surface area of 16 m 2 /
The purity of both g and ZrO 2 + Y 2 O 3 is 99.9.
Yttria partially stabilized zirconium oxide fine powder having a Y 2 O 3 / (ZrO 2 + Y 2 O 3 ) content of 3 mol% or more was obtained.
【0032】比較例1 反応槽内に、オキシ塩化ジルコニウム1.54mol/
リットルと塩化イットリウム0.10mol/リットル
との混合水溶液を2.5リットル入れ、これに撹拌しつ
つ濃度9.1wt%のアンモニア水を2.5リットル加
えて、沈澱物濃度ZrO2+Y2O3換算100g/リッ
トル(Y2O3として3.0モル%含有)、pH9の懸濁
液をえた。生成した沈澱物を分離し、水洗することによ
り不純物を除去した。これを110℃で24時間乾燥し
た後、850℃で1時間焼成することにより、遠心沈降
式粒度分布測定装置による平均粒径5.06μm、粒径
範囲4.00〜6.00μmの範囲のもの38%および
粒度分布幅1.00〜25.0μm、比表面積9m2/
gならびにZrO2+Y2O3の純度が 98.6w
t%、粉末から無作為に5点サンプリングし組成分析し
た結果、 Y2O3/(ZrO2+Y2O3)の範囲が
2.7〜3.4モル%のイットリア部分安定化酸化ジル
コニウム微粉末が得られた。Comparative Example 1 Zirconium oxychloride, 1.54 mol /
2.5 liters of a mixed aqueous solution of liter and 0.10 mol / l of yttrium chloride, 2.5 liters of ammonia water having a concentration of 9.1 wt% was added to the mixture with stirring to obtain a precipitate concentration of ZrO 2 + Y 2 O 3 A suspension having a pH of 9 was obtained at a conversion of 100 g / liter (containing 3.0 mol% as Y 2 O 3 ). The formed precipitate was separated and washed with water to remove impurities. After being dried at 110 ° C for 24 hours and then calcined at 850 ° C for 1 hour, those having an average particle diameter of 5.06 µm and a particle diameter range of 4.00 to 6.00 µm by a centrifugal sedimentation type particle size distribution analyzer 38% and particle size distribution width 1.00 to 25.0 μm, specific surface area 9 m 2 /
The purity of g and ZrO 2 + Y 2 O 3 is 98.6w.
t%, random 5 points sampled result of the composition analysis of the powder, Y 2 O 3 / (ZrO 2 + Y 2 O 3) ranges stabilized zirconium oxide fine yttria portion of from 2.7 to 3.4 mole percent of A powder was obtained.
【0033】比較例2 反応槽内に、アンモニア水でpH12に調整した水1リ
ットルを入れ、撹拌した。この撹拌下の反応槽内に、オ
キシ塩化ジルコニウム0.78mol/リットルと塩化
カルシウム0.07mol/リットルとの混合水溶液を
42ml/minの流量でおよび濃度10.2wt%の
アンモニア水を42ml/minの流量で定流量ポンプ
で同時に供給を開始し、0.8時間回分式反応方式によ
り中和沈澱生成反応を行った。反応槽内の液のpHは1
2に維持され、反応終了時の沈澱物濃度はZrO2+C
aO換算40g/リットル(CaOとして8.0モル%
含有)であった。生成した沈澱物を分離し、水洗するこ
とにより不純物を除去した。これを110℃で24時間
乾燥した後、850℃で1時間焼成することにより、遠
心沈降式粒度分布測定装置による平均粒径4.65μm
および粒径範囲4.00〜6.00μmの範囲のもの4
6%および粒度分布幅1.00〜21.0μm、比表面
積11m2/gならびにZrO2+CaOの純度が
98.9wt%、粉末から無作為に5点サンプリングし
組成分析した結果、 CaO/(ZrO2+CaO)
の範囲が7.7〜8.3モル%のカルシア部分安定化酸
化ジルコニウム微粉末が得られた。Comparative Example 2 1 liter of water adjusted to pH 12 with aqueous ammonia was placed in a reaction vessel and stirred. In the reaction tank under stirring, a mixed aqueous solution of 0.78 mol / liter of zirconium oxychloride and 0.07 mol / liter of calcium chloride was added at a flow rate of 42 ml / min and ammonia water having a concentration of 10.2 wt% was added at 42 ml / min. The supply was started at the same time by a constant flow rate pump, and a neutralization precipitation forming reaction was carried out by a batch reaction system for 0.8 hours. The pH of the liquid in the reaction tank is 1
2 and the precipitate concentration at the end of the reaction was ZrO 2 + C
40 g / liter in terms of aO (8.0 mol% as CaO
Was included). The formed precipitate was separated and washed with water to remove impurities. This was dried at 110 ° C. for 24 hours and then calcined at 850 ° C. for 1 hour to obtain an average particle size of 4.65 μm by a centrifugal sedimentation type particle size distribution analyzer.
And having a particle size range of 4.00 to 6.00 μm 4
6%, a particle size distribution width of 1.00 to 21.0 μm, a specific surface area of 11 m 2 / g, and a ZrO 2 + CaO purity of
98.9 wt%, 5 points were randomly sampled from the powder and the composition was analyzed, and CaO / (ZrO 2 + CaO)
A calcia partially stabilized zirconium oxide fine powder having a range of 7.7 to 8.3 mol% was obtained.
【0034】比較例3 オーバーフロー流出管までの容積5リットルの反応槽内
に、アンモニア水でpH11に調整した水2リットルを
入れ、撹拌した。この撹拌下の反応槽内に、オキシ塩化
ジルコニウム1.60mol/リットルと塩化マグネシ
ウム0.08mol/リットルとの混合水溶液を42m
l/minの流量でおよび濃度9.8wt%のアンモニ
ア水を42ml/minの流量で定流量ポンプで同時に
供給を開始し、オーバーフロー管より反応液の一部を原
料溶液換算値で84ml/minの割合で流出させるオ
ーバーフロー方式により4.6時間連続的に中和沈澱生
成反応を行った。反応槽内の液のpHは11に維持さ
れ、反応終了時の沈澱物濃度はZrO2+MgO換算9
7.5g/リットル(MgOとして5.0モル%含有)
であった。オーバーフロー流出液中の沈澱物を分離し、
水洗することにより不純物を除去した。これを110℃
で24時間乾燥した後、850℃で1時間焼成すること
により、遠心沈降式粒度分布測定装置による平均粒径
4.08μmおよび粒径範囲3.00〜5.00μmの
範囲のもの65%および粒度分布幅1.00〜18.0
μm、比表面積12m2/gならびに(ZrO2+Mg
O)の純度が99.0wt%、粉末から無作為に5点サ
ンプリングし組成分析した結果、MgO/ZrO2+M
gOの範囲が4.8〜5.3モル%のイットリア部分安
定化酸化ジルコニウム微粉末が得られた。Comparative Example 3 2 liters of water adjusted to pH 11 with ammonia water was placed in a reaction vessel having a volume of 5 liters up to the overflow outflow pipe and stirred. 42 m of a mixed aqueous solution of 1.60 mol / l of zirconium oxychloride and 0.08 mol / l of magnesium chloride was placed in the reaction tank under stirring.
At a flow rate of 1 / min and at a flow rate of 42 ml / min, ammonia water having a concentration of 9.8 wt% was simultaneously started to be supplied by a constant flow rate pump, and a part of the reaction solution was converted into a raw material solution at a flow rate of 84 ml / min. The neutralization precipitation formation reaction was continuously carried out for 4.6 hours by the overflow method of flowing out at a ratio. The pH of the liquid in the reaction tank was maintained at 11, and the precipitate concentration at the end of the reaction was 9 converted to ZrO 2 + MgO.
7.5 g / liter (containing 5.0 mol% as MgO)
Met. Separate the precipitate in the overflow effluent,
Impurities were removed by washing with water. This is 110 ℃
After being dried at 850 ° C. for 24 hours, it is calcined at 850 ° C. for 1 hour to obtain 65% of an average particle size of 4.08 μm and a particle size range of 3.00 to 5.00 μm measured by a centrifugal sedimentation type particle size distribution analyzer and a particle size. Distribution width 1.00 to 18.0
μm, specific surface area 12 m 2 / g and (ZrO 2 + Mg
O) has a purity of 99.0 wt% and the powder was randomly sampled at 5 points and the composition was analyzed. As a result, MgO / ZrO 2 + M
Yttria partially stabilized zirconium oxide fine powder having a gO range of 4.8 to 5.3 mol% was obtained.
Claims (1)
塩の水溶液、安定化剤前駆体水溶液およびアルカリ水溶
液を反応槽に供給し、該反応槽内の液のpHを実質上一
定の値に維持しつつこれらを接触させ、えられた沈澱物
を分離し、乾燥し、焼成することを特徴とする、酸化ジ
ルコニウム粉末の製法。1. A zirconium salt aqueous solution containing hydrated zirconium oxide, a stabilizer precursor aqueous solution, and an alkaline aqueous solution are supplied to a reaction tank while maintaining the pH of the liquid in the reaction tank at a substantially constant value. A method for producing a zirconium oxide powder, which comprises bringing these into contact with each other, separating the obtained precipitate, drying and firing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31180192A JPH06157037A (en) | 1992-11-20 | 1992-11-20 | Manufacturing method of zirconium oxide powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31180192A JPH06157037A (en) | 1992-11-20 | 1992-11-20 | Manufacturing method of zirconium oxide powder |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06157037A true JPH06157037A (en) | 1994-06-03 |
Family
ID=18021600
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31180192A Pending JPH06157037A (en) | 1992-11-20 | 1992-11-20 | Manufacturing method of zirconium oxide powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06157037A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100335417C (en) * | 2005-05-25 | 2007-09-05 | 宜兴新兴锆业有限公司 | Process for preparing high-purity superfine zirconia by zirconium oxychloride |
JP2008024555A (en) * | 2006-07-21 | 2008-02-07 | Tosoh Corp | Zirconia fine powder, production method thereof and use thereof |
US20110027742A1 (en) * | 2008-04-09 | 2011-02-03 | Tosoh Corporation | Translucent zirconia sintered body, process for producing the same, and use of the same |
JP2014070095A (en) * | 2012-09-27 | 2014-04-21 | Sumitomo Rubber Ind Ltd | Tread rubber composition for high-performance wet tire |
-
1992
- 1992-11-20 JP JP31180192A patent/JPH06157037A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100335417C (en) * | 2005-05-25 | 2007-09-05 | 宜兴新兴锆业有限公司 | Process for preparing high-purity superfine zirconia by zirconium oxychloride |
JP2008024555A (en) * | 2006-07-21 | 2008-02-07 | Tosoh Corp | Zirconia fine powder, production method thereof and use thereof |
US20110027742A1 (en) * | 2008-04-09 | 2011-02-03 | Tosoh Corporation | Translucent zirconia sintered body, process for producing the same, and use of the same |
US9309157B2 (en) | 2008-04-09 | 2016-04-12 | Tosoh Corporation | Translucent zirconia sintered body, process for producing the same, and use of the same |
JP2014070095A (en) * | 2012-09-27 | 2014-04-21 | Sumitomo Rubber Ind Ltd | Tread rubber composition for high-performance wet tire |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1444036B1 (en) | Process for preparing zirconium-cerium-based mixed oxides | |
US4820593A (en) | Stabilised metallic oxides | |
US4664894A (en) | Micronized zirconia and method for production thereof | |
KR100443536B1 (en) | Method for producing barium titanate powder | |
JP3284413B2 (en) | Method for producing hydrated zirconia sol and zirconia powder | |
US9045349B2 (en) | Method for preparing porous alumina | |
US20040022722A1 (en) | Zirconia in fine powder form, zirconia hydroxycarbonate and methods for preparing same | |
US5206192A (en) | Stabilized metal oxides | |
US3704147A (en) | Fibrous inorganic materials | |
JPH06157037A (en) | Manufacturing method of zirconium oxide powder | |
EP0272294B1 (en) | Preparation of hydrolysed zirconium salt precursors and high purity zirconia | |
JP2001270775A (en) | Manufacturing method of YAG transparent sintered body | |
JPS58176127A (en) | Method for producing stabilized zirconia fine powder | |
JPH05319825A (en) | Production of cuprous oxide | |
JPS6335571B2 (en) | ||
JP3106636B2 (en) | Method for producing zirconium oxide powder | |
JPH04202016A (en) | Manufacturing method of zirconium oxide-based fine powder | |
JPH0470260B2 (en) | ||
JP2000344519A (en) | Method for manufacturing barium titanate | |
JPS6051617A (en) | Preparation of zirconium oxide powder containing yttrium in the state of solid solution | |
JPH0558637A (en) | Method for producing hydrated zirconia sol and zirconia powder | |
JPH0223483B2 (en) | ||
JPH0489319A (en) | Manufacturing method of zirconium oxide fine powder | |
JP3057224B2 (en) | Method for producing yttrium oxide fine powder | |
JPH0262489B2 (en) |