JPH06154595A - Molecular sieve carbon for pressure swing type adsorption apparatus - Google Patents
Molecular sieve carbon for pressure swing type adsorption apparatusInfo
- Publication number
- JPH06154595A JPH06154595A JP4335160A JP33516092A JPH06154595A JP H06154595 A JPH06154595 A JP H06154595A JP 4335160 A JP4335160 A JP 4335160A JP 33516092 A JP33516092 A JP 33516092A JP H06154595 A JPH06154595 A JP H06154595A
- Authority
- JP
- Japan
- Prior art keywords
- carbon
- adsorption
- molecular sieving
- molecular sieve
- nitrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Separation Of Gases By Adsorption (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、圧力スイング吸着装置
(以下PSA装置と略す)に用いる外径0.8〜1.8 mm
の円柱状または球状の分子ふるい炭素に関する。The present invention relates to a pressure swing adsorption device (hereinafter abbreviated as PSA device) having an outer diameter of 0.8 to 1.8 mm.
Of cylindrical or spherical molecular sieving carbon.
【0002】[0002]
【従来の技術】近年、空気中の窒素と酸素を分離する技
術として圧力スイング吸着法(以下PSA法と略す)が
開発され、その実用化が進んできている。PSA法と
は、通常2塔以上の吸着塔に吸着材を充填し、 3〜7 kg
f/cm2 程度の加圧下での選択的吸着と、減圧または常圧
での吸着材の再生を周期的に繰り返すことにより混合ガ
ス中の特定成分を分離する方法である。2. Description of the Related Art In recent years, a pressure swing adsorption method (hereinafter abbreviated as PSA method) has been developed as a technology for separating nitrogen and oxygen in air, and its practical application has been advanced. PSA method is usually 3 ~ 7 kg
It is a method for separating a specific component in a mixed gas by periodically repeating selective adsorption under a pressure of about f / cm 2 and regeneration of the adsorbent under reduced pressure or normal pressure.
【0003】1948年、Emmett(P.H.Emmett :chem. Rev.
43, 69) が塩化ビニリデンを炭化することにより分子ふ
るい炭素を得て以来今日に至るまで、多くの分子ふるい
炭素の製造法が提案され、近年に至って、石炭、ヤシ殻
などの天然物や、合成高分子を主原料とする分子ふるい
炭素の工業的製造が可能となってきた。例えば、特公昭
52-18675号公報には、5%までの揮発性成分含量を有する
コ−クスに、熱分解性炭化水素を添加して600 〜900 ℃
の温度で処理することによって放出されたカ−ボンをそ
のコ−クスの細孔中に沈着させる分子ふるい炭素の製造
法が開示されている。また、特開昭62-17690号公報に
は、ヤシ殻炭粉末をコ−ルタ−ル、またはコ−ルタ−ル
ピッチをバインダ−として造粒し、600 〜900 ℃で乾留
し、乾留炭を鉱酸で洗浄、水洗、乾燥したものにコ−ル
タ−ルを含浸させ、600 〜900 ℃で10〜60分間熱処理し
た後、不活性ガス中で冷却することを特徴とする分子ふ
るい炭素の製造法が開示されている。1948, Emmett (PHEmmett: chem. Rev.
(43 , 69) has obtained molecular sieving carbon by carbonizing vinylidene chloride, and to date, many methods for producing molecular sieving carbon have been proposed, and in recent years, natural products such as coal and coconut shell, and It has become possible to industrially produce molecular sieving carbon using synthetic polymers as main raw materials. For example,
No. 52-18675 discloses that coke having a volatile component content of up to 5% is added with a pyrolytic hydrocarbon at 600 to 900 ° C.
A process for the production of molecular sieving carbon is disclosed in which the carbon released by the treatment at the temperature is deposited in the coke pores. Further, in Japanese Patent Laid-Open No. 62-17690, coconut shell charcoal powder is granulated using a coal tar or a coral pitch as a binder, which is subjected to carbonization at 600 to 900 ° C. to obtain carbonized coal. A process for producing molecular sieving carbon characterized in that a product which has been washed with acid, washed with water and dried is impregnated with cotter, heat-treated at 600 to 900 ° C for 10 to 60 minutes, and then cooled in an inert gas. Is disclosed.
【0004】この様に分子ふるい炭素の製造技術開発が
進み、工業的生産も行われているが、現在工業的に利用
されている圧力スイング吸着用分子ふるい炭素は、すべ
て外径 2〜4 mmの範囲のペレットである。その理由につ
いては、第一に、一般に分子ふるい炭素においてはその
分離性能はミクロ孔拡散律速であると考えられており、
ペレット径の大小による分離性能への影響は無視できる
ほど小さいと見なされていたことがあろう。第二に造粒
技術の面より、圧力スイング吸着に用いることができる
高強度なペレットの、工業的製造が容易な粒径が外径2
〜4mm の範囲であり、それ以下の径では高強度のペレッ
トの製造が困難であったことによるものと考えられる。
第三に分子ふるい炭素をPSA装置に充填した際、その
粒子径が小さくなると圧力損失が大きくなることが懸念
されていたものと思われる。近年、圧力スイング吸着装
置の高性能化が益々進展しつつあり、より少量の分子ふ
るい炭素で高度分離精製を行いうるよう、更なる分子ふ
るい炭素の高性能化が望まれている。In this way, the technological development of the molecular sieving carbon has progressed and industrial production is being carried out. However, all the molecular sieving carbons for pressure swing adsorption currently used industrially have an outer diameter of 2 to 4 mm. It is a range of pellets. Regarding the reason, firstly, it is generally considered that the separation performance of molecular sieving carbon is controlled by micropore diffusion,
It may have been considered that the effect of the pellet size on the separation performance was negligible. Secondly, from the aspect of granulation technology, high strength pellets that can be used for pressure swing adsorption have an outer diameter of 2
It is considered to be due to the difficulty in manufacturing high-strength pellets with diameters below 4 mm.
Thirdly, when the molecular sieving carbon was packed in the PSA device, it was considered that there was a concern that the pressure loss would increase as the particle size decreased. In recent years, the performance of pressure swing adsorption devices has been improved more and more, and further higher performance of molecular sieving carbon is desired so that high-performance separation and purification can be performed with a smaller amount of molecular sieving carbon.
【0005】[0005]
【発明が解決しようとする課題】本発明者らは、従来、
ガス分離性能との相関性が十分検討されていなかった分
子ふるい炭素の外径に着目し、上記の課題を解決すべく
鋭意研究を重ねた結果、本発明を完成したものであっ
て、その目的とするところは、最適な粒子形状を有する
分離性能の優れたPSA装置用の分子ふるい炭素を提供
することにある。SUMMARY OF THE INVENTION The present inventors have been
Focusing on the outer diameter of the molecular sieving carbon, the correlation with the gas separation performance of which has not been sufficiently examined, as a result of intensive research to solve the above problems, the present invention has been completed, and its purpose The purpose of the present invention is to provide a molecular sieving carbon for PSA devices having an optimum particle shape and excellent separation performance.
【0006】[0006]
【問題を解決するための手段】上述の目的は、全体の80
vol%以上が外径0.8 〜1.8 mmの円柱状または球状であ
って、粒径0.1 〜50μmの多数の炭素一次粒子が三次元
的に不規則に合体されてなる内部構造を有し、ミクロ孔
全容積0.1 〜0.7ml/g 、細孔直径2.8 〜5.0 Åとなるミ
クロ孔容積がミクロ孔全容積の60vol%以上であり、粒子
嵩密度0.7 〜1.2g/cm3,炭素含有率85重量%以上の分子
ふるい炭素により達成される。[Means for Solving the Problems]
Vol% or more is columnar or spherical with an outer diameter of 0.8 to 1.8 mm, has an internal structure in which a large number of primary carbon particles with a particle size of 0.1 to 50 μm are randomly and three-dimensionally integrated, and has micropores. Total volume 0.1-0.7ml / g, pore diameter 2.8-5.0Å, micropore volume is 60vol% or more of the total micropore volume, particle bulk density 0.7-1.2g / cm 3 , carbon content 85% by weight It is achieved by the above molecular sieving carbon.
【0007】本発明の分子ふるい炭素の形状は、円柱状
または球状であり、分子ふるい炭素の外径とは、円柱状
の場合には円柱の直径を、また球状では球の直径を指
す。圧力スイング吸着においては、圧力変動が短いサイ
クルで繰り返されるため、吸着材が上下動し、摩耗によ
り粉塵が発生する恐れがある。そのため吸着材の形状と
しては、円柱状または球状の如く、角が少なく、粉塵の
発生しにくい形状が好ましい。The shape of the molecular sieving carbon of the present invention is columnar or spherical, and the outer diameter of the molecular sieving carbon refers to the diameter of a cylinder in the case of a column, and the diameter of a sphere in the case of a sphere. In pressure swing adsorption, pressure fluctuations are repeated in a short cycle, so the adsorbent may move up and down, and dust may be generated due to abrasion. Therefore, the shape of the adsorbent is preferably a shape having few corners and less likely to generate dust, such as a columnar shape or a spherical shape.
【0008】分子ふるい炭素は、通常、原料微粉末を、
バインダ−等を用いてペレット状に成形後炭化焼成する
ので、炭素粒子が集合、合体してペレットを形成してい
る。本発明における炭素一次粒子とは、原料微粉末であ
るフェノ−ル樹脂などの熱硬化性樹脂や、無煙炭、褐
炭、泥炭、ヤシ殻炭などから誘導されるコ−クスなどを
炭化した、上記ペレットを形成する微小炭素粒子をさす
ものである。その炭素一次粒子の粒径は、通常、0.1 〜
50μm、好ましくは 1〜30μm、最も好ましくは2〜20
μmである。[0008] Molecular sieving carbon is usually a raw material fine powder,
Since it is formed into pellets using a binder or the like and then carbonized and fired, the carbon particles are aggregated and united to form pellets. The carbon primary particles in the present invention, a thermosetting resin such as phenol resin which is a raw material fine powder, carbonized coke and the like derived from anthracite, brown coal, peat, coconut shell charcoal, the above pellets It refers to the fine carbon particles forming the. The particle size of the carbon primary particles is usually 0.1-
50 μm, preferably 1-30 μm, most preferably 2-20
μm.
【0009】本発明者らは、本発明の分子ふるい炭素の
製造に当たり、原料微粉末の粒度の他に、バインダ−の
配合量、界面活性剤の使用量、および造粒設備の仕様、
例えばダイス厚、ダイスノズル開口率等について種々の
検討を行うことにより、従来製造が困難であった外径0.
8 〜1.8 mmの円柱状または球状の高強度な分子ふるい
炭素の製造を可能にしたものである。この製造技術は、
例えば特開昭63-201008 号公報で開示されている球状フ
ェノ−ル樹脂をその40重量% 以下の固形分含有量のフェ
ノ−ル樹脂とともに造粒して粒状成形体をつくり非酸化
性雰囲気中で焼成する方法、あるいは特開昭62-59510
号、US特許505957号、特開平1-61306 号、特開平3-4091
2 号、特開平3-141111号、特開平4-2605号公報で開示さ
れている方法、あるいはその他の公知の方法にも応用す
ることができる。要は、全体の80vol%以上が外径0.8 〜
1.8 mmの円柱状または球状にして、粒径0.1 〜50μm
の多数の炭素一次粒子が三次元的に不規則に合体されて
なる内部構造を有する分子ふるい炭素であればよい。外
径0.8 〜1.8 mmの分子ふるい炭素の割合は、80vol%以
上であれば良いが、好ましくは90vol%以上、更に好まし
くは95vol%以上である。The inventors of the present invention produced the molecular sieving carbon of the present invention, in addition to the particle size of the raw material fine powder, the amount of the binder compounded, the amount of the surfactant used, and the specifications of the granulating equipment,
For example, by conducting various studies on the die thickness, die nozzle opening ratio, etc., it was difficult to manufacture an outer diameter of 0.
It enables production of columnar or spherical high-strength molecular sieving carbon with a diameter of 8 to 1.8 mm. This manufacturing technology
For example, a spherical phenol resin disclosed in JP-A-63-201008 is granulated together with a phenol resin having a solid content of 40% by weight or less to form a granular molded body in a non-oxidizing atmosphere. Firing method, or JP-A-62-59510
U.S. Pat.No. 505957, JP-A-1-61306, JP-A-3-4091
No. 2, JP-A-3-411111, JP-A-4-2605, and other known methods can be applied. In short, 80 vol% or more of the whole is outside diameter 0.8 ~
1.8 mm cylindrical or spherical with a particle size of 0.1 to 50 μm
Any molecular sieving carbon having an internal structure in which a large number of primary carbon particles are irregularly united three-dimensionally may be used. The proportion of molecular sieving carbon having an outer diameter of 0.8 to 1.8 mm may be 80 vol% or more, preferably 90 vol% or more, more preferably 95 vol% or more.
【0010】活性炭や分子ふるい炭素の細孔の分類は文
献により必ずしも一定ではないが、本発明においては、
細孔径 500Åを越える、主に炭素一次粒子の隙間から構
成される細孔をマクロ孔、一次粒子内に縦横無尽に存在
している 500〜20Åの細孔をメソ孔、メソ孔より枝分か
れしている20Å未満の細孔をミクロ孔と定義することに
する。本発明の分子ふるい炭素におけるミクロ孔容積
は、後述する測定法により測定した吸着等温線を、Dubi
nin-Astakhov式を用いて整理することにより求めた。本
発明の分子ふるい炭素は、通常、ミクロ孔全容積が 0.1
〜 0.7 ml/g で、かつ細孔直径2.8 〜5.0 Åの範囲とな
るミクロ孔容積がミクロ孔全容積の60vol%以上であり、
好ましくはミクロ孔全容積が 0.12 〜 0.5 ml/g 、細孔
直径2.8 〜5.0 Åの範囲となるミクロ孔容積がミクロ孔
全容積の70vol%以上、最も好ましくは、ミクロ孔全容積
が 0.15 〜 0.3 ml/g 、細孔直径2.8 〜5.0 Åの範囲と
なるミクロ孔容積がミクロ孔全容積の80vol%以上であ
る。Although the classification of pores of activated carbon and molecular sieving carbon is not necessarily constant according to the literature, in the present invention,
Macropores are pores with a pore size of more than 500Å and are composed mainly of interstices of carbon primary particles, and pores of 500 to 20Å that exist in the primary particles inexhaustibly and vertically are branched from mesopores and mesopores. The pores of less than 20Å are defined as micropores. The micropore volume in the molecular sieving carbon of the present invention is determined by measuring the adsorption isotherm measured by the measuring method described below as
It was calculated by using the nin-Astakhov formula. The molecular sieving carbon of the present invention usually has a total micropore volume of 0.1
~ 0.7 ml / g, and the micropore volume in the range of pore diameter 2.8 ~ 5.0 Å is 60 vol% or more of the total volume of micropores.
The total micropore volume is preferably 0.12-0.5 ml / g, the micropore volume in the range of pore diameters 2.8-5.0 Å is 70 vol% or more of the total micropore volume, and most preferably the micropore total volume is 0.15-0.3. The micropore volume in the range of ml / g and the pore diameter of 2.8 to 5.0Å is 80 vol% or more of the total volume of the micropores.
【0011】ミクロ孔全容積が 0.1ml/gより小さいと分
子ふるい炭素の吸着容量が低下し、また、逆にミクロ孔
全容積が 0.7ml/gより大きいと細孔直径の大きい細孔が
増加し選択吸着性を殆ど持たなくなるので好ましくな
い。分子ふるい炭素は、窒素と酸素もしくは窒素と二酸
化炭素など、非常に分子径差の小さい分子を分離するの
で、細孔直径2.8 〜5.0 Åの範囲となるミクロ孔容積が
非常に重要とされている。分子ふるい炭素のミクロ孔は
原料物質の熱分解により形成され、炭化、賦活条件や、
炭化水素等の熱分解物質の添加量等によりその大きさが
制御される。この様にして製造される分子ふるい炭素で
は細孔直径2.8 Å以下の細孔を大量に形成することは困
難である。従って、細孔直径2.8 〜5.0 Åの範囲となる
ミクロ孔容積がミクロ孔全容積の60vol%以下となる場合
とは、細孔直径5.0 Å以上の細孔が多い場合に相当し、
分子ふるい炭素の選択吸着性を殆ど持たなくなるので好
ましくない。本発明の分子ふるい炭素は、組成上の特徴
として、少なくとも85重量%の炭素含有率を有し、好ま
しくは90重量%の炭素含有率を有する。また、本発明の
分子ふるい炭素は、通常、粒子嵩密度0.7 〜1.2g/cm3で
あり、好ましくは0.8 〜1.15g/cm3 、最も好ましくは0.
9 〜1.1g/cm3である。また、本発明者等の検討によれ
ば、分子ふるい炭素の外径を0.8 〜1.8 mmの範囲にし
てもPSA操作における吸着塔内での圧力損失は装置性
能の低下をきたすほど大きくなることはなく、分子ふる
い炭素の外径を本発明の範囲とすることにより、装置性
能の顕著な改善が得られることが明らかになった。When the total volume of micropores is less than 0.1 ml / g, the adsorption capacity of molecular sieving carbon decreases, and conversely, when the total volume of micropores is greater than 0.7 ml / g, the number of pores with large pore diameter increases. However, it is not preferable because it has almost no selective adsorption property. Since molecular sieving carbon separates molecules such as nitrogen and oxygen or nitrogen and carbon dioxide that have a very small difference in molecular diameter, the micropore volume within the pore diameter range of 2.8 to 5.0 Å is very important. . Micropores of molecular sieving carbon are formed by thermal decomposition of raw materials, carbonization, activation conditions,
The size is controlled by the amount of the pyrolyzed substance such as hydrocarbon added. With the molecular sieving carbon produced in this way, it is difficult to form a large number of pores with a pore diameter of 2.8 Å or less. Therefore, the case where the micropore volume in the range of the pore diameter 2.8 to 5.0 Å is 60 vol% or less of the total volume of the micropores corresponds to the case where there are many pores with a pore diameter of 5.0 Å or more,
It is not preferable because it has almost no selective adsorptivity for molecular sieving carbon. The molecular sieving carbon of the present invention has, as a compositional characteristic, a carbon content of at least 85% by weight, preferably a carbon content of 90% by weight. The molecular sieving carbon of the present invention usually has a particle bulk density of 0.7 to 1.2 g / cm 3 , preferably 0.8 to 1.15 g / cm 3 , and most preferably 0.
It is 9 to 1.1 g / cm 3 . Further, according to the study by the present inventors, even if the outer diameter of the molecular sieving carbon is in the range of 0.8 to 1.8 mm, the pressure loss in the adsorption tower during PSA operation becomes large enough to cause deterioration of the apparatus performance. However, it was revealed that by setting the outer diameter of the molecular sieving carbon within the range of the present invention, a remarkable improvement in the device performance can be obtained.
【0012】[0012]
【発明の効果】本発明の分子ふるい炭素は優れた吸着容
量と選択的吸着特性を有するために、窒素と酸素の気体
混合物のほか、種々の混合ガスの分離に使用することが
出来る。例えば、ブタン異性体、ブテン異性体等の炭化
水素異性体混合物、エチレンとプロピレンの混合物等か
ら特定ガス成分を分離することに使用できる。また、上
述の混合ガスの分離の他、スチ−ムリフォ−ミングガ
ス、エチレンプラントのオフガス、メタノ−ル分解ガ
ス、アンモニア分解ガス、コ−クス炉排ガス等よりの水
素回収、あるいは、火力発電所のボイラ−排ガスよりの
二酸化炭素の分離回収等にも使用することができる。INDUSTRIAL APPLICABILITY The molecular sieving carbon of the present invention has excellent adsorption capacity and selective adsorption characteristics, and therefore, it can be used for the separation of various mixed gases in addition to the gas mixture of nitrogen and oxygen. For example, it can be used to separate a specific gas component from a mixture of hydrocarbon isomers such as butane isomers and butene isomers, a mixture of ethylene and propylene, and the like. In addition to the above-described separation of mixed gas, hydrogen recovery from steam reforming gas, off gas of ethylene plant, methanol decomposition gas, ammonia decomposition gas, coke furnace exhaust gas, etc., or boiler of thermal power plant -It can also be used for separation and recovery of carbon dioxide from exhaust gas.
【0013】次に、本発明に用いた測定方法について以
下に示す。 (1)ミクロ孔容積測定法 本発明の分子ふるい炭素のミクロ孔容積の測定は、全自
動ガス吸着測定装置(BELSORP-28、日本ベル株式会社
製)を用いて、酸素(分子径 2.8Å) 、エタン(分子径
4.0Å) 、イソブタン(分子径 5.0Å) の 0〜760mmHg
、298Kにおける吸着等温線を測定し、式(1),(2) のDub
inin-Astakhov式を用いて整理することによって行っ
た。 W/W0 =exp{−(A/E)n } (1) A=RTln(P0 /P) (2) ここで W ;平衡圧Pにおける吸着量 W0 ;極限吸着量 A ;吸着ポテンシャル E ;吸着特性エネルギ− R ;気体定数 T ;測定温度 P0 ;飽和蒸気圧 P ;平衡圧 n ;定数(酸素の場合n=2,エタン、イソブタンの
場合n=3)Next, the measuring method used in the present invention is shown below. (1) Micropore volume measurement method The micropore volume of the molecular sieving carbon of the present invention is measured by using a fully automatic gas adsorption measuring device (BELSORP-28, manufactured by Bell Japan Ltd.) with oxygen (molecular diameter 2.8Å). , Ethane (molecular diameter
4.0Å), isobutane (molecular diameter 5.0Å) 0-760mmHg
, The adsorption isotherm at 298 K was measured, and the Dub of equations (1) and (2)
This was done by organizing using the inin-Astakhov formula. W / W 0 = exp {-(A / E) n } (1) A = RTln (P 0 / P) (2) where W; adsorption amount at equilibrium pressure P W 0 ; ultimate adsorption amount A; adsorption potential E; adsorption characteristic energy - R; gas constant T; measurement temperature P 0; saturated vapor pressure P; equilibrium n; constant (the case of oxygen n = 2, ethane, in the case of isobutane n = 3)
【0014】(2)吸着量測定法 本発明の分子ふるい炭素の酸素及び窒素の吸着量測定
は、図1に示す吸着特性測定装置を用いて行った。同図
において、試料室(4) (200ml) に3gの試料を入れ、バル
ブ(11)、(8) を閉じバルブ(2) 、(3) を開けて30分間脱
気した後、バルブ(2) 、(3) を閉じバルブ(11)を開け、
試料室(5)(200ml)内に、酸素ガス又は窒素ガスを送り込
み、設定圧(6.000kgf/cm2)になったところでバルブ(11)
を閉じバルブ(3) を開け、所定時間における内部圧力の
変化を測定して酸素及び窒素の各々の吸着速度を求め
た。なお、(1) は真空ポンプ、(6) 、(7) は圧力センサ
−、(9) は記録計、(14)、(15)はガスレギュレ−タ−、
(16)は窒素ボンベ、(17)は酸素ボンベである。(2) Method of measuring adsorption amount The adsorption amount of oxygen and nitrogen of the molecular sieving carbon of the present invention was measured using the adsorption characteristic measuring device shown in FIG. In the figure, put 3 g of sample into the sample chamber (4) (200 ml), close valves (11) and (8), open valves (2) and (3), degas for 30 minutes, and then open the valve (2 ), (3) closed, valve (11) opened,
Oxygen gas or nitrogen gas is fed into the sample chamber (5) (200 ml), and when the set pressure (6.000 kgf / cm 2 ) is reached, the valve (11)
Was closed and the valve (3) was opened, and changes in internal pressure during a predetermined time were measured to determine the adsorption rates of oxygen and nitrogen. In addition, (1) is a vacuum pump, (6) and (7) are pressure sensors, (9) is a recorder, (14) and (15) are gas regulators,
(16) is a nitrogen cylinder and (17) is an oxygen cylinder.
【0015】窒素と酸素の分離性能を示す指標として、
吸着開始1分後の吸着量を窒素分はQ1 、酸素分はQ2
とし、吸着量差ΔQを下記の式(3) ΔQ=Q2 −Q1 (3) により、また窒素吸着圧力をP1(atm), 酸素吸着圧力を
P2(atm)として、選択係数αを下記の式(4) α=(Q2/P2)/(Q1/P1) (4) より求めた。As an index showing the separation performance of nitrogen and oxygen,
The adsorption amount 1 minute after the start of adsorption was Q 1 for nitrogen and Q 2 for oxygen.
The adsorption amount difference ΔQ is expressed by the following equation (3) ΔQ = Q 2 −Q 1 (3), the nitrogen adsorption pressure is P 1 (atm), and the oxygen adsorption pressure is P 2 (atm). Was calculated from the following formula (4) α = (Q 2 / P 2 ) / (Q 1 / P 1 ) (4).
【0016】(3)炭素含有率測定 本発明の分子ふるい炭素の炭素含有率は、柳本製作所C
HNコ−ダ−,MT−3により分析した。以下に、本発
明を実施例にしたがって更に説明するが、本発明はこれ
らの実施例に何ら限定されるものではない。(3) Measurement of carbon content The carbon content of the molecular sieving carbon of the present invention is C
It was analyzed by HN Coder, MT-3. The present invention will be further described below with reference to examples, but the present invention is not limited to these examples.
【0017】[0017]
【実施例1】平均粒子径18μmのフェノ−ル樹脂粉末10
重量部に対し、メラミン樹脂水溶液(住友化学工業株式
会社製、スミテックスレジンM−3、固形分濃度80重量
%)を固形分で 8重量部、重合度1700、けん化度99%の
ポリビニルアルコ−ル 4重量部、馬鈴薯澱粉 2重量部、
そして界面活性剤(花王株式会社製、ペレックスNB−
L)0.7 重量部計量した。上記原料のうちまず、フェノ
−ル樹脂粉末と馬鈴薯澱粉をニ−ダ−で15分間乾式混合
した。一方、上記ポリビニルアルコ−ルを温水で15重量
%の水溶液となるように溶解し、このポリビニルアルコ
−ル水溶液とメラミン樹脂水溶液、及び界面活性剤をニ
−ダ−に加えて、更に15分間混合した。この混合組成物
を2軸押出造粒機(不二パウダル株式会社製、ペレッタ
ダブルEXDF−100型)で押出し、外径が、0.5mm
φ(試料1)、1.0mm φ(試料2)、1.5mm φ(試料
3)、2.5mm φ(試料4)の分子ふるい炭素となるよう
な4種類の円柱状粒状体の造粒を試みた。Example 1 A phenol resin powder 10 having an average particle diameter of 18 μm
8 parts by weight of a melamine resin aqueous solution (Sumitomo Chemical Co., Ltd., Sumitex Resin M-3, solid content concentration 80% by weight) in solid content, polyvinylalcohol having a polymerization degree of 1700 and a saponification degree of 99%. 4 parts by weight, potato starch 2 parts by weight,
And a surfactant (Perex NB- manufactured by Kao Corporation)
L) 0.7 parts by weight were weighed. First, among the above raw materials, phenol resin powder and potato starch were dry mixed in a kneader for 15 minutes. On the other hand, the polyvinyl alcohol was dissolved in warm water to obtain a 15% by weight aqueous solution, and the polyvinyl alcohol aqueous solution, the melamine resin aqueous solution, and the surfactant were added to the kneader, and the mixture was further mixed for 15 minutes. did. This mixed composition was extruded with a twin-screw extrusion granulator (Peretta Double EXDF-100 type manufactured by Fuji Paudal Co., Ltd.), and the outer diameter was 0.5 mm.
Attempt was made to granulate four kinds of cylindrical granules that become molecular sieve carbon of φ (sample 1), 1.0 mm φ (sample 2), 1.5 mm φ (sample 3), 2.5 mm φ (sample 4). .
【0018】分子ふるい炭素の外径が本発明の範囲より
小さい試料1は、造粒機のダイスに負荷が掛かり過ぎ、
組成配合量やダイス厚、ダイスノズル開口率など諸々の
条件を検討してみたが造粒不可能であったが、他の3試
料については円柱状の粒状体が得られた。このペレット
をそれぞれ90℃で24時間硬化及び乾燥させた後、有効径
600mmφ×2000mmL のロ−タリ−キルンに入れ、窒素気
流下において、30℃/Hで 800℃まで昇温し、該温度で1
時間保持した後、窒素雰囲気下で炉冷した。こうして得
られた試料2〜4の分子ふるい特性を評価するため、図
1に示す吸着特性測定装置により酸素及び窒素の吸着量
を測定した。測定結果を表1に示す。Sample 1 having an outer diameter of the molecular sieving carbon smaller than the range of the present invention has an excessive load on the die of the granulator,
Although various conditions such as composition blending amount, die thickness, and die nozzle opening ratio were examined, granulation was impossible, but columnar granular bodies were obtained for the other three samples. After curing and drying each of these pellets at 90 ℃ for 24 hours,
It was put in a 600 mmφ x 2000 mmL rotary kiln and heated up to 800 ° C at 30 ° C / H under a nitrogen stream and kept at that temperature for 1
After holding for a time, the furnace was cooled in a nitrogen atmosphere. In order to evaluate the molecular sieving characteristics of the samples 2 to 4 thus obtained, the adsorption amounts of oxygen and nitrogen were measured by the adsorption characteristic measuring device shown in FIG. The measurement results are shown in Table 1.
【表1】 [Table 1]
【0019】また試料2〜4を用い、PSA法により空
気中の窒素と酸素の分離実験を行った。本実験に用いた
PSAの概略図を図2に示す。吸着塔サイズは内径50mm
φ×1000mmL であり、2本の吸着塔内に分子ふるい炭素
を充填した。まずコンプレッサ−で圧縮した空気を吸着
塔に送り、吸着塔の圧力をゲ−ジ圧で 7kgf/cm2 ・G と
し、脱着再生は吸着塔を常圧に戻すことにより実施し
た。PSA操作は均圧(加圧)−吸着−均圧(減圧)−
排気の4工程で実施し、各工程の切り換えは、電磁弁を
シ−ケンサ−で制御して行った。PSA操作条件を表2
に示す。また測定結果を表1に示す。Further, using samples 2 to 4, an experiment for separating nitrogen and oxygen in the air was conducted by the PSA method. A schematic diagram of PSA used in this experiment is shown in FIG. Adsorption tower size is 50 mm inside diameter
φ × 1000 mmL, and molecular sieving carbon was packed in two adsorption towers. First, the air compressed by the compressor was sent to the adsorption tower, the pressure of the adsorption tower was adjusted to 7 kgf / cm 2 · G by the gauge pressure, and the desorption regeneration was performed by returning the adsorption tower to the normal pressure. PSA operation is pressure equalization (pressurization) -adsorption-pressure equalization (decompression)-
It was carried out in four steps of exhaust, and switching of each step was performed by controlling the solenoid valve with a sequencer. Table 2 shows PSA operating conditions
Shown in. The measurement results are shown in Table 1.
【表2】 表1より、酸素及び窒素の吸着特性は試料2〜4でほと
んど差が見られないが、PSA評価で本発明の請求の範
囲を外れる外径2.5mm の試料4は、試料2、3ほど高純
度の窒素を取り出すことが出来なかった。[Table 2] From Table 1, there is almost no difference in the adsorption characteristics of oxygen and nitrogen between Samples 2 to 4, but Sample 4 with an outer diameter of 2.5 mm, which is outside the scope of the claims of the present invention by PSA evaluation, is as high as Samples 2 and 3. The pure nitrogen could not be taken out.
【0020】[0020]
【実施例2】実施例1と同様の製法で、粒子の外径1.2m
m で、粒子嵩密度の異なる円柱状の分子ふるい炭素の製
造を試みた。造粒工程で添加する澱粉の量を、フェノ−
ル樹脂粉末10重量部に対し0 、2 、5 、8 重量部と変化
させることによって、粒子嵩密度がそれぞれ1.03,1.0
1,0.83,0.67 (g/cm3)の円柱状の分子ふるい炭素、試
料5、6、7、8を得た。得られた試料5〜8につい
て、実施例1と同様に窒素と酸素の吸着特性測定及びP
SA法による空気中の窒素と酸素の分離実験を行った。
実験結果を表3に示す。[Example 2] By the same production method as in Example 1, the outer diameter of the particles was 1.2 m.
Attempts were made to produce cylindrical molecular sieving carbons with different particle bulk densities at m 2. The amount of starch added in the granulation process is
The particle bulk density was changed to 1.03 and 1.0, respectively, by changing it to 0, 2, 5, 8 parts by weight relative to 10 parts by weight of the resin powder.
Columnar molecular sieving carbons of 1, 0.83, 0.67 (g / cm 3 ) and samples 5, 6, 7, and 8 were obtained. For the obtained samples 5 to 8, the adsorption characteristics of nitrogen and oxygen were measured and P was measured in the same manner as in Example 1.
An experiment for separating nitrogen and oxygen in the air by the SA method was performed.
The experimental results are shown in Table 3.
【表3】 PSA評価の結果では、粒子嵩密度が本発明の請求の範
囲より小さい試料8からは、高純度の窒素ガスを取り出
すことは出来なかった。[Table 3] As a result of the PSA evaluation, it was not possible to extract high-purity nitrogen gas from Sample 8 having a particle bulk density smaller than the range claimed in the present invention.
【0021】[0021]
【実施例3】実施例1の試料2と同様の製造法で、焼成
温度を30℃/Hで1000℃まで上げ該温度で1時間保持する
ことにより円柱状分子ふるい炭素試料9を得た。また試
料10〜13については、焼成温度を30℃/Hで 900℃ま
で上げ1時間保持した後、引き続き該温度で水蒸気賦活
を一定時間行った。賦活時間を 0分、10分、 30 分、60
分と変えることによりミクロ孔容積の異なる試料を得
た。試料9〜13について、実施例1と同様に窒素と酸
素の吸着特性測定及びPSA法による空気中の窒素と酸
素の分離実験を行った。実験結果を表4に示す。Example 3 A cylindrical molecular sieving carbon sample 9 was obtained by the same manufacturing method as in the sample 2 of the example 1 by raising the firing temperature to 30 ° C./H up to 1000 ° C. and holding the temperature for 1 hour. For Samples 10 to 13, the firing temperature was raised to 900 ° C. at 30 ° C./H and held for 1 hour, and then steam activation was continued at that temperature for a certain period of time. Activate time 0 minutes, 10 minutes, 30 minutes, 60
Samples with different micropore volumes were obtained by changing the volume. For Samples 9 to 13, the adsorption characteristic measurement of nitrogen and oxygen and the separation experiment of nitrogen and oxygen in the air by the PSA method were conducted as in Example 1. The experimental results are shown in Table 4.
【表4】 表4より、ミクロ孔全容積が0.1ml/g 以下で、本発明の
請求の範囲を外れる試料9では、選択係数αは大きい
が、PSA評価では高純度の窒素ガスを取り出すことは
出来なかった。また試料10〜13では、賦活時間が長
くなるにつれてミクロ孔容積は大きくなるが、細孔直径
2.8 〜5.0 Åの範囲のミクロ孔容積のミクロ孔全容積に
占める割合は小さくなり、その割合が60vol%以下となり
本発明の請求の範囲を外れる試料13では、PSA評価
において高純度の窒素ガスを取り出すことが出来なかっ
た。[Table 4] From Table 4, in Sample 9 having a total micropore volume of 0.1 ml / g or less and outside the scope of the claims of the present invention, the selection coefficient α is large, but PSA evaluation could not extract high-purity nitrogen gas. . In Samples 10 to 13, the micropore volume increases as the activation time increases, but the pore diameter
The ratio of the micropore volume in the range of 2.8 to 5.0Å to the total volume of the micropores was small, and the ratio was 60 vol% or less, which was outside the scope of the claims of the present invention. I couldn't take it out.
【0022】[0022]
【図面の簡単な説明】[Brief description of drawings]
【図1】実施例1に用いた吸着特性測定装置。FIG. 1 is an adsorption characteristic measuring apparatus used in Example 1.
【図2】実施例1に用いた圧力スイング吸着(PSA)
装置。2 is a pressure swing adsorption (PSA) used in Example 1. FIG.
apparatus.
1 真空ポンプ 2、3、8、11、12、13 バルブ 4 試料室 5 調整室 6、7 圧力センサ− 9 記録計 10 圧力計 14、15 ガスレギュレ−タ− 16 窒素ボンベ 17 酸素ボンベ 21 空気圧縮機 22 エア−ドライヤ− 23、23a 吸着塔 24、24a、27、27a、30、30a、33、3
3a、35、37 開閉弁 25、25a 供給路パイプ 28 排気路パイプ 29、29a 取出路パイプ 31 メインパイプ 32 均圧用パイプ 34 サ−ジタンク 36 製品ガス取出パイプ1 Vacuum Pump 2, 3, 8, 11, 12, 13 Valve 4 Sample Chamber 5 Adjustment Chamber 6, 7 Pressure Sensor-9 Recorder 10 Pressure Gauge 14, 15 Gas Regulator 16 Nitrogen Cylinder 17 Oxygen Cylinder 21 Air Compressor 22 air dryer 23, 23a adsorption tower 24, 24a, 27, 27a, 30, 30a, 33, 3
3a, 35, 37 Open / close valve 25, 25a Supply path pipe 28 Exhaust path pipe 29, 29a Extraction path pipe 31 Main pipe 32 Pressure equalizing pipe 34 Surge tank 36 Product gas extraction pipe
【表1】 [Table 1]
【表2】 [Table 2]
【表3】 [Table 3]
Claims (1)
の円柱状または球状であって、粒径0.1 〜50μmの多数
の炭素一次粒子が三次元的に不規則に合体されてなる内
部構造を有し、ミクロ孔全容積が0.1 〜0.7ml/g 、細孔
直径2.8 〜5.0 Åの範囲となるミクロ孔容積がミクロ孔
全容積の60vol%以上であり、粒子嵩密度0.7 〜1.2g/c
m3,炭素含有率85重量%以上の圧力スイング吸着装置用
分子ふるい炭素。1. Outer diameter is 0.8 to 1.8 mm for 80 vol% or more of the whole.
Columnar or spherical, having an internal structure in which a large number of primary carbon particles having a particle size of 0.1 to 50 μm are randomly and three-dimensionally coalesced, and the total volume of micropores is 0.1 to 0.7 ml / g, The micropore volume in the range of 2.8 to 5.0Å is 60 vol% or more of the total volume of micropores, and the particle bulk density is 0.7 to 1.2 g / c.
Molecular sieving carbon for pressure swing adsorption equipment with m 3 and carbon content of 85% by weight or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4335160A JPH06154595A (en) | 1992-11-19 | 1992-11-19 | Molecular sieve carbon for pressure swing type adsorption apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4335160A JPH06154595A (en) | 1992-11-19 | 1992-11-19 | Molecular sieve carbon for pressure swing type adsorption apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06154595A true JPH06154595A (en) | 1994-06-03 |
Family
ID=18285443
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4335160A Pending JPH06154595A (en) | 1992-11-19 | 1992-11-19 | Molecular sieve carbon for pressure swing type adsorption apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06154595A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003018189A1 (en) * | 2001-08-29 | 2003-03-06 | Nippon Sanso Corporation | Adsorbent for separating nitrogen from mixed gas of oxygen and nitrogen |
WO2008152948A1 (en) * | 2007-06-15 | 2008-12-18 | Japan Tobacco Inc. | Activated carbon for cigarette filter and cigarette with filter |
JP2009084068A (en) * | 2007-09-27 | 2009-04-23 | Air Water Inc | Molecular sieve carbon, method for producing the same, and nitrogen generator |
US8158095B2 (en) | 2006-10-20 | 2012-04-17 | Air Water Inc. | Non-thermofusible phenol resin powder, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor |
JP5901849B2 (en) * | 2013-05-10 | 2016-04-13 | 大陽日酸株式会社 | Method for separating methane and nitrogen |
WO2024162009A1 (en) * | 2023-01-31 | 2024-08-08 | 大阪ガスケミカル株式会社 | Molded body and production method therefor, assembly, and gas separation device |
-
1992
- 1992-11-19 JP JP4335160A patent/JPH06154595A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003018189A1 (en) * | 2001-08-29 | 2003-03-06 | Nippon Sanso Corporation | Adsorbent for separating nitrogen from mixed gas of oxygen and nitrogen |
US6916358B2 (en) | 2001-08-29 | 2005-07-12 | Taiyo Nippon Sanso Corporation | Adsorbent for separating nitrogen from mixed gas of oxygen and nitrogen |
US8158095B2 (en) | 2006-10-20 | 2012-04-17 | Air Water Inc. | Non-thermofusible phenol resin powder, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor |
US8293860B2 (en) | 2006-10-20 | 2012-10-23 | Air Water Inc. | Non-thermofusible phenol resin powder, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor |
US8409756B2 (en) | 2006-10-20 | 2013-04-02 | Air Water Inc. | Non-thermofusible phenol resin powder, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor |
US8411415B2 (en) | 2006-10-20 | 2013-04-02 | Air Water Inc. | Non-thermofusible phenol resin powder, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor |
US8658120B2 (en) | 2006-10-20 | 2014-02-25 | Air Water Inc. | Non-thermofusible phenol resin powder, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor |
WO2008152948A1 (en) * | 2007-06-15 | 2008-12-18 | Japan Tobacco Inc. | Activated carbon for cigarette filter and cigarette with filter |
JP2009084068A (en) * | 2007-09-27 | 2009-04-23 | Air Water Inc | Molecular sieve carbon, method for producing the same, and nitrogen generator |
JP5901849B2 (en) * | 2013-05-10 | 2016-04-13 | 大陽日酸株式会社 | Method for separating methane and nitrogen |
WO2024162009A1 (en) * | 2023-01-31 | 2024-08-08 | 大阪ガスケミカル株式会社 | Molded body and production method therefor, assembly, and gas separation device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5726118A (en) | Activated carbon for separation of fluids by adsorption and method for its preparation | |
KR950014208B1 (en) | Air separation by pressure swing adsorption with ahigh capacity carbon molecular sieve | |
US4820681A (en) | Preparation of hydrophobic carbon molecular sieves | |
US4810266A (en) | Carbon dioxide removal using aminated carbon molecular sieves | |
US5324703A (en) | Method of preparation of gasoline vapor adsorptive activated carbon | |
EP3356028B1 (en) | Method of preparing carbon molecular sieve adsorbents from activated carbon and a polymer | |
KR100236785B1 (en) | Carbon adsorber, its manufacturing method and gas separation method and apparatus | |
US7670408B2 (en) | Method of separating nitrogen gas and molecular sieve carbon | |
US5164355A (en) | High capacity coconut shell char for carbon molecular sieves | |
US11896954B2 (en) | Microporous carbon materials to separate nitrogen in associated and non-associated natural gas streams | |
JPH0353015B2 (en) | ||
US20160008787A1 (en) | Novel carbon molecular sieve and pellet compositions useful for c2-c3 alkane/alkene separations | |
Nandi et al. | Carbon molecular sieves for the concentration of oxygen from air | |
JP3768134B2 (en) | Molecular sieve carbon and pressure swing adsorption device using it | |
JPH06154595A (en) | Molecular sieve carbon for pressure swing type adsorption apparatus | |
US5498589A (en) | Process for the production of carbon molecular sieves | |
JPH05285379A (en) | Production of carbon as molecular sieve | |
JPH07277716A (en) | Active carbon | |
JP4780903B2 (en) | Separation method of nitrogen gas using molecular sieve carbon | |
EP0394350A1 (en) | Hydrophobic carbon molecular sieves. | |
WO2024143289A1 (en) | Carbon molecular sieve and method for manufacturing same, and gas separation device | |
JPH05305214A (en) | Separation of oxygen gas | |
JPH0340912A (en) | Production of molecular-sieve carbon |