[go: up one dir, main page]

JPH06151795A - Photodetector - Google Patents

Photodetector

Info

Publication number
JPH06151795A
JPH06151795A JP4292492A JP29249292A JPH06151795A JP H06151795 A JPH06151795 A JP H06151795A JP 4292492 A JP4292492 A JP 4292492A JP 29249292 A JP29249292 A JP 29249292A JP H06151795 A JPH06151795 A JP H06151795A
Authority
JP
Japan
Prior art keywords
refractive index
light
layer
incident
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4292492A
Other languages
Japanese (ja)
Other versions
JP3213405B2 (en
Inventor
Ikuo Kato
幾雄 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP29249292A priority Critical patent/JP3213405B2/en
Publication of JPH06151795A publication Critical patent/JPH06151795A/en
Application granted granted Critical
Publication of JP3213405B2 publication Critical patent/JP3213405B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To provide a photodetector, which has a large photodetecting sensitivity in specified directions and is given the angle dependency of an asymmetrical photodetecting sensitivity, by a method wherein a thin film having a tapered structure is provided on the photodetecting part of a substrate. CONSTITUTION:A photodetector consists of a low-refractive index layer 13 having a photodetecting part 12 on a substrate, a parallel plane part 13, which is laminated on the upper part of this photodetecting part 12 and is parallel to the substrate surface, and a tapered part 13b, which is not parallel to the plane part 13a, and a high- refractive index medium 14, which is provided on the upper parts of the parts 13a and 13b. The incident angle of the light in the medium 14 to the substrate surface out of incident lights, which intrude through this medium 14, are transmitted the part 13b and are incided in the part 12 from specified directions which are not vertical to the part 12, is set at a critical angle or larger, which is decided on the basis of the relation between the refractive indexes of the medium 14 and the layer 13, and the incident angle of the light in the medium 14 to the part 13b out of the incident lights is set at an angle smaller than a critical angle, which is decided on the basis of the relation between the refractive indexes of the medium 14 and the layer 13.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光通信、光集積回路、
光情報処理回路等に用いる光検出装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to optical communication, optical integrated circuits,
The present invention relates to a photodetector used for an optical information processing circuit or the like.

【0002】[0002]

【従来の技術】従来における光検出装置の一例を図9に
基づいて説明する。図9は、Si基板によるpinフォ
トダイオードの断面を示すものであり、n層1と、i層
2と、p層3(受光部3)とからなっている。このSi
基板の表面にはSiO2 層4が形成され、その裏面には
裏面電極5が形成されている。また、このようなSi基
板の上部には高屈折率媒質6が形成されている。なお、
ここではコンタクト電極は省略している。
2. Description of the Related Art An example of a conventional photodetector will be described with reference to FIG. FIG. 9 shows a cross section of a pin photodiode made of a Si substrate, which is composed of an n layer 1, an i layer 2, and a p layer 3 (light receiving portion 3). This Si
A SiO 2 layer 4 is formed on the front surface of the substrate, and a back surface electrode 5 is formed on the back surface thereof. Moreover, a high refractive index medium 6 is formed on the upper portion of such a Si substrate. In addition,
The contact electrodes are omitted here.

【0003】図9の右上部側から進行した光7a〜7
c、及び、同じ左上部から進行した光8a〜8cは受光
部3に検出され、これにより光電流が発生し、電気信号
に変換される。このようにしてSi基板上に作成した受
光部3は、Si基板が一般に平面状であることから、S
i基板と垂直方向の光に対して受光感度が最も大きく、
Si基板の垂線を中心に点対称的に垂線となす角度が大
きくなるほど(すなわち傾斜して入射するほど)受光感
度が小さくなるという対称な受光感度の角度依存性があ
る。
Lights 7a to 7 traveling from the upper right side of FIG.
Lights 8a to 8c traveling from c and the same upper left portion are detected by the light receiving unit 3, and a photocurrent is generated thereby, and converted into an electric signal. In the light-receiving unit 3 thus formed on the Si substrate, since the Si substrate is generally flat, S
The light receiving sensitivity is highest for light in the direction perpendicular to the i substrate,
There is an angular dependence of the light-receiving sensitivity that the light-receiving sensitivity becomes smaller as the angle formed by the point-symmetrical with respect to the vertical line of the Si substrate and the perpendicular becomes larger (that is, as the light enters obliquely).

【0004】[0004]

【発明が解決しようとする課題】この場合、Si基板
(以下、基板と呼ぶ)を傾ければその受光感度の角度依
存性が変化するため、基板を傾けて角度依存性を変化さ
せ基板の垂線に対して非対称な受光感度の角度依存性と
することもできるが、基板の配置に制約を受けたり、1
つの基板で複数の方向に対応できない等の欠点がある。
また、基板上の受光部分だけを基板に対して傾けて非対
称な受光感度の角度依存性とすることもできるが、基板
上で傾けられる受光面の角度は受光部3(以下、受光素
子と呼ぶ)の面積をある程度小さくしない限りは大きく
ても10数°であり、しかも、その傾斜により受光感度
もなだらかに変化することから、例えば、基板に対して
45°の同じ入射角で左右から入射した光を選択的に検
出することは難しい。
In this case, if the Si substrate (hereinafter referred to as the substrate) is tilted, the angle dependency of its light-receiving sensitivity changes. Therefore, the substrate is tilted to change the angle dependency and the normal line of the substrate is changed. Although it is possible to make the light receiving sensitivity asymmetric with respect to the angle, there are restrictions on the arrangement of the substrate,
There is a drawback that one board cannot support multiple directions.
Further, only the light receiving portion on the substrate can be tilted with respect to the substrate so that the asymmetric light receiving sensitivity has an angle dependence, but the angle of the light receiving surface tilted on the substrate is the light receiving portion 3 (hereinafter referred to as a light receiving element). Unless the area of () is reduced to some extent, it is at most 10 and more degrees, and since the inclination also changes the light receiving sensitivity, for example, the light is incident on the substrate from the left and right at the same incident angle of 45 °. It is difficult to selectively detect light.

【0005】そこで、このようなことから従来において
は、基板上の受光素子に特定方向の光に対して受光感度
が大きくなるような非対称な受光感度の角度依存性をも
たせるために、基板とは別個に入射方向の前方にレン
ズ、回折格子、スリット、プリズム等の光学部品を設
け、これにより特定方向の光が受光素子に入射しやすい
ようにしている。例えば、スリットを用いた場合では、
基板上の受光素子の前方にナイフエッジによるスリット
を設け、受光素子はナイフエッジのない側の光を強く受
光し、これにより受光感度に非対称の角度依存性が現れ
る。
In view of the above, therefore, in the prior art, in order to make the light receiving element on the substrate have an asymmetric angle dependency of the light receiving sensitivity such that the light receiving sensitivity for light in a specific direction becomes large, Separately, optical components such as a lens, a diffraction grating, a slit, and a prism are provided in front of the incident direction so that light in a specific direction can easily enter the light receiving element. For example, when using a slit,
A slit with a knife edge is provided in front of the light receiving element on the substrate, and the light receiving element strongly receives the light on the side without the knife edge, which causes an asymmetric angle dependence in the light receiving sensitivity.

【0006】しかし、これら光学部品を受光素子用の基
板とは別個に設けると、部品点数が増え、その分、その
他の光学部品を設けるのが困難となるケースが多くな
る。例えば、スリットを設けることにより、受光素子上
にプリズムや回折格子を密着させることが困難となる。
However, if these optical components are provided separately from the substrate for the light receiving element, the number of components increases, and in many cases it becomes difficult to provide other optical components. For example, by providing the slit, it becomes difficult to bring the prism or the diffraction grating into close contact with the light receiving element.

【0007】また、基板上の導波光を検出する受光素子
の一例としては、「光集積ピックアップ用導波路型光検
出器」なるタイトルで10p-ZN-8,1991,秋季、第52回応
用物理学会学術講演会に本出願人により開示されている
ものがある。これは、導波光を効率良く受光素子に導く
ために、受光素子に近づく基板表面の形状をテーパー状
に形成し、これにより角度依存性をもたせている。もち
ろん、導波光の検出感度には、平面的な角度依存性があ
る。しかし、このようにテーパー状の基板は一般に薄膜
を積層、加工して作成するため、光学部品を受光素子と
一体で基板上に設けることは困難である。
As an example of the light receiving element for detecting the guided light on the substrate, 10p-ZN-8, 1991, autumn, 52nd applied physics, titled "Waveguide type photodetector for integrated optical pickup" Some are disclosed by the applicant at academic conferences. In order to guide the guided light to the light receiving element efficiently, the shape of the substrate surface approaching the light receiving element is formed in a taper shape, and thereby the angle dependence is provided. Of course, the detection sensitivity of guided light has a planar angle dependency. However, since such a tapered substrate is generally produced by laminating and processing thin films, it is difficult to provide the optical component integrally with the light receiving element on the substrate.

【0008】[0008]

【課題を解決するための手段】請求項1記載の発明で
は、基板上に形成された受光部と、この受光部を含む上
部に積層され基板面に対して平行な平行平面部と平行で
ないテーパー部とを有する低屈折率層と、この低屈折率
層の前記平行平面部及び前記テーパー部の上部に設けら
れた高屈折率媒質とよりなり、この高屈折率媒質から侵
入し前記低屈折率層の前記テーパー部を透過して前記基
板上の前記受光部に垂直でない特定方向から入射する入
射光のうち前記基板面に対する前記高屈折率媒質中での
光の入射角度をその高屈折率媒質及び前記低屈折率層の
屈折率の関係から決定される臨界角以上の大きな角度に
設定し、かつ、前記入射光のうち前記テーパー部に対す
る前記高屈折率媒質中の光の入射角度をその高屈折率媒
質及び前記低屈折率層の屈折率の関係から決定される臨
界角よりも小さな角度に設定した。
According to a first aspect of the invention, there is provided a light receiving portion formed on a substrate, and a taper which is not parallel to a parallel plane portion which is laminated on an upper portion including the light receiving portion and which is parallel to the substrate surface. A low refractive index layer having a high refractive index medium and a high refractive index medium provided on the parallel plane portion and the tapered portion of the low refractive index layer. The incident angle of light in the high refractive index medium with respect to the surface of the substrate out of the incident light that is transmitted through the tapered portion of the layer and is incident on the light receiving portion on the substrate from a specific direction that is not perpendicular to the light receiving portion is the high refractive index medium. And a large angle equal to or greater than a critical angle determined from the relationship of the refractive index of the low refractive index layer, and the incident angle of light in the high refractive index medium with respect to the tapered portion of the incident light is set to the high angle. Refractive index medium and low refractive index It is set to an angle smaller than the critical angle determined from the relationship between the refractive index of.

【0009】請求項2記載の発明では、基板上に形成さ
れた受光部と、この受光部を含む上部に積層され基板面
に対して平行な平行平面部と平行でないテーパー部とを
有する低屈折率層と、この低屈折率層の前記平行平面部
及び前記テーパー部の上部に設けられた高屈折率媒質
と、この高屈折率媒質の上部に設けられた低屈折率媒質
とよりなり、この低屈折率媒質から前記高屈折率媒質と
前記低屈折率媒質との接触面が前記基板と平行でない部
分に侵入し前記高屈折率媒質を介して前記低屈折率層の
前記テーパー部を透過して前記基板上の前記受光部に垂
直でない特定方向から入射する入射光のうち前記基板面
に対する前記高屈折率媒質中での光の入射角度をその高
屈折率媒質及び前記低屈折率層の屈折率の関係から決定
される臨界角以上の大きな角度に設定し、かつ、前記入
射光のうち前記テーパー部に対する前記高屈折率媒質中
の光の入射角度をその高屈折率媒質及び前記低屈折率層
の屈折率の関係から決定される臨界角よりも小さな角度
に設定した。
According to a second aspect of the invention, a low refraction having a light receiving portion formed on the substrate, a parallel flat portion parallel to the substrate surface and a taper portion which is laminated on the upper portion including the light receiving portion and is not parallel to the substrate surface. A low refractive index layer, a high refractive index medium provided on the parallel plane portion and the taper portion of the low refractive index layer, and a low refractive index medium provided on the high refractive index medium. From the low refractive index medium, the contact surface between the high refractive index medium and the low refractive index medium penetrates into a portion which is not parallel to the substrate, and penetrates the tapered portion of the low refractive index layer through the high refractive index medium. The incident angle of the light in the high refractive index medium with respect to the surface of the substrate among the incident light incident from a specific direction that is not perpendicular to the light receiving portion on the substrate is defined by the refraction of the high refractive index medium and the low refractive index layer. Above the critical angle determined from the relationship of the rates The angle of incidence of the light in the high refractive index medium with respect to the taper portion of the incident light is determined from the relationship between the high refractive index medium and the refractive index of the low refractive index layer. The angle was set smaller than the critical angle.

【0010】請求項3記載の発明では、請求項1又は2
記載の発明において、高屈折率媒質と低屈折率層との間
に、少なくとも1層以上の中間層を設けた。
In the invention of claim 3, claim 1 or 2
In the invention described above, at least one intermediate layer is provided between the high refractive index medium and the low refractive index layer.

【0011】請求項4記載の発明では、請求項3記載の
発明において、中間層のうちの少なくとも1層が高屈折
率物質から形成され、受光部が形成された基板面に対し
て、前記高屈折率物質からなる中間層と低屈折率層との
接触面、若しくは、前記高屈折率物質からなる中間層と
この下層のこれよりも小さい屈折率の物質からなる中間
層との接触面の一部又は全部を非平行なテーパー部に形
成し、前記受光部が形成された前記基板面に対して、前
記高屈折率物質からなる中間層と高屈折率媒質との接触
面、若しくは、前記高屈折率物質からなる中間層とこの
上層のこれと同程度の屈折率の物質からなる中間層との
接触面の一部又は全部を平行な平行平面部に形成した。
According to a fourth aspect of the invention, in the third aspect of the invention, at least one of the intermediate layers is formed of a high refractive index material, and the high refractive index material is formed on the substrate surface on which the light receiving portion is formed. One of the contact surfaces between the intermediate layer made of a refractive index substance and the low refractive index layer, or the contact surface between the intermediate layer made of the high refractive index substance and the intermediate layer made of a substance having a smaller refractive index than the lower layer. Parts or all of them are formed in non-parallel tapered parts, and a contact surface between the intermediate layer made of the high refractive index material and the high refractive index medium or the high refractive index medium with respect to the substrate surface on which the light receiving part is formed. Part or all of the contact surface between the intermediate layer made of a substance having a refractive index and the intermediate layer made of a substance having a similar refractive index to that of the upper layer was formed in parallel parallel plane portions.

【0012】請求項5記載の発明では、請求項1又は2
記載の発明において、高屈折率媒質と低屈折率層との間
に少なくとも1層以上の中間層を設け、この中間層のう
ちの少なくとも1層を導波層として設けた。
According to the invention of claim 5, claim 1 or 2
In the invention described above, at least one intermediate layer is provided between the high refractive index medium and the low refractive index layer, and at least one of the intermediate layers is provided as a waveguide layer.

【0013】請求項6記載の発明では、請求項1又は2
記載の発明において、高屈折率媒質と低屈折率層との間
に少なくとも1層以上の中間層を設け、この中間層のう
ちの少なくとも1層を導波層として設け、前記高屈折率
媒質を前記導波層への光結合用のプリズムとして形成
し、このプリズムから特定方向の入射光を侵入させるた
めの入射光結合手段を設け、この入射光結合手段により
前記プリズムを介して侵入した前記入射光を検出するた
めに前記プリズムの下面の基板表面にテーパー状をなす
光検出部を形成した。
According to the invention of claim 6, claim 1 or 2
In the invention described above, at least one intermediate layer is provided between the high refractive index medium and the low refractive index layer, and at least one of the intermediate layers is provided as a waveguide layer, and the high refractive index medium is It is formed as a prism for optical coupling to the waveguiding layer, and an incident light coupling means for injecting incident light in a specific direction from the prism is provided, and the incident light coupling means intrudes through the prism. In order to detect the emitted light, a tapered light detecting portion was formed on the substrate surface on the lower surface of the prism.

【0014】請求項7記載の発明では、請求項6記載の
発明において、プリズムを介して光検出部より導波層に
結合した導波光を検出する導波光検出手段を設け、この
導波光検出手段からの出力情報と光検出部により特定方
向の光から得られた出力情報とにより光結合効率を求め
る光結合効率検出手段を設けた。
According to a seventh aspect of the present invention, in the sixth aspect of the present invention, a guided light detecting means for detecting the guided light coupled to the waveguide layer from the light detecting portion via the prism is provided, and the guided light detecting means is provided. The optical coupling efficiency detecting means for obtaining the optical coupling efficiency is provided by the output information from the optical detector and the output information obtained from the light in the specific direction by the photodetector.

【0015】[0015]

【作用】請求項1記載の発明においては、受光部の周辺
にテーパー構造をもつ低屈折率層を形成したことによ
り、高屈折率媒質からの特定方向の入射光に対して非対
称な受光感度の角度依存性をもたせ、しかも、受光感度
を大きくとることが可能となる。
According to the first aspect of the invention, since the low refractive index layer having the taper structure is formed around the light receiving portion, the light receiving sensitivity which is asymmetrical with respect to the incident light from the high refractive index medium in a specific direction is obtained. It becomes possible to provide angle dependency and to increase the light receiving sensitivity.

【0016】請求項2記載の発明においては、受光部の
周辺にテーパー構造をもつ低屈折率層、及び、基板に対
して非平行な高屈折率媒質と低屈折率媒質との接触面を
もっているため、低屈折率媒質からの特定方向の入射光
に対して非対称な受光感度の角度依存性をもたせること
が可能となる。
According to the second aspect of the present invention, there is provided a low refractive index layer having a tapered structure around the light receiving portion, and a contact surface between the high refractive index medium and the low refractive index medium which is not parallel to the substrate. Therefore, it becomes possible to have an asymmetric angle dependence of the light receiving sensitivity with respect to the incident light in a specific direction from the low refractive index medium.

【0017】請求項3記載の発明においては、中間層を
設けたことにより、高屈折率媒質や基板の保護層として
の役割を果たすことが可能となる。
In the third aspect of the invention, the provision of the intermediate layer makes it possible to function as a protective layer for the high refractive index medium and the substrate.

【0018】請求項4記載の発明においては、高屈折率
媒質からなる中間層の低屈折率層側の境界面の少なくと
も一部分に基板と平行でない部分を設けたことにより、
高屈折率媒質と中間層との境界面を基板に対して平行に
することが可能となる。
According to the fourth aspect of the invention, at least a part of the boundary surface on the low refractive index layer side of the intermediate layer made of the high refractive index medium is provided with a portion that is not parallel to the substrate.
It is possible to make the interface between the high refractive index medium and the intermediate layer parallel to the substrate.

【0019】請求項5記載の発明においては、中間層の
少なくとも1層を導波層として用いたことにより、光学
部品を高密度に集積化させることが可能となる。
According to the fifth aspect of the invention, since at least one of the intermediate layers is used as the waveguiding layer, it is possible to integrate the optical components at a high density.

【0020】請求項6記載の発明においては、プリズム
の下面の基板上にテーパー構造をもつ光検出部を設けた
ことにより、プリズムの特定方向から入射した光を導波
層に結合させることなく直接に検出することが可能とな
る。
According to the sixth aspect of the present invention, since the light detecting portion having the tapered structure is provided on the substrate on the lower surface of the prism, the light incident from the specific direction of the prism is directly coupled without being coupled to the waveguide layer. Can be detected.

【0021】請求項7記載の発明においては、テーパー
構造をもった光検出部により検出された特定方向の光か
ら得られた出力情報と、導波光検出手段により検出され
た導波光から得られた出力情報とを用いてプリズムの光
結合効率を求めることができる。
According to the seventh aspect of the invention, output information obtained from light in a specific direction detected by the photodetector having a taper structure and guided light detected by the guided light detecting means are obtained. The output information and can be used to determine the optical coupling efficiency of the prism.

【0022】[0022]

【実施例】請求項1記載の発明を図1に基づいて説明す
る。図1は、本装置の断面形状を示すものである。基板
としてのSi基板9には、下層側から、n層10と、i
層11と、p層12(以下、受光部12と呼ぶ)とが順
に形成され、これによりpinフォトダイオードを形成
している。この受光部12を含むSi基板9の上部には
低屈折率層13が形成されている。この低屈折率層13
には、Si基板9の基板面に対して平行な平行平面部1
3aと平行でないテーパー部13bとが形成されてい
る。この低屈折率層13の平行平面部13a及びテーパ
ー部13bの上部には高屈折率媒質14が設けられてい
る。Si基板9の裏面側には、裏面電極15が取付けら
れている。なお、低屈折率層13のテーパー形状は、異
なるエッチングレートをもつ多層膜をエッチングするこ
とにより、5°以上の角度であれば比較的容易に作製す
ることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 will be described with reference to FIG. FIG. 1 shows a cross-sectional shape of this device. The Si substrate 9 serving as a substrate includes an n layer 10 and an i layer 10 from the lower layer side.
A layer 11 and a p layer 12 (hereinafter, referred to as a light receiving portion 12) are sequentially formed to form a pin photodiode. A low refractive index layer 13 is formed on the Si substrate 9 including the light receiving portion 12. This low refractive index layer 13
Is a parallel plane portion 1 parallel to the substrate surface of the Si substrate 9.
A tapered portion 13b that is not parallel to 3a is formed. A high refractive index medium 14 is provided on the parallel flat surface portion 13a and the tapered portion 13b of the low refractive index layer 13. A back surface electrode 15 is attached to the back surface side of the Si substrate 9. The taper shape of the low refractive index layer 13 can be relatively easily produced by etching a multilayer film having different etching rates at an angle of 5 ° or more.

【0023】また、ここでは、以下のような条件に設定
した。第1の条件として、高屈折率媒質14から侵入し
低屈折率層13のテーパー部13bを透過してSi基板
9上の受光部12に垂直でない特定方向から入射する入
射光のうち、基板面に対する高屈折率媒質14中での光
の入射角度を、高屈折率媒質14及び低屈折率層13の
屈折率の関係から決定される臨界角以上の大きな角度に
設定した。また、第2の条件として、前記入射光のう
ち、テーパー部13bに対する高屈折率媒質14中の光
の入射角度を、その高屈折率媒質14及び低屈折率層1
3の屈折率の関係から決定される臨界角よりも小さな角
度に設定したものである。
Further, the following conditions are set here. The first condition is that of the incident light that enters from the high-refractive-index medium 14 and transmits through the tapered portion 13b of the low-refractive-index layer 13 and enters the light-receiving portion 12 on the Si substrate 9 from a specific direction that is not perpendicular to the substrate surface. The incident angle of light in the high-refractive index medium 14 is set to a larger angle than the critical angle determined from the relationship between the refractive indices of the high-refractive index medium 14 and the low-refractive index layer 13. In addition, as a second condition, of the incident light, the incident angle of the light in the high refractive index medium 14 with respect to the tapered portion 13b is defined as the high refractive index medium 14 and the low refractive index layer 1
The angle is set to be smaller than the critical angle determined from the relationship of the refractive index of 3.

【0024】このような構成において、まず、前記入射
光について説明する。図1中、右側から入射した光は入
射光16a,16b,16c,16dで示し、テーパー
部13bを透過した光は光線17b,17c,17dで
示す。その右側から入射した光のうち平行平面部13a
で反射した光を光線17aで示す。また、左側から入射
した光は入射光18a,18b,18c,18d,18
eで示し、入射光18a,18b,18cの平行平面部
13a及びテーパー部で反射した全反射光は光線19
a,19b,19cで示し、入射光18d,18eのi
層11に透過した光は光線19d,19eで示す。A1
〜A4は基板面に対する垂線を示し、B1,B2 はテーパ
ー部13bに対する垂線を示す。
In such a structure, first, the incident light will be described. In FIG. 1, light incident from the right side is indicated by incident light 16a, 16b, 16c, 16d, and light transmitted through the tapered portion 13b is indicated by light rays 17b, 17c, 17d. Of the light incident from the right side, the parallel flat surface portion 13a
The light reflected by is indicated by a light ray 17a. The light incident from the left side is incident light 18a, 18b, 18c, 18d, 18
The total reflection light reflected by the parallel plane portion 13a and the taper portion of the incident light 18a, 18b, 18c is indicated by the light ray 19
a, 19b, 19c, i of incident light 18d, 18e
The light transmitted through layer 11 is indicated by rays 19d and 19e. A 1
˜A 4 are perpendiculars to the substrate surface, and B 1 and B 2 are perpendiculars to the tapered portion 13b.

【0025】次に、上述したような入射光のうち幾何学
的な光線を主体として説明する。テーパー構造をもつ低
屈折率層13は、実際には波長に比べて薄い場合があ
り、この場合には波動光学的な扱いをしなければならな
いが、本原理は、入射光の入射角が全反射の臨界角より
も大きいか小さいかで選択させることなので、基本的な
原理としてはこの幾何学的な説明で十分である。ただ
し、低屈折率層13が波長に対して十分薄い場合にはエ
バネセント波による電界強度が低屈折率層13の下層の
薄膜においても大きくなる場合があり、例えばこれが受
光部12のp層であれば光の吸収を生じ、全反射の臨界
角以上の入射光でも光電流が生じる。このため、受光部
12上での低屈折率層13の厚さを波長の少なくとも1
/4以上の厚さにしておくことにより、入射した光によ
る下層での電界強度が比較的小さくなるので、その下層
での吸収が小さくなり、臨界角と入射角との差によって
受光部12に受光感度の角度依存性をもたせることがで
きるようになる。また、受光部12上の低屈折率層13
の厚さが波長の1倍以上であれば、十分に大きいSN比
を得ることができる。さらに、波長の数倍程度の厚さで
そのSN比はほとんど変化しなくなり、バルクの場合と
同じ状態になる。
Next, the geometrical rays of the incident light as described above will be mainly described. The low refractive index layer 13 having a taper structure may actually be thinner than the wavelength, and in this case, it must be treated as a wave optics. This geometrical explanation is sufficient as the basic principle because the choice is made to be larger or smaller than the critical angle of reflection. However, when the low-refractive index layer 13 is sufficiently thin with respect to the wavelength, the electric field strength due to the evanescent wave may be large even in the lower layer of the low-refractive index layer 13, and for example, this may be the p-layer of the light-receiving unit 12. For example, absorption of light occurs, and photocurrent is generated even with incident light having a critical angle of total reflection or more. Therefore, the thickness of the low refractive index layer 13 on the light receiving portion 12 is set to be at least 1 of the wavelength.
By setting the thickness to / 4 or more, the electric field intensity in the lower layer due to the incident light becomes relatively small, so that the absorption in the lower layer becomes small and the light receiving portion 12 is affected by the difference between the critical angle and the incident angle. It becomes possible to give the angle dependence of the light receiving sensitivity. In addition, the low refractive index layer 13 on the light receiving portion 12
If the thickness is 1 or more times the wavelength, a sufficiently large SN ratio can be obtained. Further, the SN ratio hardly changes at a thickness of several times the wavelength, and the state is the same as in the case of bulk.

【0026】次に、本装置の基本的な動作原理(前述し
た2つの設定条件)について述べる。高屈折率媒質14
として、(株)オハラ製のLaSF(21)の高屈折率
フリントガラス(n=1.84491、632.8n
m)を用いたとする。なお、これと同様なガラスとし
て、保谷(株)のTaSF(9)のガラス(n=1.8
4493,632.8nm)を用いてもよい。また、テ
ーパー部13bをもつ低屈折率層13をSiONでプラ
ズマCVDにより基板温度300°で作製し、この屈折
率をn=1.453とする。この時、臨界角θは、 θ=sin~1(1.453/1.845)=51.95° となる。そして、今、高屈折率媒質14からSi基板9
へ55°の入射角で光線を入射させたとする。低屈折率
層13のテーパー部13bの角度θ1 は、11.31°
(tan~1(0.2)) とし、低屈折率層13のテーパー
でない平行平面部13aの膜厚は4μmとする。
Next, the basic operating principle of the present apparatus (the two setting conditions described above) will be described. High refractive index medium 14
As a high refractive index flint glass of LaSF (21) manufactured by OHARA INC. (N = 1.84491, 632.8n)
m) is used. As a glass similar to this, TaSF (9) glass (n = 1.8) manufactured by Hoya Co., Ltd.
4493, 632.8 nm) may be used. Further, the low refractive index layer 13 having the tapered portion 13b is formed by plasma CVD of SiON at a substrate temperature of 300 °, and the refractive index is set to n = 1.453. In this case, the critical angle theta, a θ = sin ~ 1 (1.453 / 1.845) = 51.95 °. And now, from the high refractive index medium 14 to the Si substrate 9
It is assumed that light rays are incident at an incident angle of 55 °. The angle θ 1 of the tapered portion 13b of the low refractive index layer 13 is 11.31 °
And (tan ~ 1 (0.2)) , the thickness of the parallel plane portion 13a is not a taper of the low refractive index layer 13 is set to 4 [mu] m.

【0027】まず、左側からSi基板9に入射した光線
が受光部12に吸収されない理由について説明する。左
側から入射した入射光のうち、テーパー部13bをもつ
低屈折率層13の平行平面部13aに入射した入射光1
8a,18bは、入射角θ2=55.0°の光線であ
り、これは臨界角θ=52.0°よりも大きいため、反
射角55.0°で全反射され、光線19a,19bとな
る。また、左側から入射した入射光のうち、テーパー部
13bに入射した入射光18cは、入射角θ3 =66.
3°の光線であり、これは臨界角θ=52.0°よりも
大きいため、反射角66.3°で全反射され、光線19
cとなる。基板に対して考えると、入射角は55°、反
射角は77.6になる。このように左側からSi基板9
に対して入射角55°で入射した光は、低屈折率層13
で全反射され、受光部12に吸収されるようなことはな
い。
First, the reason why the light beam incident on the Si substrate 9 from the left side is not absorbed by the light receiving portion 12 will be described. Of the incident light incident from the left side, the incident light 1 incident on the parallel plane portion 13a of the low refractive index layer 13 having the tapered portion 13b 1
8a and 18b are light rays having an incident angle θ 2 = 55.0 °, which is larger than the critical angle θ = 52.0 °, so that they are totally reflected at a reflection angle 55.0 °, and are rays 19a and 19b. Become. Further, of the incident light incident from the left side, the incident light 18c incident on the taper portion 13b has an incident angle θ 3 = 66.
It is a ray of 3 °, which is larger than the critical angle θ = 52.0 °, and is totally reflected at a reflection angle of 66.3 °.
c. Considering the substrate, the incident angle is 55 ° and the reflection angle is 77.6. Thus, from the left side, the Si substrate 9
The light incident on the low-refractive index layer 13 at an incident angle of 55 ° is
The light is not totally reflected by and is not absorbed by the light receiving unit 12.

【0028】これに対して、右側から入射した入射光の
うち、テーパー部13bをもつ低屈折率層13のテーパ
ーでない部分に入射した入射光16aは、入射角θ4
55.0°の光線であり、これは臨界角θ=52.0°
より大きいため、反射角55°で全反射され、光線17
aとなる。また、右側から入射した入射光のうち、テー
パー部13bに入射した入射光16b,16c,16d
は、入射角θ5 =43.7°の光線であり、これは臨界
角θ=52.0°よりも小さいため、出射角61.3°
で透過し、光線17b,17c,17dとなる。基板に
対して考えると、光線17b,17c,17dの入射角
は55°であり、これはテーパー部13bで屈折して、
今度は入射角θ6 で受光部12に入射して吸収され、こ
れにより光電流が流れる。
On the other hand, of the incident light incident from the right side, the incident light 16a incident on the non-tapered portion of the low refractive index layer 13 having the tapered portion 13b has an incident angle θ 4 =
It is a ray of 55.0 °, which has a critical angle θ = 52.0 °.
Since it is larger, it is totally reflected at a reflection angle of 55 °
a. In addition, among the incident lights that are incident from the right side, the incident lights 16b, 16c, and 16d that are incident on the tapered portion 13b.
Is a light beam with an incident angle θ 5 = 43.7 °, which is smaller than the critical angle θ = 52.0 °, and therefore has an exit angle 61.3 °.
Are transmitted and become light rays 17b, 17c, 17d. Considering the substrate, the incident angle of the light rays 17b, 17c, 17d is 55 °, which is refracted by the tapered portion 13b,
This time, it is incident on the light receiving portion 12 at the incident angle θ 6 and is absorbed, whereby a photocurrent flows.

【0029】この場合、前述したように、実際には膜厚
が薄くなるほど幾何学的な光線とは異なるようになり、
テーパー部13bをもつ膜厚の薄い部分では、光線の入
射角が臨界角θより大きい全反射条件であるにもかかわ
らず、光線が低屈折率層13を透過し、下層のSi基板
9に吸収される。例えば、低屈折率層13のテーパー部
13bで膜厚の薄い光の波長の1/4以下である部分に
左側から入射した光線18d,18eは、光線19d,
19eとなってi層11に入射し吸収される。これは、
右側から入射した光線も同一であり、非対称の受光特性
が失われる。このようなことから、膜厚の薄い部分には
p層からなる受光部12を設けないか、又は、この受光
部12の面積を十分に小さくすることにより、余分な光
を必要な量まで低減することが必要である。
In this case, as described above, in reality, as the film thickness becomes thinner, it becomes different from the geometrical ray,
In the thin film portion having the tapered portion 13b, the light beam is transmitted through the low refractive index layer 13 and absorbed by the lower Si substrate 9 even though the incident angle of the light beam is a total reflection condition larger than the critical angle θ. To be done. For example, the light rays 18d and 18e incident from the left side on the taper portion 13b of the low refractive index layer 13 which is ¼ or less of the wavelength of light having a small film thickness are light rays 19d,
It becomes 19e and enters the i layer 11 and is absorbed. this is,
The light rays incident from the right side are the same, and the asymmetric light receiving characteristic is lost. For this reason, the light receiving portion 12 formed of the p layer is not provided in the thin film thickness portion, or the area of the light receiving portion 12 is made sufficiently small to reduce the excess light to the required amount. It is necessary to.

【0030】上述したように、受光部12の周辺にテー
パー構造をもつ低屈折率層13を形成したことにより、
高屈折率媒質14からの特定方向の入射光に対して非対
称な受光感度の角度依存性をもたせ、しかも、受光感度
を大きくとることができる。
As described above, by forming the low refractive index layer 13 having a taper structure around the light receiving portion 12,
It is possible to make the light receiving sensitivity asymmetric with respect to the incident light from the high refractive index medium 14 in a specific direction, and to further increase the light receiving sensitivity.

【0031】また、低屈折率層13の膜厚の薄い部分に
受光部12を1つ以上設け、この出力情報と、非対称な
特性をもつ受光部12との出力情報とから、入射光の入
射特性を検出することができる。また、低屈折率層13
のテーパー部13bは1つの平面として説明したが、2
つ以上の異なる面方向をもつ平面又は曲面を用い、受光
部12を2つ以上設けることにより、2つ以上の方向の
光に対して選択的に検出することができる。さらに、受
光部12への入射角が大きいため、入射光の一部が表面
反射することにより受光感度が減少する場合には、受光
部12と低屈折率層13との間に反射防止層を少なくと
も1層以上設けることにより、反射していた光の多くを
受光部12に導くことができる。
Further, at least one light receiving portion 12 is provided in the thin portion of the low refractive index layer 13, and the incident light is incident from the output information and the output information of the light receiving portion 12 having an asymmetrical characteristic. The characteristic can be detected. In addition, the low refractive index layer 13
Although the taper portion 13b of 1 has been described as one plane,
By using a flat surface or a curved surface having two or more different surface directions and providing two or more light receiving portions 12, it is possible to selectively detect light in two or more directions. Further, when the incident angle on the light receiving section 12 is large and part of the incident light is reflected on the surface to reduce the light receiving sensitivity, an antireflection layer is provided between the light receiving section 12 and the low refractive index layer 13. By providing at least one layer, most of the reflected light can be guided to the light receiving unit 12.

【0032】次に、請求項2記載の発明の一実施例を図
2に基づいて説明する。なお、請求項1記載の発明(図
1参照)と同一部分についての説明は省略し、その同一
部分については同一符号を用いる。
Next, an embodiment of the present invention will be described with reference to FIG. The description of the same parts as those of the invention according to claim 1 (see FIG. 1) is omitted, and the same reference numerals are used for the same parts.

【0033】図2は、Si基板9によるpinフォトダ
イオード上には、平行平面部13aとテーパー部13b
とをもつ低屈折率層13と、この低屈折率層13上に設
けられた平行平面部14aとテーパー部14b,14c
とを有する高屈折率媒質14と、この高屈折率媒質14
上に設けられた低屈折率媒質20とからなっている。こ
の場合、右側から入射した光は入射光21a,21bで
あり、高屈折率媒質14を透過した光は光線22a,2
2bであり、低屈折率層13を透過した光は光線22で
ある。また、左側から入射した光は入射光23a,23
bであり、高屈折率媒質14を透過した光は光線24
a,24bである。この場合、平行平面部14aへの垂
線はA1 で示し、テーパー部14b,14cへの垂線は
1,B2で示す。C1〜C4は基板面に対する垂線であ
り、D1 はテーパー部13bに対する垂線である。
θ1,θ2は高屈折率媒質14のテーパー部14b,14
cと低屈折率層13との間のなす角であり、θ3〜θ7
各々の入射角であり、θ8〜θ10 はそれぞれ屈折した屈
折角を示す。
In FIG. 2, a parallel plane portion 13a and a taper portion 13b are provided on the pin photodiode formed by the Si substrate 9.
A low-refractive index layer 13 having, and a parallel plane portion 14a and taper portions 14b and 14c provided on the low-refractive index layer 13.
And a high refractive index medium 14 having
It is composed of a low refractive index medium 20 provided above. In this case, the light incident from the right side is the incident light 21a and 21b, and the light transmitted through the high refractive index medium 14 is the light rays 22a and 2b.
2b, and the light transmitted through the low refractive index layer 13 is a light ray 22. Further, the light incident from the left side is the incident light 23a, 23
b, and the light transmitted through the high refractive index medium 14 is the light ray 24.
a and 24b. In this case, the perpendicular to the parallel plane portion 14a is indicated by A 1 , and the perpendiculars to the tapered portions 14b and 14c are indicated by B 1 and B 2 . C 1 to C 4 are perpendiculars to the substrate surface, and D 1 is a perpendicular to the tapered portion 13b.
θ 1 and θ 2 are tapered portions 14 b and 14 of the high refractive index medium 14.
c is the angle formed between the low refractive index layer 13, θ 3 to θ 7 are the respective incident angles, and θ 8 to θ 10 are the refracted angles.

【0034】また、低屈折率媒質20は空気からなり、
屈折率n=1.000とする。高屈折率媒質14は、高
屈折率フリントガラスからなり、屈折率n=1.895
とする。角度θ1,θ2はともに45°であるとし、平行
平面部14aの面は基板面に対して平行であるとする。
ここでの入射角θ5,θ7は63.68°とする。
The low refractive index medium 20 is made of air,
The refractive index n = 1.000. The high refractive index medium 14 is made of high refractive index flint glass and has a refractive index n = 1.895.
And It is assumed that the angles θ 1 and θ 2 are both 45 °, and that the plane of the parallel plane portion 14a is parallel to the substrate surface.
The incident angles θ 5 and θ 7 here are set to 63.68 °.

【0035】このような構成において、まず、左側から
入射した光が受光部12に吸収されない理由について説
明する。左から入射した光線のうち、基板と平行でない
テーパー部14bに入射した光線23aは、入射角θ3
=18.68°の光線であり、これは屈折した屈折角θ
8 =10.00°の光線24aとなる。この光線24a
は基板に対しては入射角θ4 =55°の光線となるた
め、低屈折率層13に入射すると、テーパー部13bで
あってもなくてもこの層の境界部分で反射されてしま
い、これにより受光部12に吸収されてしまうことはな
い。
In such a structure, first, the reason why the light incident from the left side is not absorbed by the light receiving portion 12 will be described. Of the light rays incident from the left, the light ray 23a incident on the tapered portion 14b which is not parallel to the substrate has an incident angle θ 3
= 18.68 °, which is the refracted refraction angle θ
It becomes the light ray 24a of 8 = 10.00 °. This ray 24a
Is a light beam having an incident angle θ 4 = 55 ° with respect to the substrate, so that when it is incident on the low refractive index layer 13, it is reflected at the boundary portion of this layer regardless of whether it is the tapered portion 13b. Therefore, the light is not absorbed by the light receiving unit 12.

【0036】これに対して、右から入射した光線のう
ち、テーパー部14cに入射した光線21a,21b
は、入射角θ6 =18.68°の光線であり、これは屈
折した屈折角θ10=10.00°の光線22a,22b
となる。これら光線22a,22bは、基板に対して入
射角θ11=55°をもつ。光線22aの入射する部分
は、平行平面部13aであるため、低屈折率層13への
入射角θ11=55°は臨界角θ=52.0°よりも大き
いためこの部分で全反射される。光線22bの入射する
位置はテーパー部13bであるため、入射角θ12=4
3.7°であり、透過、屈折して与えられる角θ13=6
1.0°となり、受光部12に入射角θ14で入射し、こ
の受光部12に吸収され、これにより光電流が発生す
る。
On the other hand, among the light rays incident from the right, the light rays 21a and 21b incident on the taper portion 14c.
Is a light ray with an incident angle θ 6 = 18.68 °, which is a refracted light ray 22a, 22b with a refraction angle θ 10 = 10.00 °.
Becomes These rays 22a and 22b have an incident angle θ 11 = 55 ° with respect to the substrate. Since the incident portion of the light ray 22a is the parallel plane portion 13a, the incident angle θ 11 = 55 ° to the low refractive index layer 13 is larger than the critical angle θ = 52.0 °, so that the light beam 22a is totally reflected. . Since the incident position of the light ray 22b is the tapered portion 13b, the incident angle θ 12 = 4
It is 3.7 °, and an angle θ 13 = 6 given by transmission and refraction.
It becomes 1.0 °, enters the light receiving portion 12 at an incident angle θ 14 , and is absorbed by the light receiving portion 12, whereby a photocurrent is generated.

【0037】また、左側から平行平面部14aに入射す
る光線23bは、入射角θ=63.68°であり、これ
は透過、屈折して与えられる角θ9 =29.0°で進行
し、これが低屈折率層13に入射すると、臨界角θより
も小さいため透過して受光部12に入射し、これにより
光電流が生じる。この場合、高屈折率媒質14からなる
光学部品と基板とが水平でなくても、入射する光線の入
射角によって容易に受光部12に光が透過するので、受
光部12に対する平行平面部14aの位置や面積を適切
に設定する必要がある。この部分に遮光層や反射層を設
けてもよい。
The light ray 23b which is incident on the plane-parallel portion 14a from the left side has an incident angle θ = 63.68 °, which travels at an angle θ 9 = 29.0 ° given by being transmitted and refracted, When this enters the low-refractive index layer 13, since it is smaller than the critical angle θ, it is transmitted and enters the light-receiving portion 12, whereby a photocurrent is generated. In this case, even if the optical component made of the high-refractive index medium 14 and the substrate are not horizontal, light is easily transmitted to the light receiving section 12 depending on the incident angle of the incident light beam, so that the plane-parallel portion 14 a with respect to the light receiving section 12 is formed. It is necessary to set the position and area appropriately. A light shielding layer or a reflective layer may be provided in this portion.

【0038】上述したように、受光部12の周辺にテー
パー構造をもつ低屈折率層13と、Si基板9に対して
非平行な部分をもつ高屈折率層14とを設けていること
により、低屈折率媒質20からの特定方向の入射光に対
して非対称な受光感度の角度依存性をもたせることがで
きる。
As described above, by providing the low-refractive index layer 13 having a tapered structure and the high-refractive index layer 14 having a portion not parallel to the Si substrate 9 around the light receiving portion 12, The angle dependence of the light receiving sensitivity can be imparted to the incident light from the low refractive index medium 20 in a specific direction.

【0039】なお、高屈折率媒質14からなる光学部品
と低屈折率媒質20との境界が平行平面部14aのよう
な基板に対して水平な部分だけの場合には、テーパー部
分であるなしに関係なく、全ての光が臨界角θより小さ
くなり、低屈折率層13を透過してしまい、非対称な受
光感度の角度依存性をもった検出装置を作製できなくな
るため注意を要する。
If the boundary between the optical component composed of the high-refractive index medium 14 and the low-refractive index medium 20 is only a portion parallel to the substrate such as the parallel plane portion 14a, it is not a tapered portion. Regardless of this, all the light becomes smaller than the critical angle θ and passes through the low-refractive index layer 13, so that it is not possible to fabricate a detection device having an asymmetric angle dependence of the light-receiving sensitivity, so caution is required.

【0040】次に、請求項3記載の発明の一実施例を図
3に基づいて説明する。なお、請求項1,2記載の発明
と同一部分についての説明は省略し、その同一部分につ
いては同一符号を用いる。
Next, an embodiment of the invention described in claim 3 will be described with reference to FIG. The description of the same parts as those in the first and second aspects of the present invention is omitted, and the same parts are designated by the same reference numerals.

【0041】ここでは、高屈折率媒質14と低屈折率層
13との間に、少なくとも1層以上の中間層を設けたも
のである。すなわち、ここでの中間層とは、高屈折率中
間層25と、低屈折率中間層26との2層を設けたもの
である。この場合、右側から入射した光は入射光27で
あり、高屈折率中間層25を透過した光は光線28であ
り、低屈折率中間層26を透過した光は光線29であ
り、低屈折率層13を透過した光は光線30である。θ
1,θ2はそれぞれ入射角であり、θ3 は屈折角である。
また、高屈折率中間層25は高屈折率媒質14と同じ屈
折率n=1.895とし、低屈折率中間層26は低屈折
率層13と同じ屈折率n=1.453とする。右側から
の光の入射角はθ1 =55°とする。また、A1,A2
基板面に対する垂線を示し、B1 はテーパー部14bに
対する垂線を示す。
Here, at least one intermediate layer is provided between the high refractive index medium 14 and the low refractive index layer 13. That is, the intermediate layer here is a layer in which two layers of the high refractive index intermediate layer 25 and the low refractive index intermediate layer 26 are provided. In this case, the light incident from the right side is the incident light 27, the light transmitted through the high refractive index intermediate layer 25 is a light ray 28, and the light transmitted through the low refractive index intermediate layer 26 is a light ray 29, which has a low refractive index. The light transmitted through the layer 13 is a light ray 30. θ
1 and θ 2 are incident angles, and θ 3 is a refraction angle.
The high refractive index intermediate layer 25 has the same refractive index n = 1.895 as the high refractive index medium 14, and the low refractive index intermediate layer 26 has the same refractive index n = 1.453 as the low refractive index layer 13. The incident angle of light from the right side is θ 1 = 55 °. Further, A 1 and A 2 indicate perpendiculars to the substrate surface, and B 1 indicates perpendiculars to the tapered portion 14b.

【0042】このような構成において、高屈折率中間層
25と低屈折率中間層26との境界面が基板面に対して
平行でない部分に右側から入射した入射光27は、P点
の位置では屈折率変化がないため高屈折率中間層25を
直進し、Q点の位置で入射角θ2 =43.7°で入射す
る光線28となり、これは高屈折率中間層25と低屈折
率中間層26とで与えられる臨界角よりも小さいため、
光線28は透過、屈折して屈折角θ3 で与えられる光線
29となり、R点となる位置に入射し、この位置では屈
折率が変化しないため、低屈折率層13を直進し光線3
0となり、受光部12に入射角θ4 で入射し、受光部1
2に吸収され、これにより光電流が生じる。一方、左側
から入射した図示しない光線は、高屈折率中間層25か
ら低屈折率中間層26への入射角が臨界角よりも大きく
なるため、光線は全反射してしまい、受光部12に吸収
されることはない。このため、受光部12は、非対称の
受光感度の角度依存性をもつことになる。
In such a structure, the incident light 27 incident from the right side to the portion where the boundary surface between the high refractive index intermediate layer 25 and the low refractive index intermediate layer 26 is not parallel to the substrate surface is at the point P. Since there is no change in the refractive index, it travels straight through the high-refractive-index intermediate layer 25 and becomes a light ray 28 that is incident at the position of point Q at an incident angle θ 2 = 43.7 °. Since it is smaller than the critical angle given by the layer 26,
The light ray 28 is transmitted and refracted to become a light ray 29 given at a refraction angle θ 3 , and enters the position of point R, and since the refractive index does not change at this position, the light ray 28 goes straight through the low refractive index layer 13
It becomes 0, and it is incident on the light receiving part 12 at an incident angle θ 4 , and the light receiving part 1
2, which results in photocurrent. On the other hand, a light ray (not shown) incident from the left side is totally reflected because the incident angle from the high refractive index intermediate layer 25 to the low refractive index intermediate layer 26 is larger than the critical angle, and is absorbed by the light receiving unit 12. It will not be done. Therefore, the light receiving unit 12 has an asymmetric angle dependency of the light receiving sensitivity.

【0043】この場合、中間層の屈折率としては、高屈
折率媒質14又は低屈折率層13に等しい値でなくて
も、少なくとも1つの境界面で、低屈折率層13が与え
るテーパー角度の差により、入射光線の入射角が臨界角
に対して大小となることが必要となる。また、中間層
は、低屈折率中間層26又は高屈折率中間層25のどち
らか一方でもよいし、3層以上あってもよい。この場合
にも、少なくとも1層又は媒質の境界面で、低屈折率層
13が与えるテーパー角の差により、入射光線の入射角
が臨界角に対して大小となることが必要である。さら
に、中間層がそれぞれ十分に薄い場合には、多層からな
る中間層の屈折率を除々に変化させることにより全反射
を生じさせることもでき、この場合の透過率は増加す
る。
In this case, even if the refractive index of the intermediate layer does not have a value equal to that of the high refractive index medium 14 or the low refractive index layer 13, the taper angle given by the low refractive index layer 13 is at least at one boundary surface. Due to the difference, the incident angle of the incident light beam needs to be larger or smaller than the critical angle. The intermediate layer may be either the low refractive index intermediate layer 26 or the high refractive index intermediate layer 25, or may have three or more layers. In this case as well, it is necessary that the incident angle of the incident light beam be larger or smaller than the critical angle due to the difference in taper angle provided by the low refractive index layer 13 in at least one layer or the boundary surface of the medium. Furthermore, if the intermediate layers are sufficiently thin, it is possible to cause total internal reflection by gradually changing the refractive index of the multilayer intermediate layer, in which case the transmittance is increased.

【0044】上述したように、高屈折率媒質14と低屈
折率層13との間に、高屈折率中間層25と、低屈折率
中間層26とを設けたことによって、高屈折率媒質14
やSi基板9の保護層としての役割も果たすことができ
る。
As described above, by providing the high refractive index intermediate layer 25 and the low refractive index intermediate layer 26 between the high refractive index medium 14 and the low refractive index layer 13, the high refractive index medium 14 is provided.
It can also serve as a protective layer for the Si substrate 9.

【0045】次に、請求項4記載の発明の一実施例を図
4に基づいて説明する。なお、請求項1〜3記載の発明
と同一部分についての説明は省略し、その同一部分につ
いては同一符号を用いる。
Next, an embodiment of the invention described in claim 4 will be described with reference to FIG. The description of the same parts as those in the first to third aspects of the present invention is omitted, and the same parts are designated by the same reference numerals.

【0046】ここでは、前述した請求項3記載の実施例
中で述べた中間層のうちの少なくとも1層を高屈折率物
質から形成したものである。すなわち、高屈折率媒質1
4と低屈折率層13との間に、中間層として高屈折率物
質からなる高屈折率中間層31を設けた。また、ここで
は、受光部12が形成された基板面に対して、高屈折率
中間層31と低屈折率層13との接触面(若しくは、高
屈折率中間層31とこの下層のこれよりも小さい屈折率
の物質からなる中間層との接触面)の一部又は全部を非
平行なテーパー部13bに形成し、さらに、受光部12
が形成された基板面に対して、高屈折率中間層31と高
屈折率媒質14との接触面(若しくは、高屈折率中間層
31とこの上層のこれと同程度の屈折率の物質からなる
中間層との接触面)の一部又は全部を平行な平行平面部
14aに形成したものである。
Here, at least one of the intermediate layers described in the above-mentioned embodiment of claim 3 is formed of a high refractive index material. That is, the high refractive index medium 1
A high-refractive-index intermediate layer 31 made of a high-refractive-index material was provided as an intermediate layer between 4 and the low-refractive-index layer 13. Further, here, with respect to the substrate surface on which the light receiving section 12 is formed, the contact surface between the high refractive index intermediate layer 31 and the low refractive index layer 13 (or the high refractive index intermediate layer 31 and the lower layer thereof). Part or all of the contact surface with the intermediate layer made of a substance having a small refractive index is formed in the non-parallel tapered portion 13b, and the light receiving portion 12 is further formed.
The contact surface between the high-refractive-index intermediate layer 31 and the high-refractive-index medium 14 (or the high-refractive-index intermediate layer 31 and a material having a refractive index similar to that of the upper layer) on the substrate surface on which A part or the whole of the contact surface with the intermediate layer) is formed in the parallel plane portion 14a.

【0047】高屈折率中間層31は、高屈折率媒質14
と同じ屈折率n=1.895とし、右からの入射光32
の入射角をθ1 =55°とする。また、高屈折率中間層
31と高屈折率媒質14との境界面は基板に平行である
とする。A1,A2は基板面に対する垂線であり、B1
テーパー部13bに対する垂線を示す。
The high-refractive-index intermediate layer 31 includes the high-refractive-index medium 14
With the same refractive index n = 1.895 and the incident light from the right 32
The incident angle of θ 1 = 55 °. Further, the boundary surface between the high refractive index intermediate layer 31 and the high refractive index medium 14 is assumed to be parallel to the substrate. A 1 and A 2 are perpendiculars to the substrate surface, and B 1 is a perpendicular to the tapered portion 13b.

【0048】このような構成において、右側から入射し
た光は入射光32であり、P点の位置では屈折率変化が
ないため高屈折率中間層31を直進し、光線33となっ
てQ点の位置に入射角θ2 =43.7°で入射する。こ
れは、高屈折率中間層31と低屈折率層13とで与えら
れる臨界角よりも小さいため、光線33は透過、屈折し
て屈折角θ3 で与えられる光線34となり、受光部12
にθ4 で与えられる入射角で入射して吸収され、これに
より光電流が生じる。一方、左側から入射した図示しな
い光線は、高屈折率中間層31から低屈折率層13への
入射角が臨界角よりも大きくなるため、光線は全反射し
てしまい受光部12に吸収されてしまうことはない。こ
のため、受光部12は非対称の受光感度の角度依存性を
もつことになる。
In such a structure, the light incident from the right side is the incident light 32, and since there is no change in the refractive index at the position of point P, it travels straight through the high refractive index intermediate layer 31 and becomes a light ray 33 at point Q. It is incident on the position at an incident angle θ 2 = 43.7 °. Since this is smaller than the critical angle given by the high-refractive index intermediate layer 31 and the low-refractive index layer 13, the light ray 33 is transmitted and refracted to become the light ray 34 given by the refraction angle θ 3 , and the light receiving unit 12
Is incident and absorbed at an incident angle given by θ 4 , which causes a photocurrent. On the other hand, a light ray (not shown) incident from the left side has an incident angle from the high-refractive index intermediate layer 31 to the low-refractive index layer 13 that is larger than the critical angle, so that the light ray is totally reflected and absorbed by the light receiving unit 12. There is no end. For this reason, the light receiving section 12 has an asymmetric angle dependency of the light receiving sensitivity.

【0049】次に、請求項5記載の発明の一実施例を図
5に基づいて説明する。なお、請求項1〜4記載の発明
と同一部分についての説明は省略し、その同一部分につ
いては同一符号を用いる。
Next, an embodiment of the invention described in claim 5 will be described with reference to FIG. The description of the same parts as those in the first to fourth aspects of the present invention is omitted, and the same parts are designated by the same reference numerals.

【0050】ここでは、高屈折率媒質14と低屈折率層
13との間に、わずかに屈折率の異なる2層からなる中
間層としての低屈折率中間層35,36を設けたもので
ある。この場合、低屈折率中間層36は導波層とされて
いる。37a,37bは導波光であり、Aはその導波光
37a.37bの進行方向Aを示すものである。右側か
ら入射した光は入射光38であり、この入射光38の低
屈折率中間層35への入射位置はP点であり、さらに、
低屈折率中間層36と低屈折率層13とを透過した光は
光線39である。この場合、低屈折率中間層35の屈折
率n=1.453とし、低屈折率中間層36の屈折率は
n=1.500とし、それぞれの厚さが2μmであると
する。高屈折率媒質14の屈折率はn=1.895と
し、右側からの光の入射角はθ1 =55°とする。この
場合、B1 はテーパー部14bに対する垂線を示すもの
である。
Here, low refractive index intermediate layers 35 and 36 are provided between the high refractive index medium 14 and the low refractive index layer 13 as intermediate layers consisting of two layers having slightly different refractive indexes. . In this case, the low refractive index intermediate layer 36 is a waveguide layer. 37a and 37b are guided lights, and A is the guided lights 37a. It shows the traveling direction A of 37b. Light incident from the right side is incident light 38, and the incident position of this incident light 38 on the low refractive index intermediate layer 35 is point P, and further,
The light transmitted through the low refractive index intermediate layer 36 and the low refractive index layer 13 is a light ray 39. In this case, the low-refractive-index intermediate layer 35 has a refractive index n = 1.453, the low-refractive-index intermediate layer 36 has a refractive index n = 1.500, and each has a thickness of 2 μm. The refractive index of the high refractive index medium 14 is n = 1.895, and the incident angle of light from the right side is θ 1 = 55 °. In this case, B 1 indicates a perpendicular line to the tapered portion 14b.

【0051】このような構成において、右側からP点の
位置に入射した光線38の基板に対する入射角はθ1
55°であるため、低屈折率中間層35に対するQ点で
の入射角は43.7°となり、屈折角が61.3°とな
って光線39として進行していく。この光線39が低屈
折率中間層36に入射するとR点での屈折角が58.2
°になり、約3.1°変化するが、低屈折率層13に入
射することにより反対方向に約3.1°変化し、直進し
た方向と同方向になり、受光部12に入射する。一方、
左側から入射した図示しない光線は、低屈折率中間層3
5と低屈折率中間層36との境界面で全反射を生じ、受
光部12に到達しない。このため、このような構造の中
間層は、受光部12の非対称な受光感度の角度依存性を
妨げるようなことはない。実際には、膜厚が薄いため波
動光学的な扱いをする必要があるが、この程度の厚さで
は、右側からのテーパー部14bへの光が受光部12に
透過し、左側からの光が全反射することに変わりはな
い。
In such a structure, the incident angle of the light ray 38 incident on the position P from the right side with respect to the substrate is θ 1 =
Since it is 55 °, the incident angle at the point Q to the low-refractive index intermediate layer 35 is 43.7 °, and the refraction angle is 61.3 °, and the light ray 39 proceeds. When this light ray 39 enters the low refractive index intermediate layer 36, the refraction angle at the point R is 58.2.
However, when the light enters the low refractive index layer 13, it changes in the opposite direction by about 3.1 °, which is in the same direction as the straight direction, and enters the light receiving portion 12. on the other hand,
Light rays (not shown) incident from the left side are included in the low refractive index intermediate layer 3
5 and total reflection occurs at the interface between the low refractive index intermediate layer 36 and the light receiving portion 12. Therefore, the intermediate layer having such a structure does not interfere with the asymmetric angle dependence of the light receiving sensitivity of the light receiving section 12. In reality, since the film thickness is small, it is necessary to treat it as a wave optics. However, with such a thickness, the light from the right side to the tapered portion 14b is transmitted to the light receiving section 12, and the light from the left side is transmitted. There is no change in total reflection.

【0052】この場合、低屈折率中間層36は、その上
下にある低屈折率中間層35と低屈折率層13よりもわ
ずかに屈折率が小さいことから導波層として機能する。
この導波層である低屈折率中間層36に、端面結合法に
より左側からHeNeレーザ光を結合させると、所定の
電界強度分布をもつ導波光37aが、矢印方向Aに進ん
でいき、テーパー形状に沿って導波光37bのように進
行していく。また、入射光38は細いレーザビーム光と
すると40のような電界強度分布で与えられ、その後、
光線39となって低屈折率中間層36の破線内付近で導
波光37bと重なるが、電子と異なり光の特性により互
いに影響することなく分離して、導波光37bは導波層
に沿って右に伝搬していき、光線39は受光部12に到
達して吸収される。このような光の交差は、微小面積内
に多くの機能を設けることを可能とし、高度な光集積回
路を作製することが可能である。
In this case, the low-refractive-index intermediate layer 36 functions as a waveguide layer because it has a slightly smaller refractive index than the low-refractive-index intermediate layers 35 and 13 above and below it.
When HeNe laser light is coupled from the left side to the low-refractive-index intermediate layer 36, which is the waveguide layer, from the left side by the end-face coupling method, the guided light 37a having a predetermined electric field intensity distribution proceeds in the direction A of the arrow and has a tapered shape. The light travels like the guided light 37b. Further, when the incident light 38 is a thin laser beam light, it is given with an electric field intensity distribution like 40, and thereafter,
The light beam 39 is overlapped with the guided light 37b in the vicinity of the broken line of the low refractive index intermediate layer 36, but unlike the electrons, they are separated without affecting each other due to the characteristics of the light, and the guided light 37b is moved right along the waveguide layer. The light ray 39 reaches the light receiving portion 12 and is absorbed. Such crossing of light makes it possible to provide many functions within a very small area, and it is possible to fabricate an advanced optical integrated circuit.

【0053】ただし、レーザビームが特異な条件のとき
に導波層に結合することがあるため、この時には低屈折
率中間層35,36の膜厚や入射角、屈折率等を変化さ
せたりすればよい。また、低屈折率層13の膜厚の薄い
部分41に受光部12とは別の受光部を設けることによ
り、この薄い部分41を光が透過して光が吸収され、こ
れにより導波光37bを検出することもできる。
However, since the laser beam may be coupled to the waveguide layer under a specific condition, at this time, the film thickness, incident angle, refractive index, etc. of the low refractive index intermediate layers 35, 36 may be changed. Good. Further, by providing a light receiving portion different from the light receiving portion 12 in the thin portion 41 of the low refractive index layer 13, light is transmitted through the thin portion 41 and absorbed, whereby the guided light 37b is absorbed. It can also be detected.

【0054】上述したように、中間層の少なくとも1層
を導波層として用いたことによって、光学部品を高密度
に集積化させることができるようになる。
As described above, by using at least one of the intermediate layers as the waveguiding layer, it becomes possible to integrate the optical components at a high density.

【0055】次に、請求項6記載の発明の一実施例を図
6及び図7に基づいて説明する。なお、請求項1〜5記
載の発明と同一部分についての説明は省略し、その同一
部分については同一符号を用いる。
Next, an embodiment of the invention described in claim 6 will be described with reference to FIGS. 6 and 7. The description of the same parts as those in the first to fifth aspects of the present invention will be omitted, and the same reference numerals will be used for the same parts.

【0056】ここでは、プリズム結合装置に応用した場
合の構成例を示すものである。すなわち、Si基板9上
には低屈折率層13が形成され、この低屈折率層13上
には中間層としての屈折率がわずかに異なる2層の低屈
折率中間層35,36が積層されている。低屈折率中間
層36は導波層として設けられている。この低屈折率中
間層35,36の一部はテーパー状に形成された光検出
部42となっている。低屈折率中間層35の一部表面に
は、導波光aを十分閉じ込めるための低屈折率層43が
形成されている。導波光aの進行方向であるSi基板9
の端部付近には、光情報処理手段44が設けられてい
る。また、光検出部42の上部には、高屈折率媒質から
なるプリズム45が設けられている。このプリズム45
に特定方向からの光線を導くために、入射光結合手段の
一部を構成する対物レンズ46が配置されている。さら
に、図7はプリズム45を除去した状態でのSi基板9
の上面図を示すものであり、受光部12には引出電極4
7が接続されており、受光部12は光ディスク55から
反射されたビーム48(光線51a,51bと同じ)が
入射できるように配置されている。ハッチング領域49
は、導波光aの伝搬する範囲を示すものである。
Here, an example of the configuration when applied to a prism coupling device is shown. That is, the low-refractive index layer 13 is formed on the Si substrate 9, and two low-refractive-index intermediate layers 35 and 36 having slightly different refractive indexes as intermediate layers are laminated on the low-refractive index layer 13. ing. The low refractive index intermediate layer 36 is provided as a waveguide layer. Part of the low-refractive-index intermediate layers 35 and 36 serves as a photodetector 42 formed in a tapered shape. A low refractive index layer 43 for sufficiently confining the guided light a is formed on a part of the surface of the low refractive index intermediate layer 35. Si substrate 9 which is the traveling direction of the guided light a
An optical information processing means 44 is provided near the end of the. Further, a prism 45 made of a high refractive index medium is provided above the photodetector 42. This prism 45
An objective lens 46 forming a part of the incident light coupling means is arranged in order to guide a light beam from a specific direction to the. Further, FIG. 7 shows the Si substrate 9 with the prism 45 removed.
FIG. 3 is a top view of the extraction electrode 4 in the light receiving part 12.
7 is connected, and the light receiving unit 12 is arranged so that the beam 48 (same as the light rays 51a and 51b) reflected from the optical disk 55 can be incident. Hatching area 49
Indicates the range in which the guided light a propagates.

【0057】この場合、50a〜50cはプリズム45
に低屈折率媒質である空気中から入射するガウシアン分
布51をもつ光線であり、52a,52bは光線50a
〜50cが導波層に結合した後に反射した光線又は全反
射光に相当する光線であり、53a.53bは対物レン
ズ46を透過した光線であり、破線の54a,54bは
光ディスク55により反射された光であり、56a,5
6bは再び対物レンズ46を透過した光線である。
In this case, 50a to 50c are prisms 45.
Is a light ray having a Gaussian distribution 51 incident from the air which is a low refractive index medium, and 52a and 52b are light rays 50a.
.About.50c are rays reflected after being coupled to the waveguiding layer or rays corresponding to total reflection rays, and 53a. Reference numeral 53b is a light ray that has passed through the objective lens 46, and dashed lines 54a and 54b are light reflected by the optical disk 55, and 56a and 5b.
Reference numeral 6b is a light beam that has passed through the objective lens 46 again.

【0058】また、低屈折率中間層36は周囲よりも屈
折率が小さく導波層となり、プリズム45と低屈折率中
間層36と低屈折率層43とが、光線50a〜50cを
導波層へ結合するプリズム結合部を構成する。この時の
低屈折率中間層35の厚さは波長と比べて比較的小さい
ものとする。また、結合効率を大きくするため、ビーム
の基板への入射角度やプリズム45の屈折率、低屈折率
中間層35,36の屈折率や厚さを予め最適化してお
く。また、光線50aがプリズム45に入射する入射角
度θ1 は、反射による迷光を減少させるために90°に
しておく。
The low-refractive-index intermediate layer 36 has a smaller refractive index than the surroundings and serves as a waveguide layer. The prism 45, the low-refractive-index intermediate layer 36, and the low-refractive-index layer 43 guide the light rays 50a to 50c to the waveguide layer. To form a prism coupling part for coupling to. At this time, the thickness of the low-refractive-index intermediate layer 35 is assumed to be relatively smaller than the wavelength. Further, in order to increase the coupling efficiency, the incident angle of the beam on the substrate, the refractive index of the prism 45, and the refractive index and thickness of the low refractive index intermediate layers 35 and 36 are optimized in advance. Further, the incident angle θ 1 at which the light ray 50a enters the prism 45 is set to 90 ° in order to reduce stray light due to reflection.

【0059】このような構成において、右側から基板に
入射する光線50a〜50cのうちテーパー状の光検出
部42に入射した光線50cは、受光部12に吸収さ
れ、引出電極47を介して電気回路に送られ、これによ
り光線50cの光強度の変化を検知することができる。
また、右側から基板に入射した光線50a〜50cのう
ちテーパー状の光検出部42以外の領域に入射した光線
50a,50bは、高NAの対物レンズ46で集光さ
れ、光線53a,53bとなって数μmの光スポットと
なり、光ディスク55の面上に照射される。この光ディ
スク55で反射された光線54a,54bは、再び対物
レンズ46を通過して光線56a,56bとなり、導波
層に入力結合又は全反射する。この時、導波層に結合し
た導波光aは、低屈折率層43がギャップ層の低屈折率
中間層35上に存在するため、出力結合することなく導
波層を伝搬していき、電界強度分布57をもつ導波光a
となる。この導波光aは光情報処理手段44に検出され
ることにより、光情報の処理がなされる。
In such a structure, of the light rays 50a to 50c that enter the substrate from the right side, the light ray 50c that enters the tapered photodetecting section 42 is absorbed by the light receiving section 12 and passes through the extraction electrode 47 to the electric circuit. Then, the change in the light intensity of the light ray 50c can be detected.
Further, among the light rays 50a to 50c that have entered the substrate from the right side, the light rays 50a and 50b that have entered the areas other than the tapered photodetector 42 are condensed by the high NA objective lens 46 and become the light rays 53a and 53b. To form a light spot of several μm, which is irradiated onto the surface of the optical disk 55. The light rays 54a and 54b reflected by the optical disk 55 again pass through the objective lens 46 and become light rays 56a and 56b, which are input-coupled or totally reflected to the waveguide layer. At this time, since the low-refractive index layer 43 exists on the low-refractive-index intermediate layer 35 of the gap layer, the guided light a coupled to the waveguide layer propagates through the waveguide layer without being output-coupled, and Guided light a with intensity distribution 57
Becomes The guided light a is processed by the optical information by being detected by the optical information processing means 44.

【0060】上述したように、光検出部42の屈折率を
結合に必要な値よりも大きくしたことにより、光検出部
42に直接光線を入射させることができるが、この時は
光ディスク55で反射した光線56a,56bが再び戻
り光となって光検出部42に再び入射するため、図示し
ないLD(レーザダイオード)から直接入射した光の光
量を検出することが難しくなり、これによりLD光のパ
ワーコントロールが困難となり、別個にハーフミラーを
用意して図示しない前方PDを設けることが必要とな
る。そこで、本実施例では、前述したように光検出部4
2をテーパー状に形成したことにより、戻り光の影響を
受けないで、LDからの光線50cを直接検出できるよ
うになり、これにより図示しない前方PDとして作用さ
せることができ、また、1つの基板上に集積できること
から一層の小型化を図ることができる。
As described above, by setting the refractive index of the photodetector 42 to be larger than the value required for coupling, the light beam can be directly incident on the photodetector 42. At this time, the light beam is reflected by the optical disk 55. Since the reflected light rays 56a and 56b become return light and are incident on the light detection unit 42 again, it becomes difficult to detect the light amount of light directly incident from an LD (laser diode) (not shown). It becomes difficult to control, and it becomes necessary to separately prepare a half mirror and provide a front PD (not shown). Therefore, in this embodiment, as described above, the photodetector 4
By forming 2 in a taper shape, the light beam 50c from the LD can be directly detected without being affected by the returning light, which allows the light beam 50c to act as a front PD (not shown). Since it can be integrated on top, further miniaturization can be achieved.

【0061】次に、請求項7記載の発明の一実施例を図
8に基づいて説明する。なお、請求項1〜6記載の発明
と同一部分についての説明は省略し、その同一部分につ
いては同一符号を用いる。
Next, an embodiment of the invention described in claim 7 will be described with reference to FIG. The description of the same parts as those in the first to sixth aspects of the present invention will be omitted, and the same reference numerals will be used for the same parts.

【0062】ここでは、前述した図6のプリズム結合装
置の構成に以下のような機構を付加させたものである。
すなわち、プリズム45を介して光検出部42より導波
層aに結合した導波光aを検出する導波光検出手段とし
ての導波光受光部58を設けた。この導波光受光部58
は引出電極59に接続され、基板の低屈折率層13を薄
く形成してなるテーパー部60に設けられている。ま
た、その導波光受光部58からの出力情報と、光検出部
42により特定方向の光から得られた出力情報とによ
り、光結合効率を求める図示しない光結合効率検出手段
が設けられている。この光結合効率検出手段は、光情報
処理手段44中に含まれている。
Here, the following mechanism is added to the configuration of the prism coupling device of FIG. 6 described above.
That is, the guided light receiving portion 58 as the guided light detecting means for detecting the guided light a coupled to the waveguide layer a from the light detecting portion 42 via the prism 45 is provided. This guided light receiving section 58
Is provided on a taper portion 60 connected to the extraction electrode 59 and formed by thinly forming the low refractive index layer 13 of the substrate. Further, an optical coupling efficiency detecting means (not shown) for obtaining the optical coupling efficiency is provided by the output information from the guided light receiving portion 58 and the output information obtained from the light in the specific direction by the light detecting portion 42. This optical coupling efficiency detecting means is included in the optical information processing means 44.

【0063】このような構成において、光ディスク55
からの反射光による光線56a,56bと同一方向から
の光はテーパー状をなす光検出部42を介して受光部1
2に検出される。また、低屈折率中間層36からなる導
波層内の導波光aは光情報処理手段44の方向に進行し
ていく途中でその一部の導波光aがテーパー部60に侵
入し導波光受光部58に検出される。これら検出した2
つの光を用いて、光結合効率検出手段により2つの光の
比を求め、光結合効率を算出することができる。これに
より、プリズム結合装置とLD、又は、光ディスク55
と対物レンズ46との位置関係を変化させて、プリズム
結合装置の結合効率を調整することができる。
In such a structure, the optical disk 55
Light from the same direction as the light rays 56a and 56b due to the reflected light from the light receiving portion 1 passes through the light detecting portion 42 having a tapered shape.
2 is detected. The guided light a in the waveguide layer composed of the low-refractive-index intermediate layer 36 partially penetrates the guided light a into the tapered portion 60 while advancing in the direction of the optical information processing means 44 and receives the guided light. It is detected by the unit 58. These detected 2
The light coupling efficiency can be calculated by obtaining the ratio of the two lights by the light coupling efficiency detection means using one light. Thereby, the prism coupling device and the LD or the optical disk 55
The coupling efficiency of the prism coupling device can be adjusted by changing the positional relationship between the objective lens 46 and the objective lens 46.

【0064】[0064]

【発明の効果】請求項1記載の発明は、基板上に形成さ
れた受光部と、この受光部を含む上部に積層され基板面
に対して平行な平行平面部と平行でないテーパー部とを
有する低屈折率層と、この低屈折率層の前記平行平面部
及び前記テーパー部の上部に設けられた高屈折率媒質と
よりなり、この高屈折率媒質から侵入し前記低屈折率層
の前記テーパー部を透過して前記基板上の前記受光部に
垂直でない特定方向から入射する入射光のうち前記基板
面に対する前記高屈折率媒質中での光の入射角度をその
高屈折率媒質及び前記低屈折率層の屈折率の関係から決
定される臨界角以上の大きな角度に設定し、かつ、前記
入射光のうち前記テーパー部に対する前記高屈折率媒質
中の光の入射角度をその高屈折率媒質及び前記低屈折率
層の屈折率の関係から決定される臨界角よりも小さな角
度に設定したので、高屈折率媒質からの特定方向の入射
光に対して非対称な受光感度の角度依存性をもたせ、し
かも、受光感度を大きくとることができるものである。
The invention according to claim 1 has a light receiving portion formed on a substrate, and a parallel flat portion parallel to the substrate surface and a taper portion which is laminated on the upper portion including the light receiving portion. The low refractive index layer and a high refractive index medium provided on the parallel plane portion and the tapered portion of the low refractive index layer, and the taper of the low refractive index layer penetrating from the high refractive index medium. The incident angle of light in the high refractive index medium with respect to the surface of the substrate out of the incident light that is transmitted through the portion and is incident on the light receiving portion on the substrate from a specific direction that is not perpendicular to the high refractive index medium and the low refractive index. The angle of incidence of light in the high refractive index medium with respect to the taper portion of the incident light is set to a large angle equal to or greater than a critical angle determined from the relationship of the refractive index of the high refractive index medium and the high refractive index medium. Relationship of refractive index of the low refractive index layer Since it is set to an angle smaller than the critical angle determined from the above, it is possible to have an asymmetric light-reception sensitivity with respect to incident light from a high-refractive-index medium in a specific direction, and to increase the light-reception sensitivity. It is a thing.

【0065】請求項2記載の発明は、基板上に形成され
た受光部と、この受光部を含む上部に積層され基板面に
対して平行な平行平面部と平行でないテーパー部とを有
する低屈折率層と、この低屈折率層の前記平行平面部及
び前記テーパー部の上部に設けられた高屈折率媒質と、
この高屈折率媒質の上部に設けられた低屈折率媒質とよ
りなり、この低屈折率媒質から前記高屈折率媒質と前記
低屈折率媒質との接触面が前記基板と平行でない部分に
侵入し前記高屈折率媒質を介して前記低屈折率層の前記
テーパー部を透過して前記基板上の前記受光部に垂直で
ない特定方向から入射する入射光のうち前記基板面に対
する前記高屈折率媒質中での光の入射角度をその高屈折
率媒質及び前記低屈折率層の屈折率の関係から決定され
る臨界角以上の大きな角度に設定し、かつ、前記入射光
のうち前記テーパー部に対する前記高屈折率媒質中の光
の入射角度をその高屈折率媒質及び前記低屈折率層の屈
折率の関係から決定される臨界角よりも小さな角度に設
定したので、低屈折率媒質からの特定方向の入射光に対
して非対称な受光感度の角度依存性をもたせることがで
きるものである。
According to a second aspect of the present invention, a low refraction having a light receiving portion formed on a substrate, a parallel flat portion parallel to the substrate surface and a tapered portion which is laminated on an upper portion including the light receiving portion and which is not parallel to the substrate surface. An index layer, and a high refractive index medium provided on the parallel plane portion and the tapered portion of the low refractive index layer,
The high-refractive index medium is provided on the low-refractive-index medium, and the low-refractive-index medium penetrates into a portion where the contact surface between the high-refractive-index medium and the low-refractive-index medium is not parallel to the substrate. In the high-refractive-index medium in the high-refractive-index medium of the incident light that passes through the taper part of the low-refractive-index layer through the high-refractive-index medium and enters from the specific direction that is not perpendicular to the light-receiving part on the substrate. The incident angle of light at a large angle equal to or greater than the critical angle determined from the relationship between the high refractive index medium and the refractive index of the low refractive index layer, and the incident light with respect to the tapered portion Since the incident angle of light in the high refractive index medium is set to an angle smaller than the critical angle determined from the relationship between the refractive index of the high refractive index medium and the low refractive index layer, a specific direction from the low refractive index medium Received light asymmetric with respect to incident light It is capable to have an angle dependence of the degree.

【0066】請求項3記載の発明は、請求項1又は2記
載の発明において、高屈折率媒質と低屈折率層との間
に、少なくとも1層以上の中間層を設けたので、高屈折
率媒質や基板の保護層としての役割を果たすことができ
るものである。
According to the invention of claim 3, in the invention of claim 1 or 2, since at least one intermediate layer is provided between the high refractive index medium and the low refractive index layer, the high refractive index is high. It can serve as a protective layer for a medium or a substrate.

【0067】請求項4記載の発明は、請求項3記載の発
明において、中間層のうちの少なくとも1層が高屈折率
物質から形成され、受光部が形成された基板面に対し
て、前記高屈折率物質からなる中間層と低屈折率層との
接触面、若しくは、前記高屈折率物質からなる中間層と
この下層のこれよりも小さい屈折率の物質からなる中間
層との接触面の一部又は全部を非平行なテーパー部に形
成し、前記受光部が形成された前記基板面に対して、前
記高屈折率物質からなる中間層と高屈折率媒質との接触
面、若しくは、前記高屈折率物質からなる中間層とこの
上層のこれと同程度の屈折率の物質からなる中間層との
接触面の一部又は全部を平行な平行平面部に形成したの
で、高屈折率媒質と中間層との境界面を基板に対して平
行にすることができるものである。
According to a fourth aspect of the present invention, in the third aspect of the invention, at least one of the intermediate layers is formed of a high refractive index material, and the high refractive index material is formed on the substrate surface on which the light receiving portion is formed. One of the contact surfaces between the intermediate layer made of a refractive index substance and the low refractive index layer, or the contact surface between the intermediate layer made of the high refractive index substance and the intermediate layer made of a substance having a smaller refractive index than the lower layer. Parts or all of them are formed in non-parallel tapered parts, and a contact surface between the intermediate layer made of the high refractive index material and the high refractive index medium or the high refractive index medium with respect to the substrate surface on which the light receiving part is formed. Since a part or all of the contact surface between the intermediate layer made of a refractive index material and the intermediate layer made of a material having a similar refractive index to that of the upper layer is formed on parallel plane portions parallel to each other, the high refractive index medium and the intermediate The interface with the layers can be parallel to the substrate It is intended.

【0068】請求項5記載の発明は、請求項1又は2記
載の発明において、高屈折率媒質と低屈折率層との間に
少なくとも1層以上の中間層を設け、この中間層のうち
の少なくとも1層を導波層として設けたので、光学部品
を高密度に集積化させることができるものである。
According to a fifth aspect of the present invention, in the first or second aspect of the present invention, at least one intermediate layer is provided between the high refractive index medium and the low refractive index layer. Since at least one layer is provided as the waveguiding layer, the optical components can be integrated with high density.

【0069】請求項6記載の発明は、請求項1又は2記
載の発明において、高屈折率媒質と低屈折率層との間に
少なくとも1層以上の中間層を設け、この中間層のうち
の少なくとも1層を導波層として設け、前記高屈折率媒
質を前記導波層への光結合用のプリズムとして形成し、
このプリズムから特定方向の入射光を侵入させるための
入射光結合手段を設け、この入射光結合手段により前記
プリズムを介して侵入した前記入射光を検出するために
前記プリズムの下面の基板表面にテーパー状をなす光検
出部を形成したので、プリズムの特定方向から入射した
光を導波層に結合させることなく直接に検出することが
できるものである。
According to a sixth aspect of the present invention, in the invention according to the first or second aspect, at least one intermediate layer is provided between the high refractive index medium and the low refractive index layer. At least one layer is provided as a waveguide layer, and the high refractive index medium is formed as a prism for optical coupling to the waveguide layer,
Incident light coupling means for allowing incident light in a specific direction to enter from this prism is provided, and a taper is formed on the substrate surface on the lower surface of the prism for detecting the incident light entering through the prism by the incident light combining means. Since the light detecting portion having the shape is formed, the light incident from the specific direction of the prism can be directly detected without being coupled to the waveguide layer.

【0070】請求項7記載の発明は、請求項6記載の発
明において、プリズムを介して光検出部より導波層に結
合した導波光を検出する導波光検出手段を設け、この導
波光検出手段からの出力情報と光検出部により特定方向
の光から得られた出力情報とにより光結合効率を求める
光結合効率検出手段を設けたので、テーパー構造をもっ
た光検出部により検出された特定方向の光から得られた
出力情報と、導波光検出手段により検出された導波光か
ら得られた出力情報とを用いてプリズムの光結合効率を
求めることができるものである。
According to a seventh aspect of the present invention, in the sixth aspect of the present invention, a guided light detecting means for detecting guided light coupled to the waveguide layer from the light detecting portion via the prism is provided, and the guided light detecting means is provided. Since the optical coupling efficiency detecting means for determining the optical coupling efficiency from the output information from the light and the output information obtained from the light in the specific direction by the light detecting portion is provided, the specific direction detected by the light detecting portion having the taper structure is provided. The optical coupling efficiency of the prism can be obtained by using the output information obtained from the light and the output information obtained from the guided light detected by the guided light detecting means.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1記載の発明の一実施例である光検出装
置の構成を示す断面図である。
FIG. 1 is a cross-sectional view showing a configuration of a photo-detecting device which is an embodiment of the invention described in claim 1.

【図2】請求項2記載の発明の一実施例である光検出装
置の構成を示す断面図である。
FIG. 2 is a cross-sectional view showing a configuration of a photo-detecting device according to an embodiment of the invention as set forth in claim 2.

【図3】請求項3記載の発明の一実施例である光検出装
置の構成を示す断面図である。
FIG. 3 is a cross-sectional view showing a configuration of a photo-detecting device which is an embodiment of the invention described in claim 3.

【図4】請求項4記載の発明の一実施例である光検出装
置の構成を示す断面図である。
FIG. 4 is a cross-sectional view showing a configuration of a photo-detecting device according to an embodiment of the invention as set forth in claim 4.

【図5】請求項5記載の発明の一実施例である光検出装
置の構成を示す断面図である。
FIG. 5 is a cross-sectional view showing the configuration of a photo-detecting device which is an embodiment of the invention as set forth in claim 5.

【図6】請求項6記載の発明の一実施例である光検出装
置の構成を示す断面図である。
FIG. 6 is a sectional view showing the structure of a photodetector according to an embodiment of the present invention.

【図7】プリズムを取り除いた状態での基板形状を示す
平面図である。
FIG. 7 is a plan view showing the shape of a substrate with a prism removed.

【図8】請求項7記載の発明の一実施例である光検出装
置の構成を示す断面図である。
FIG. 8 is a cross-sectional view showing the configuration of a photo-detecting device according to an embodiment of the invention as set forth in claim 7.

【図9】従来例である受光素子の形状を示す断面図であ
る。
FIG. 9 is a sectional view showing a shape of a light receiving element which is a conventional example.

【符号の説明】[Explanation of symbols]

9 基板 12 受光部 13 低屈折率層 13a 平行平面部 13b テーパー部 14 高屈折率媒質 20 低屈折率媒質 25,26 中間層 31 高屈折率物質 35 中間層 36 中間層(導波層) 42 光検出部 45 プリズム 46 入射光結合手段 58 導波光検出手段 9 substrate 12 light receiving part 13 low refractive index layer 13a parallel plane part 13b taper part 14 high refractive index medium 20 low refractive index medium 25, 26 intermediate layer 31 high refractive index material 35 intermediate layer 36 intermediate layer (waveguide layer) 42 light Detector 45 Prism 46 Incident light coupling means 58 Guided light detection means

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 基板上に形成された受光部と、この受光
部を含む上部に積層され基板面に対して平行な平行平面
部と平行でないテーパー部とを有する低屈折率層と、こ
の低屈折率層の前記平行平面部及び前記テーパー部の上
部に設けられた高屈折率媒質とよりなり、この高屈折率
媒質から侵入し前記低屈折率層の前記テーパー部を透過
して前記基板上の前記受光部に垂直でない特定方向から
入射する入射光のうち前記基板面に対する前記高屈折率
媒質中での光の入射角度をその高屈折率媒質及び前記低
屈折率層の屈折率の関係から決定される臨界角以上の大
きな角度に設定し、かつ、前記入射光のうち前記テーパ
ー部に対する前記高屈折率媒質中の光の入射角度をその
高屈折率媒質及び前記低屈折率層の屈折率の関係から決
定される臨界角よりも小さな角度に設定したことを特徴
とする光検出装置。
1. A low-refractive index layer having a light-receiving portion formed on a substrate, a low-refractive-index layer laminated on the upper portion including the light-receiving portion and having a parallel flat portion parallel to the substrate surface and a taper portion not parallel to the low-refractive-index layer. The high refractive index medium is provided on the parallel plane portion and the tapered portion of the refractive index layer, penetrates from the high refractive index medium, passes through the tapered portion of the low refractive index layer, and passes through the substrate. Of the incident light incident from a specific direction that is not perpendicular to the light receiving part, the incident angle of light in the high refractive index medium with respect to the substrate surface is determined from the relationship between the refractive index of the high refractive index medium and the low refractive index layer. The angle of incidence of light in the high refractive index medium with respect to the tapered portion of the incident light is set to a large angle equal to or greater than the determined critical angle, and the refractive indices of the high refractive index medium and the low refractive index layer are set. From the critical angle determined from the relationship A photodetector characterized by being set to a small angle.
【請求項2】 基板上に形成された受光部と、この受光
部を含む上部に積層され基板面に対して平行な平行平面
部と平行でないテーパー部とを有する低屈折率層と、こ
の低屈折率層の前記平行平面部及び前記テーパー部の上
部に設けられた高屈折率媒質と、この高屈折率媒質の上
部に設けられた低屈折率媒質とよりなり、この低屈折率
媒質から前記高屈折率媒質と前記低屈折率媒質との接触
面が前記基板と平行でない部分に侵入し前記高屈折率媒
質を介して前記低屈折率層の前記テーパー部を透過して
前記基板上の前記受光部に垂直でない特定方向から入射
する入射光のうち前記基板面に対する前記高屈折率媒質
中での光の入射角度をその高屈折率媒質及び前記低屈折
率層の屈折率の関係から決定される臨界角以上の大きな
角度に設定し、かつ、前記入射光のうち前記テーパー部
に対する前記高屈折率媒質中の光の入射角度をその高屈
折率媒質及び前記低屈折率層の屈折率の関係から決定さ
れる臨界角よりも小さな角度に設定したことを特徴とす
る光検出装置。
2. A low refractive index layer having a light receiving portion formed on a substrate, a parallel plane portion parallel to the substrate surface and a tapered portion which is laminated on the upper portion including the light receiving portion, and the low refractive index layer. The high refractive index medium provided on the parallel plane portion and the tapered portion of the refractive index layer, and the low refractive index medium provided on the high refractive index medium, The contact surface between the high-refractive index medium and the low-refractive index medium penetrates into a portion that is not parallel to the substrate, penetrates the tapered portion of the low-refractive index layer through the high-refractive index medium, and is transferred onto the substrate. The incident angle of light in the high refractive index medium with respect to the substrate surface, out of the incident light incident from a specific direction not perpendicular to the light receiving portion, is determined from the relationship between the refractive index of the high refractive index medium and the low refractive index layer. Set to a larger angle than the critical angle, and Of the incident light, the incident angle of light in the high refractive index medium with respect to the tapered portion is set to an angle smaller than a critical angle determined from the relationship between the refractive index of the high refractive index medium and the low refractive index layer. A photodetector characterized by the above.
【請求項3】 高屈折率媒質と低屈折率層との間に、少
なくとも1層以上の中間層を設けたことを特徴とする請
求項1又は2記載の光検出装置。
3. The photodetector according to claim 1, wherein at least one intermediate layer is provided between the high refractive index medium and the low refractive index layer.
【請求項4】 中間層のうちの少なくとも1層が高屈折
率物質から形成され、受光部が形成された基板面に対し
て、前記高屈折率物質からなる中間層と低屈折率層との
接触面、若しくは、前記高屈折率物質からなる中間層と
この下層のこれよりも小さい屈折率の物質からなる中間
層との接触面の一部又は全部を非平行なテーパー部に形
成し、前記受光部が形成された前記基板面に対して、前
記高屈折率物質からなる中間層と高屈折率媒質との接触
面、若しくは、前記高屈折率物質からなる中間層とこの
上層のこれと同程度の屈折率の物質からなる中間層との
接触面の一部又は全部を平行な平行平面部に形成したこ
とを特徴とする請求項3記載の光検出装置。
4. At least one of the intermediate layers is made of a high-refractive index material, and an intermediate layer made of the high-refractive index material and a low-refractive index layer are formed on the surface of the substrate on which the light receiving portion is formed. The contact surface, or a part or all of the contact surface between the intermediate layer made of the high refractive index substance and the intermediate layer made of a substance having a smaller refractive index than that of the lower layer is formed in a non-parallel tapered portion, and With respect to the surface of the substrate on which the light receiving section is formed, a contact surface between the intermediate layer made of the high refractive index material and the high refractive index medium, or the intermediate layer made of the high refractive index material and the upper layer 4. The photodetector according to claim 3, wherein a part or all of the contact surface with the intermediate layer made of a substance having a refractive index of a certain degree is formed in parallel parallel plane portions.
【請求項5】 高屈折率媒質と低屈折率層との間に少な
くとも1層以上の中間層を設け、この中間層のうちの少
なくとも1層を導波層として設けたことを特徴とする請
求項1又は2記載の光検出装置。
5. At least one intermediate layer is provided between the high refractive index medium and the low refractive index layer, and at least one of the intermediate layers is provided as a waveguide layer. Item 1. The photodetector according to item 1 or 2.
【請求項6】 高屈折率媒質と低屈折率層との間に少な
くとも1層以上の中間層を設け、この中間層のうちの少
なくとも1層を導波層として設け、前記高屈折率媒質を
前記導波層への光結合用のプリズムとして形成し、この
プリズムから特定方向の入射光を侵入させるための入射
光結合手段を設け、この入射光結合手段により前記プリ
ズムを介して侵入した前記入射光を検出するために前記
プリズムの下面の基板表面にテーパー状をなす光検出部
を形成したことを特徴とする請求項1又は2記載の光検
出装置。
6. At least one intermediate layer is provided between the high refractive index medium and the low refractive index layer, and at least one of the intermediate layers is provided as a waveguide layer, and the high refractive index medium is provided. It is formed as a prism for optical coupling to the waveguiding layer, and an incident light coupling means for injecting incident light in a specific direction from the prism is provided, and the incident light coupling means intrudes through the prism. 3. The photodetector according to claim 1, wherein a taper-shaped photodetector is formed on the substrate surface of the lower surface of the prism to detect the emitted light.
【請求項7】 プリズムを介して光検出部より導波層に
結合した導波光を検出する導波光検出手段を設け、この
導波光検出手段からの出力情報と光検出部により特定方
向の光から得られた出力情報とにより光結合効率を求め
る光結合効率検出手段を設けたことを特徴とする請求項
6記載の光検出装置。
7. A guided light detecting means for detecting guided light coupled to a waveguide layer from a light detecting portion via a prism is provided, and output information from the guided light detecting means and light in a specific direction is detected by the light detecting portion. 7. The photo-detecting device according to claim 6, further comprising a photo-coupling efficiency detecting means for obtaining a photo-coupling efficiency based on the obtained output information.
JP29249292A 1992-10-30 1992-10-30 A photodetector that detects incident light that is incident at an angle smaller than the angle at which total reflection occurs from a high refractive index medium to a low refractive index medium. Expired - Fee Related JP3213405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29249292A JP3213405B2 (en) 1992-10-30 1992-10-30 A photodetector that detects incident light that is incident at an angle smaller than the angle at which total reflection occurs from a high refractive index medium to a low refractive index medium.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29249292A JP3213405B2 (en) 1992-10-30 1992-10-30 A photodetector that detects incident light that is incident at an angle smaller than the angle at which total reflection occurs from a high refractive index medium to a low refractive index medium.

Publications (2)

Publication Number Publication Date
JPH06151795A true JPH06151795A (en) 1994-05-31
JP3213405B2 JP3213405B2 (en) 2001-10-02

Family

ID=17782524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29249292A Expired - Fee Related JP3213405B2 (en) 1992-10-30 1992-10-30 A photodetector that detects incident light that is incident at an angle smaller than the angle at which total reflection occurs from a high refractive index medium to a low refractive index medium.

Country Status (1)

Country Link
JP (1) JP3213405B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009038319A (en) * 2007-08-03 2009-02-19 Nichia Corp Semiconductor light emitting element
CN101951201A (en) * 2010-09-30 2011-01-19 北京印刷学院 Light-collecting solar power generation device with secondary reflection disc closed cavity
JPWO2012105555A1 (en) * 2011-02-01 2014-07-03 株式会社クラレ Wavelength selective filter element, manufacturing method thereof, and image display device
KR20200017677A (en) * 2018-08-09 2020-02-19 엘지디스플레이 주식회사 Display Device Including A Display Panel Having A Through Hole

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009038319A (en) * 2007-08-03 2009-02-19 Nichia Corp Semiconductor light emitting element
CN101951201A (en) * 2010-09-30 2011-01-19 北京印刷学院 Light-collecting solar power generation device with secondary reflection disc closed cavity
JPWO2012105555A1 (en) * 2011-02-01 2014-07-03 株式会社クラレ Wavelength selective filter element, manufacturing method thereof, and image display device
KR20200017677A (en) * 2018-08-09 2020-02-19 엘지디스플레이 주식회사 Display Device Including A Display Panel Having A Through Hole

Also Published As

Publication number Publication date
JP3213405B2 (en) 2001-10-02

Similar Documents

Publication Publication Date Title
CN103999303B (en) Integrated sub-wave length grating system
EP0550036B1 (en) Optical apparatus
CN112840176A (en) Detector for determining a position of at least one object
KR960007232B1 (en) Optical pick-up head
JPH04273208A (en) Focal-point detecting device using total- reflection-type attenuating spectroscopy
JP3029541B2 (en) Optical pickup device
JPH0763933A (en) Optical integrated circuit
JPH09128793A (en) Optical pickup device and optical waveguide element
JPH0727659B2 (en) Light pickup
JPH0719394B2 (en) Semiconductor laser device
JP3213405B2 (en) A photodetector that detects incident light that is incident at an angle smaller than the angle at which total reflection occurs from a high refractive index medium to a low refractive index medium.
JP3642967B2 (en) Optical communication device and bidirectional optical communication apparatus
JP4255646B2 (en) Equipment for monitoring the emission wavelength of a laser
JPH11218638A (en) Optical constituent element
JPH07272311A (en) Optical integrated circuit and optical pickup
JPH0453007B2 (en)
JPH09288211A (en) Polarizing optical element
JP3277040B2 (en) Guided light separation detector, method of manufacturing the same, and guided light separation / detection device
JPH08152534A (en) Prism coupler and optical pickup device
JPH05325215A (en) Focusing error signal detection device, optical information recording and reproducing device and magneto-optical information recording and reproducing device
JP2629720B2 (en) Light-emitting / light-receiving composite element
JP3105913B2 (en) Waveguide-type photodetector and method of manufacturing the same
JP2023077908A (en) Optical bonding structure and gas detector
JP2001013453A (en) Optical device
JPH02235225A (en) Waveguide type optical head

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070719

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees