[go: up one dir, main page]

JPH06151720A - Constructing method monolithic integrated circuit - Google Patents

Constructing method monolithic integrated circuit

Info

Publication number
JPH06151720A
JPH06151720A JP4302631A JP30263192A JPH06151720A JP H06151720 A JPH06151720 A JP H06151720A JP 4302631 A JP4302631 A JP 4302631A JP 30263192 A JP30263192 A JP 30263192A JP H06151720 A JPH06151720 A JP H06151720A
Authority
JP
Japan
Prior art keywords
thin film
carrier sheet
lifted
film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4302631A
Other languages
Japanese (ja)
Inventor
Koji Takaragawa
幸司 宝川
Yoshihiko Uematsu
芳彦 植松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4302631A priority Critical patent/JPH06151720A/en
Publication of JPH06151720A publication Critical patent/JPH06151720A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Die Bonding (AREA)

Abstract

PURPOSE:To simultaneously align a plurality of lift-off films accurately, and to eliminate contamination on adhesive interface by a method wherein a hole- provided elastic sheet is adhered to a thin film before it is lifted off, then the thin film is lifted off, and the thin film and the second substrate are adhered. CONSTITUTION:A thin film 2, to be lifted off, is formed on a GaAs substrate 1. Then, a protective film 5 is added to the element which is not lifted off. Wax 6 is added to the surface of the thin film 2 which is desired to be lifted off. After the wax has been solidified, a reticulate carrier sheet 7 is adhered. In the stage where the carrier sheet 7 and the GaAs substrate 1 have been adhered, the film is lifted off by fluoric acid. In the stage where an etching operation is finished, the GaAs substrate 1 and the carrier sheet 7 are mechanically separated. Then, the material is cleaned, and after fluoric acid has been washed away, the thin film 2 is aligned in such a manner that the thin film 2 is placed on the prescribed position of the silicon substrate 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は機能・特性などが異なる
複数個の電子の集積回路あるいは光集積回路をエピタキ
シャルリフトオフ技術に基づき、モノリシックに組み込
むことにより個々の回路では得られない機能性や経済性
などの特徴を発揮し得るモノリシック集積回路の構成法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is a monolithic assembly of a plurality of electronic integrated circuits or optical integrated circuits having different functions and characteristics based on the epitaxial lift-off technology, and thus the functionality and economy which cannot be obtained by individual circuits. The present invention relates to a method for constructing a monolithic integrated circuit that can exhibit characteristics such as performance.

【0002】[0002]

【従来の技術】異質の半導体素子例えば低価格・大規模
集積回路実現性、大面積・軽量・高強度・光熱伝導性な
どに優れるシリコン素子と、超高速回路や光素子の実現
性などに優れるGaAs,InPなどの化合物半導体素
子をモノリシックに組み合わせ集積化することによっ
て、これまでにない高性能、高機能あるいは低コストな
回路を実現できる可能性がある。従来、このような素子
の実現を狙いとしてシリコン基板上にガリウム砒素のよ
うな化合物半導体を成長させるエピタキシャル成長技
術、およびそのシリコン基板上のデバイス(オンシリコ
ンデバイス)の検討が精力的に進められている。その結
果、単体デバイスあるいは小規模回路ではバルク基板上
のものと遜色のないレベルの特性が得られるに至ってい
るが、材料そのものからくる逆位相粒の存在・格子不整
合による転移の存在などの本質的問題点を完全に解決す
るには至らず、集積度の大きな回路や高性能な素子実現
は困難である。また素子歩留り、長期信頼性など解決す
べき問題点が少なくない。
2. Description of the Related Art Different types of semiconductor devices such as low cost, large-scale integrated circuit feasibility, large-area, lightweight, high-strength, photothermal conductivity, and other silicon devices, and ultra-high-speed circuits and optical devices By combining and integrating compound semiconductor elements such as GaAs and InP in a monolithic manner, it is possible to realize a circuit with high performance, high functionality or low cost that has never been achieved. 2. Description of the Related Art Heretofore, an epitaxial growth technique for growing a compound semiconductor such as gallium arsenide on a silicon substrate and a device (on-silicon device) on the silicon substrate have been vigorously studied for the purpose of realizing such an element. . As a result, it has been possible to obtain characteristics comparable to those on a bulk substrate in a single device or small-scale circuit, but the nature of the existence of antiphase grains and the presence of dislocations due to lattice mismatch, etc. However, it is difficult to realize highly integrated circuits and high-performance devices. Also, there are many problems to be solved such as device yield and long-term reliability.

【0003】このような中で、最近エピタキシャルリフ
トオフ法を基礎としたフィルムボンディング技術による
ハイブリッド化が提案され、有望技術として注目を集め
ている。この技術は、現状で得られている完全な結晶上
に個別的理想に近いデバイスを構築し、張り合わせるこ
とによりモノリシックなデバイスを実現しようとするの
が狙いとするところである。
Under such circumstances, recently, hybridization by a film bonding technique based on the epitaxial lift-off method has been proposed and has been attracting attention as a promising technique. This technology aims to realize a monolithic device by constructing a device close to an individual ideal on a perfect crystal obtained at present and bonding them together.

【0004】この技術ではAlAsのフッ酸に対するエ
ッチングレートがGaAsなどの他の材料に比べて10
の7乗程度と極めて大きいことを利用して、結晶を成長
する段階で下層に薄い(10nmから50nm程度)A
lAs層を挿入し、その上にデバイスを実現するための
層を成長させる。デバイス作製工程後(あるいは工程の
途中段階または前の段階でもよい)、フッ酸によるウエ
ットエッチングによりAlAsより上の層をリフトオフ
する。リフトオフ時に出る気泡のためにリフトオフされ
た薄膜が損傷するのを避けるため、反応が激しく起こら
ないようなエッチング条件を選び、かつリフトオフ前に
剥離膜となるべき部分の表面にアピエゾンワックスを塗
布し、それによる応力を利用し、出てきた気泡が逃げ出
すようにする技術が開発されてから本格的に使えるよう
になった。リフトオフされる薄膜の厚みはデバイスの構
造やバッファ層の有無などにより異なるが、通常数10
0nmから数μm程度であり、寸法は1〜2cm程度の
大きさまで可能である。
In this technique, the etching rate of AlAs with respect to hydrofluoric acid is 10 compared with other materials such as GaAs.
By taking advantage of the fact that it is extremely large, about 7 to the power of 7, A (thickness: about 10 nm to 50 nm)
The lAs layer is inserted and a layer for realizing the device is grown thereon. After the device manufacturing process (or in the middle of the process or before the process), the layer above AlAs is lifted off by wet etching with hydrofluoric acid. In order to avoid damage to the lifted-off thin film due to bubbles generated during lift-off, select etching conditions that do not cause vigorous reaction, and apply apiezon wax to the surface of the part that will become the release film before lift-off. , The technology that uses the stress caused by it to escape the bubbles that came out has been developed and has become fully usable. The thickness of the thin film to be lifted off depends on the structure of the device and the presence / absence of a buffer layer.
It is about 0 nm to several μm, and the size can be about 1 to 2 cm.

【0005】基板上への薄膜の張り付けは接着剤を使う
方法もあるが、基板の汚染・平坦度確保などの点からフ
ァンデルワールス力による接着が最も適した方法であ
る。
Although there is a method of using an adhesive for sticking the thin film on the substrate, the adhesion by Van der Waals force is the most suitable method from the viewpoint of ensuring the contamination and flatness of the substrate.

【0006】従来デバイスが搭載されたチップをエッチ
ングにより薄層化する要求はパワデバイスなどにおいて
存在し、このために機械的な研磨により基板を削る方法
がとられている。しかし、この技術では薄層化に限界が
あり、100μmオーダ程度に留まっている。基板全体
をエッチングにより融かし去る方法もあるが、工程が複
雑であり実用的な方法とはいえない。一方、リフトオフ
という簡単な技術を基礎とした方法であるにもかかわら
ず、リフトオフされることによってデバイスにはほとん
ど損傷がなく、エピタキシャル成長により製作した薄膜
のような欠陥の問題もなく、さらに膜厚が極めて小さい
ことから、張り付けた後からの集積回路化が可能である
という特長もある。
[0006] Conventionally, there is a demand for a power device or the like to thin a chip on which a device is mounted by etching, and therefore, a method of scraping a substrate by mechanical polishing is adopted. However, this technique has a limitation in thinning the layer, and is limited to the order of 100 μm. There is also a method of melting and removing the entire substrate by etching, but it is not a practical method because the process is complicated. On the other hand, even though it is a method based on a simple technique called lift-off, there is almost no damage to the device by lift-off, there is no problem of defects such as a thin film formed by epitaxial growth, and the film thickness is further increased. Since it is extremely small, it has the feature that it can be integrated into a circuit after it is attached.

【0007】[0007]

【発明が解決しようとする課題】しかし、このような特
長のあるこの技術も集積化工程との整合性が悪いという
大きな問題点がある。リフトオフした薄膜を基板に張り
付ける段階で所定の位置に精度良く位置合わせすること
が困難であり、精密な構造の素子を扱うことが困難なほ
か、多数個の薄膜を扱うことも事実上不可能であり、少
数の薄膜を扱うにしても極めて生産性が悪いなどの問題
点がある。
However, this technique having such a feature also has a serious problem that the compatibility with the integration process is poor. It is difficult to precisely position the lifted-off thin film at a predetermined position when it is attached to the substrate, it is difficult to handle an element with a precise structure, and it is virtually impossible to handle many thin films. Therefore, even if a small number of thin films are handled, there is a problem that productivity is extremely low.

【0008】これらの問題点を解決する方法としてリフ
トオフした薄膜からワックスを剥した後で透明なシート
に並べて張り付けその後で基板に接着(ボンディング)
する方法も提案されているが、この場合、シート上への
精密な位置合わせが困難であり、複数個の薄膜を同時に
位置合わせするには寸法精度がとれないという問題があ
るほか、接着面の汚染により接着信頼性が低下するとい
う重大な問題がある。
As a method for solving these problems, the wax is peeled off from the lifted-off thin film, the wax is arranged side by side on a transparent sheet and then adhered to the substrate (bonding).
Although a method of doing so has been proposed, in this case, it is difficult to perform precise alignment on the sheet, and there is the problem that dimensional accuracy cannot be obtained when aligning multiple thin films at the same time. There is a serious problem that the adhesion reliability is deteriorated due to the contamination.

【0009】本発明はエピタキシャルリフトオフ法を用
いるボンディング技術を基礎としたモノリシック集積化
技術において、複数個のリフトオフ膜を同時に正確に位
置合わせできかつ接着界面の汚染が無い状態で接着させ
ることが可能な、集積回路作製工程との整合性がよいモ
ノリシック集積回路の構成法を提供することを課題とす
る。
The present invention is a monolithic integration technique based on a bonding technique using an epitaxial lift-off method, which makes it possible to accurately align a plurality of lift-off films at the same time and to bond them without contamination of the bonding interface. An object of the present invention is to provide a method for constructing a monolithic integrated circuit having good compatibility with an integrated circuit manufacturing process.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に請求項1記載の本発明は、デバイスを実現してなる上
層とリフトオフ層である下層とを含む多層の半導体膜を
有する第一の半導体基板の下層をエッチングにより取り
去り、上層を薄膜として剥離し、その薄膜を第二の半導
体基板に張り付けるモノリシック集積回路の構成法にお
いて、前記薄膜のリフトオフ前に穴を有する弾性のキャ
リヤシートを前記薄膜のキャリヤシートとして用いるべ
く前記薄膜に接着し、しかる後にリフトオフし前記薄膜
を前記キャリヤシートに張り付けた状態で前記第二の基
板上に配置し、前記薄膜と前記第二の基板とを張り付け
ることを特徴とする。
In order to achieve the above object, the present invention according to claim 1 has a multilayer semiconductor film including an upper layer for realizing a device and a lower layer which is a lift-off layer. In a method of constructing a monolithic integrated circuit in which a lower layer of a semiconductor substrate is removed by etching, an upper layer is separated as a thin film, and the thin film is attached to a second semiconductor substrate, an elastic carrier sheet having holes before lift-off of the thin film is formed. The thin film is adhered to the thin film to be used as a carrier sheet, and then lifted off to place the thin film on the second substrate in a state of being stuck to the carrier sheet, and the thin film and the second substrate are stuck to each other. It is characterized by

【0011】請求項2記載の発明は、応力付与膜を前記
薄膜上に付加しその上に前記キャリヤシートを張り付け
ることを特徴とする。
The invention according to claim 2 is characterized in that a stress-applying film is added onto the thin film, and the carrier sheet is stuck thereon.

【0012】請求項3記載の発明は、前記薄膜の上に直
接前記キャリヤシートを置き応力付与膜を前記薄膜とキ
ャリヤシートの接着を兼ねて、後から付加することを特
徴とする。
According to a third aspect of the present invention, the carrier sheet is placed directly on the thin film, and a stress-imparting film is added later also for adhering the thin film and the carrier sheet.

【0013】請求項4記載の発明は、位置合わせマーク
を前記キャリヤシート上あるいは前記応力付与膜表面、
あるいは前記薄膜上に配置してなることを特徴とする。
According to a fourth aspect of the present invention, an alignment mark is provided on the carrier sheet or on the surface of the stress applying film,
Alternatively, it is arranged on the thin film.

【0014】[0014]

【作用】本発明のモノリシック集積回路の構成法では接
着工程を、リフトオフすべき複数の素子の作製時にシリ
コン上でのレイアウトの基礎となるように配置してお
き、その位置情報を保つように周辺をクランプした編目
状のキャリヤシートに張り付け、その状態でリフトオフ
し、そのままシリコン基板に張り付け、その後にワック
スを取り去ることによって行う。
In the method of constructing a monolithic integrated circuit according to the present invention, the bonding step is arranged so as to be the basis of the layout on silicon when manufacturing a plurality of elements to be lifted off, and the periphery is arranged so as to maintain the position information. Is attached to a clamped knitted carrier sheet, lifted off in that state, attached to the silicon substrate as it is, and then the wax is removed.

【0015】本発明のモノリシック集積回路の構成法で
は、リフトオフ時に反応液や気泡がキャリヤに妨げられ
ることなく自由に反応点と外部の間で行き来できるよう
に編目状のシートをキャリヤシートとして用いている。
またフィルム状に剥離すべきデバイスが乗せられている
表面のワックスとその編目状のキャリヤシートを接着し
た後はじめてリフトオフを行い、すなわち個々の薄膜が
各々独立に剥離される状態とならないように場所情報を
保った成長基板から同時に剥離する。さらにそのまま基
板に接着させ、圧力を加えて接着することからリフトオ
フ面は剥離後余計な工程を経ることなく、従って清浄な
状態のまま接着すべき場所に位置合わせされ加圧され接
着される。
In the method for constructing a monolithic integrated circuit according to the present invention, a knitted sheet is used as a carrier sheet so that the reaction solution and bubbles can freely move between the reaction point and the outside without being obstructed by the carrier at the time of lift-off. There is.
Also, the lift-off is performed only after the wax on the surface on which the device to be peeled off is placed and the stitched carrier sheet are adhered, that is, the location information so that each thin film is not peeled independently. At the same time, it is peeled from the growth substrate. Further, since the lift-off surface is adhered to the substrate as it is and pressure is applied to the substrate, the lift-off surface does not go through an extra step after the peeling, and therefore, in a clean state, the lift-off surface is aligned and pressed at a place to be adhered and adhered.

【0016】すなわち本発明によるとエピタキシャルリ
フトオフ法を用いるボンディング技術を基礎としたモノ
リシック集積化技術において、複数個のリフトオフ膜を
同時に正確に位置合わせすることができかつ接着界面の
汚染が無い状態で接着させることが可能となり、集積化
工程と整合性がよい手法が実現されることになる。
That is, according to the present invention, in the monolithic integration technique based on the bonding technique using the epitaxial lift-off method, a plurality of lift-off films can be accurately aligned at the same time, and the bonding interface is bonded without contamination. Therefore, it is possible to realize a method having good compatibility with the integration process.

【0017】[0017]

【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0018】図1はGaAs回路とSi回路をモノリシ
ックに集積化する実施例についての本発明の一実施例の
工程図、図2は図1の各工程に対応するデバイスの模式
的断面図を示す。図中、1は化合物半導体基板、2はリ
フトオフすべき薄膜であり、3はデバイスを構成する
層、4はリフトオフ時にエッチングされる層(リフトオ
フ層)、5はリフトオフされない部分の保護膜層であ
り、6はワックスからなる応力付与膜、7は編目状のキ
ャリヤシート、8はシリコン基板である。
FIG. 1 is a process diagram of an embodiment of the present invention for an embodiment in which a GaAs circuit and a Si circuit are monolithically integrated, and FIG. 2 is a schematic sectional view of a device corresponding to each process of FIG. . In the figure, 1 is a compound semiconductor substrate, 2 is a thin film to be lifted off, 3 is a layer that constitutes a device, 4 is a layer that is etched during liftoff (liftoff layer), and 5 is a protective film layer that is not lifted off. , 6 is a stress imparting film made of wax, 7 is a stitch-shaped carrier sheet, and 8 is a silicon substrate.

【0019】図3〜図9は図1の本発明の一実施例の組
み立て手順を実施するときの全体の様子を説明するため
の組立説明図である。図3は編目状のキャリヤシートC
の実装図で、(A)はその模式的断面図、(B)は模式
的上面図、(C)キャリヤシートの一部の拡大上面図で
あり、9はキャリヤシートを支える枠、10は位置合わ
せマーク、13はキャリヤシートの小部分、14はキャ
リヤシートの穴を示す。図4はリフトオフすべき薄膜2
を含む化合物半導体基板1のパタンイメージを示した模
式的上面図であり、図5はリフトオフした薄膜2をキャ
リヤシート7に張り付けた状態を示し、(A)はその模
式的断面図、(B)はその模式的上面図である。図6は
シリコン基板8の全体イメージを示し、(A)はその模
式的断面図、(B)はその模式的上面図であり、11は
シリコンLSI回路部分、12は薄膜が接着される位置
を示す。また図7(A)は位置合わせおよび(B)は接
着の様子を表した模式的断面図、図8は接着終了後のモ
ノリシック集積回路の完成後のウエハの模式的上面図で
ある。図9はリフトオフ前の基板の状態を示す模式的断
面図である。
FIGS. 3 to 9 are assembly explanatory views for explaining the overall state when the assembly procedure of the embodiment of the present invention shown in FIG. 1 is carried out. FIG. 3 shows a stitched carrier sheet C.
9A is a schematic cross-sectional view of the same, FIG. 9B is a schematic top view of the same, FIG. 9C is an enlarged top view of a part of the carrier sheet, 9 is a frame for supporting the carrier sheet, and 10 is a position. Alignment marks, 13 are small portions of the carrier sheet, and 14 are holes in the carrier sheet. Figure 4 shows a thin film 2 to be lifted off
FIG. 6 is a schematic top view showing a pattern image of a compound semiconductor substrate 1 containing a, FIG. 5 shows a state in which the lifted-off thin film 2 is attached to a carrier sheet 7, (A) is a schematic cross-sectional view thereof, and (B) is shown. Is a schematic top view thereof. FIG. 6 shows an overall image of the silicon substrate 8, (A) is a schematic sectional view thereof, (B) is a schematic top view thereof, 11 is a silicon LSI circuit portion, 12 is a position where a thin film is bonded. Show. Further, FIG. 7A is a schematic cross-sectional view showing alignment and FIG. 7B is a schematic cross-sectional view showing a state of adhesion, and FIG. 8 is a schematic top view of a wafer after completion of a monolithic integrated circuit after completion of adhesion. FIG. 9 is a schematic sectional view showing a state of the substrate before lift-off.

【0020】編目状のキャリヤシート7は例えばポリイ
ミドのような高分子のフィルムに多数の小さな穴14を
空けた構造を持つ。従ってキャリヤシート7には弾性が
ありそれに張り付けた物に歪が加わっても吸収できるも
のである。穴14の寸法やキャリヤシートとしてのフィ
ルムの膜厚は特に規定するものではないが、寸法は剥離
する薄膜2を支える必要のあることから薄膜2の寸法に
対し数分の一以下である必要があり、また膜厚は機械的
にフィルムの状態で扱うことができる寸法であればいく
ら薄くてもよい。高分子のフィルムの場合数μm程度の
寸法の物まで可能となろう。
The knitted carrier sheet 7 has a structure in which a large number of small holes 14 are formed in a polymer film such as polyimide. Therefore, the carrier sheet 7 has elasticity and can absorb the strain applied to the carrier sheet 7 even if the strain is applied. The size of the hole 14 and the film thickness of the film as the carrier sheet are not particularly specified, but the size needs to be a fraction or less of the size of the thin film 2 because it is necessary to support the thin film 2 to be peeled off. The film thickness may be any thickness as long as it can be mechanically handled in a film state. In the case of a polymer film, a size of several μm may be possible.

【0021】応力付与膜6はリフトオフ時に薄膜2に反
りを与えて湾曲させることにより泡を逃しリフトオフを
完全に実行させるためのものであり、この実施例ではア
ピエゾンブラックワックスを用いるものとするが、同様
の機能を果たす材料であればいかなる物でもよい。
The stress-applying film 6 is provided to warp and curve the thin film 2 at the time of lift-off to allow bubbles to escape and to perform lift-off completely. In this embodiment, Apiezon black wax is used. Any material may be used as long as it has the same function.

【0022】図1および図2に基づきプロセス手順を説
明すると以下の通りとなる。まず第一の工程(a)とし
て、GaAs基板1の上にリフトオフすべき薄膜2を作
製する。基本的な工程は従来から進められているリフト
オフ用のGaAsデバイス作製工程と同様でよい。すな
わち基板1上にリフトオフ用のAlAs層(リフトオス
層)4を薄く付け、その上にデバイスを実現するための
素子層3を成長させ、そこに素子を実現するのである。
図示の場合、素子層3はリフトオフすべき薄膜2を含め
て3層からなるが、特にこれに限定されない。
The process procedure will be described below with reference to FIGS. 1 and 2. First, as the first step (a), the thin film 2 to be lifted off is formed on the GaAs substrate 1. The basic process may be the same as the conventional GaAs device manufacturing process for lift-off. That is, the AlAs layer (lift male layer) 4 for lift-off is thinly formed on the substrate 1, and the element layer 3 for realizing the device is grown on the AlAs layer 4 and the element is realized there.
In the illustrated case, the element layer 3 is composed of three layers including the thin film 2 to be lifted off, but is not particularly limited to this.

【0023】この際、この実施例では基板上には一時に
リフトオフする素子以外に別の素子も同時に作製し、転
写パタンに応じて必要な素子のみをリフトオフする方法
をとっている。次にリフトオフをしない素子については
リフトオフ工程時に膜剥がれ、エッチングによる表面ダ
メージなどの損傷を避けるためにその表面に保護膜5を
付加する工程を行う(工程(b)ないし(d))。この
際重要な点はエッチング時に溶液がリフトオフしない素
子のエッチング層(リフトオフ層)4を保護することに
ある。なお、当然のことながらGaAs基板1上の全て
の素子を同時にリフトオフする場合にはこの工程は省略
することが可能である。保護膜5としては、必要条件と
して下層に損傷を与えないこと、後で取り去ることが可
能なこと、フッ酸には耐性があること、などの条件さえ
満足すればどのような物でもよく、高分子膜あるは絶縁
膜や金属など材質は問わない。
At this time, in this embodiment, in addition to the element which is lifted off at one time on the substrate, another element is simultaneously manufactured, and only the necessary element is lifted off according to the transfer pattern. Next, with respect to the element which is not lifted off, a film is peeled off during the lift off step, and a step of adding a protective film 5 to the surface is performed to avoid damage such as surface damage due to etching (steps (b) to (d)). At this time, an important point is to protect the etching layer (lift-off layer) 4 of the element in which the solution does not lift-off during etching. Of course, when all the elements on the GaAs substrate 1 are lifted off at the same time, this step can be omitted. The protective film 5 may be of any type as long as it does not damage the lower layer as a necessary condition, can be removed later, and is resistant to hydrofluoric acid. The material may be a molecular film, an insulating film or a metal.

【0024】次にリフトオフしたい薄膜2の上にワック
ス6を付加する。この工程はメタルマスクを用いたワッ
クス塗布法などの方法により行う(工程(e))。
Next, wax 6 is added on the thin film 2 to be lifted off. This step is performed by a method such as a wax coating method using a metal mask (step (e)).

【0025】ワックス6を塗布し乾燥させるとワックス
には引っ張りの応力がかかることになる。
When the wax 6 is applied and dried, a tensile stress is applied to the wax.

【0026】ワックスが固化した後、編目状のキャリヤ
シート7を接着する(工程(f))。この接着法にはい
くつかの方法が可能である。最も簡単な方法はキャリヤ
シート表面に可剥離性の接着剤を塗布する、あるいは表
面処理を加えるなどの手段により、他の材料との接着性
を確保する方法である。この場合ある一定以上の力が加
わったときには剥離可能であるが、溶液中や少しの曲げ
応力に対しては接着性が保たれるようにすることが容易
にできる。他の方法は編目状のキャリヤシートをかけた
状態でワックス部のみに接着剤を滴下し、キャリヤシー
トと薄膜2の接着を強固に行う方法である。この場合に
は紫外線硬化樹脂などの接着剤を用いれば選択的な接着
が自動的に効率良く実施できる。なお、機械的な取扱い
を容易にするためには、キャリヤシートを図3に示すよ
うに強固な枠に固定する必要がある。また転写時の位置
合わせを容易にするためには図3〜図5に示すようにキ
ャリヤシート上に添わせ用の位置合わせマークを付加し
ておく方法が有効である。マークはキャリヤシートその
ものを加工してもよく、あるいはキャリヤシート上に印
刷または蒸着するなどの方法により付加してもよい。
After the wax is solidified, the stitch-shaped carrier sheet 7 is adhered (step (f)). Several methods are possible for this bonding method. The simplest method is to secure the adhesiveness to other materials by applying a peelable adhesive to the surface of the carrier sheet or applying a surface treatment. In this case, it can be peeled off when a force of a certain level or more is applied, but the adhesiveness can be easily maintained in the solution or against a slight bending stress. The other method is a method in which the adhesive is dropped only on the wax portion while the carrier sheet in the form of a stitch is laid, and the carrier sheet and the thin film 2 are firmly bonded. In this case, selective adhesion can be automatically and efficiently performed by using an adhesive such as an ultraviolet curable resin. In addition, in order to facilitate mechanical handling, it is necessary to fix the carrier sheet to a strong frame as shown in FIG. Further, in order to facilitate the alignment at the time of transfer, it is effective to add alignment marks for alignment on the carrier sheet as shown in FIGS. The mark may be processed on the carrier sheet itself, or may be added by a method such as printing or vapor deposition on the carrier sheet.

【0027】キャリヤシート7とGaAs基板1を接着
した段階でフッ酸によりフィルムのリフトオフを行う。
エッチング液はシートの編目の間から浸透し、リフトオ
フすべき薄膜2直下の剥き出しになったAlAsからな
るリフトオフ層4では反応が起き、薄膜周辺直下から徐
々に溶解が始まる。薄膜にはワックスの応力がかかって
いることおよび薄膜自体に弾性があることから、周囲の
AlAsが融け出すと共に薄膜2に反りが生じ周辺が持
ち上げられる。さらに奥の方にエッチング液が浸透する
と共に、反応時に生じた気泡が周辺部から外に移動し、
編目を通して外部に放出される。この結果薄膜の破損な
く薄膜直下のリフトオフ層4がエッチングされることに
なる。なおこのエッチングの際に保護膜で覆われた部分
はそのまま基板に残ることになる。
When the carrier sheet 7 and the GaAs substrate 1 are bonded, the film is lifted off with hydrofluoric acid.
The etching solution permeates from between the stitches of the sheet, and a reaction occurs in the lift-off layer 4 made of exposed AlAs immediately below the thin film 2 to be lifted off, and gradually starts to dissolve immediately below the periphery of the thin film. Since the thin film is subjected to the stress of wax and the thin film itself has elasticity, the surrounding AlAs melts and the thin film 2 warps and the periphery is lifted. Furthermore, as the etching solution permeates further into the back, bubbles generated during the reaction move out from the periphery,
It is released to the outside through the stitch. As a result, the lift-off layer 4 immediately below the thin film is etched without damaging the thin film. The portion covered with the protective film during this etching remains as it is on the substrate.

【0028】エッチングが終了した段階でGaAs基板
1とキャリヤシート7を機械的に引き離す(工程
(g))。この際キャリヤシート7は基板1と接着して
いるとしても剥離可能な界面状態とされていることから
比較的弱い接着力であり、簡単に剥がすことが可能であ
る。また薄膜2は基板から完全に分離されていることか
らキャリヤシートに付着した状態となる。この状態を模
式的に示したのが図5である。
When the etching is completed, the GaAs substrate 1 and the carrier sheet 7 are mechanically separated (step (g)). At this time, the carrier sheet 7 has a relatively weak adhesive force because the carrier sheet 7 is in a peelable interface state even if it is bonded to the substrate 1, and can be easily peeled off. Further, since the thin film 2 is completely separated from the substrate, it is in a state of being attached to the carrier sheet. FIG. 5 schematically shows this state.

【0029】次に薄膜2が装着されたキャリヤシートを
洗浄しフッ酸を洗い流した後、シリコン基板8上に配置
して、薄膜2がシリコン基板8の所定の位置にくるよう
に位置合わせする(工程(h))。薄膜2の位置とシリ
コン基板上の接着位置12とを実物合わせでもあるいは
シリコン基板8上とキャリヤシート7上やワックス6上
や薄膜2上に位置合わせマーク10を付加し位置合わせ
を行う。
Next, after cleaning the carrier sheet on which the thin film 2 is mounted and washing out the hydrofluoric acid, the carrier sheet is placed on the silicon substrate 8 and aligned so that the thin film 2 comes to a predetermined position on the silicon substrate 8 ( Step (h)). The position of the thin film 2 and the bonding position 12 on the silicon substrate are actually aligned, or the alignment mark 10 is added on the silicon substrate 8 and the carrier sheet 7, the wax 6 and the thin film 2 to perform the alignment.

【0030】位置合わせが済むと薄膜2とシリコン基板
8を接触し、接続したい薄膜2とワックス6を含めて加
圧する(工程(i))。その際接触界面に水滴あるいは
硫化アンモニウムのような液体を小量滴下すると接着が
強固となる。この際位置合わせ精度が要求されない場合
には図示のように複数個の薄膜を一括して加圧すればよ
い。
When the alignment is completed, the thin film 2 and the silicon substrate 8 are brought into contact with each other, and the thin film 2 to be connected and the wax 6 are pressed together (step (i)). At that time, if a small amount of water droplets or a liquid such as ammonium sulfide is dropped on the contact interface, the adhesion becomes strong. At this time, if the alignment accuracy is not required, a plurality of thin films may be collectively pressed as shown in the figure.

【0031】接着後にキャリヤシート7およびワックス
6を取り去り、さらに配線工程やパッシベーション膜を
付加するなどの工程を施すことによって所望のモノリシ
ック集積回路を得ることができる。ワックスの除去は有
機溶剤で、またキャリヤシートの除去は強固な接着剤で
固定していない限り、機械的に剥がすことによって可能
となる。一括して処理する場合にはワックスを取り去る
段階で同時に取り去る方法が簡単である。
The desired monolithic integrated circuit can be obtained by removing the carrier sheet 7 and the wax 6 after the adhesion, and further performing a wiring step and a step of adding a passivation film. The wax can be removed with an organic solvent, and the carrier sheet can be removed by mechanical peeling unless fixed with a strong adhesive. In the case of batch processing, it is easy to remove the wax at the same time as it is removed.

【0032】上述の方法において高精度な位置合わせが
要求される場合には一個ずつあるいは小数ずつの薄膜を
単位として位置合わせさせ圧力をかけて接着をした後、
接着した薄膜2のワックス部からキャリヤシート7を剥
がし、さらに別の回路の位置合わせ/接着を行う手順を
繰り返せばよい。この場合完全な接着は時間をかける必
要のあることから各位置合わせ工程後の接着は仮接着と
しキャリヤシートを剥がすに足りる程度の簡単な圧接に
留め、全体のレイアウトが終った後で恒久的な接着をす
るための加圧手順をとればよい。
When highly accurate alignment is required in the above-mentioned method, the thin films are aligned one by one or in units of a few, and after applying pressure, they are bonded together.
The procedure of peeling the carrier sheet 7 from the wax portion of the adhered thin film 2 and positioning / adhering another circuit may be repeated. In this case, since it takes time to complete the bonding, the bonding after each alignment process should be a temporary bonding, and should be a simple pressure welding that is sufficient to remove the carrier sheet, and should be permanent after the entire layout is completed. A pressure procedure for adhesion may be taken.

【0033】本発明の基本理念を変えることなく種々の
変形変更を施すことが可能なことはいうまでもない。こ
の実施例ではキャリヤシートはウエハ全体にわたる領域
のチップを対称としているが、転写単位を一部の領域に
限定してもよい。また図2の工程において保護膜工程を
別材料で行う手順をとっているが、ワックスそのものを
保護膜として利用することも可能である。この場合図9
に示すようにワックスを全面に付けておきリフトオフし
たい薄膜2の直下のAlAs(リフトオフ層)のみが表
面に表れるようにワックスの一部をエッチングにより取
り去る工程をとればよい。
It goes without saying that various modifications can be made without changing the basic idea of the present invention. In this embodiment, the carrier sheet is symmetrical about the chip in the area over the entire wafer, but the transfer unit may be limited to a partial area. In the process of FIG. 2, the protective film process is performed with a different material, but the wax itself can be used as the protective film. In this case
As shown in FIG. 5, a step of removing a part of the wax by etching may be performed so that only the AlAs (lift-off layer) directly below the thin film 2 desired to be lifted off is exposed on the surface.

【0034】またワックスを塗る前にキャリヤシートを
かぶせ、リフトオフしたい薄膜の部分にのみワックスを
塗布する方法も可能である。図10はこのような実施例
を示す模式的断面図である。図中同一記号で示すものは
第一の実施例のものと同一である。この場合、キャリヤ
シート7の穴14に対応する位置のワックスは穴14内
に流下しワックス層6には穴14の分布に対応するパタ
ーンの凹部ができる。このようにワックスは穴14内に
も存在するので薄膜とキャリヤシートとの接着剤の役割
も果たすことになる。
It is also possible to cover the carrier sheet before applying the wax and apply the wax only to the portion of the thin film to be lifted off. FIG. 10 is a schematic sectional view showing such an embodiment. Those shown by the same symbols in the drawings are the same as those in the first embodiment. In this case, the wax at the position corresponding to the holes 14 of the carrier sheet 7 flows down into the holes 14, and the wax layer 6 has concave portions having a pattern corresponding to the distribution of the holes 14. Since the wax is also present in the holes 14 as described above, it also serves as an adhesive between the thin film and the carrier sheet.

【0035】[0035]

【発明の効果】以上説明したように本発明は、エピタキ
シャルリフトオフ法を用いるボンディング技術を基礎と
したモノリシック集積化技術において、複数個のリフト
オフ膜を同時に正確に位置合わせできかつ接着界面の汚
染が無い状態で接着させることが可能な、集積回路プロ
セスとの整合性がよい手法を提供したものである。この
技術によって超高速素子あるいは光素子などシリコン技
術では不得意であった化合物半導体系の素子と大集積低
電力などのシリコン素子の持つ特徴を兼ね備えた、優れ
たモノリシック集積回路の実現が量産性よく低コストに
実現できる。また、この技術はシリコンと化合物半導体
のみならず、化合物と化合物あるいは圧電体/磁性体/
超伝導体と化合物など異種の材料のモノリシック集積化
を実現できる。
As described above, according to the present invention, in the monolithic integration technique based on the bonding technique using the epitaxial lift-off method, a plurality of lift-off films can be accurately aligned at the same time and there is no contamination at the bonding interface. The present invention provides a method capable of being adhered in a state and having good compatibility with an integrated circuit process. With this technology, it is possible to realize an excellent monolithic integrated circuit that combines the features of compound semiconductor-based elements such as ultra-high-speed elements or optical elements, which were not good at silicon technology, and silicon elements such as large-scale integrated low power, with high mass productivity. It can be realized at low cost. Moreover, this technology is applicable not only to silicon and compound semiconductors, but also to compounds and compounds or piezoelectric / magnetic /
Monolithic integration of dissimilar materials such as superconductors and compounds can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明装置の一実施例の工程手順を示す図であ
る。
FIG. 1 is a diagram showing a process procedure of an embodiment of the device of the present invention.

【図2】図1の各工程に対応するデバイスの模式的断面
図であり、(a)はGaAsデバイス作製工程、(b)
は分離加工工程、(c)はレジスト塗布工程、(d)は
非リフトオフ部保護工程、(e)は応力付与膜形成工
程、(f)はキャリヤシート接着工程、(g)はリフト
オフ工程、(h)は位置合わせ工程、(i)接着工程を
表わす。
FIG. 2 is a schematic cross-sectional view of a device corresponding to each step of FIG. 1, where (a) is a GaAs device manufacturing step and (b) is a step.
Is a separation processing step, (c) is a resist coating step, (d) is a non-lift-off portion protecting step, (e) is a stress imparting film forming step, (f) is a carrier sheet bonding step, (g) is a lift-off step, ( h) represents an alignment process and (i) an adhesion process.

【図3】キャリヤシートの実装図であり、(A)は模式
的断面図、(B)は模式的上面図、(C)は一部拡大上
面図である。
FIG. 3 is a mounting view of a carrier sheet, (A) is a schematic sectional view, (B) is a schematic top view, and (C) is a partially enlarged top view.

【図4】基板のパターンイメージを示す模式的上面図で
ある。
FIG. 4 is a schematic top view showing a pattern image of a substrate.

【図5】リフトオフした薄膜をキャリヤシートに張り付
けた状態を示す図で、(A)は模式的断面図、(B)は
模式的上面図である。
5A and 5B are diagrams showing a state in which a lift-off thin film is attached to a carrier sheet, FIG. 5A is a schematic sectional view, and FIG. 5B is a schematic top view.

【図6】シリコン基板の全体イメージを示す図で、
(A)は模式的断面図、(B)は模式的上面図である。
FIG. 6 is a diagram showing an overall image of a silicon substrate,
(A) is a schematic sectional view and (B) is a schematic top view.

【図7】(A)は位置合わせの様子を表わす模式的断面
図、(B)は接着の様子を表わす模式的断面図である。
7A is a schematic cross-sectional view showing a state of alignment, and FIG. 7B is a schematic cross-sectional view showing a state of adhesion.

【図8】完成ウエハの模式的上面図である。FIG. 8 is a schematic top view of a completed wafer.

【図9】リフトオフ前の基板の状態を示す模式的断面図
である。
FIG. 9 is a schematic cross-sectional view showing a state of a substrate before lift-off.

【図10】本発明の他の実施例を説明する模式的断面図
である。
FIG. 10 is a schematic cross-sectional view illustrating another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 リフトオフすべき薄膜 3 デバイスを構成する層 4 エッチング層(リフトオフ層) 5 保護膜層 6 ワックス 7 編目状のキャリヤシート 8 シリコン基板 9 シートを支える枠 10 位置合わせマーク 11 シリコンLSI回路部分 12 薄膜の接着位置 13 キャリヤシートの小部分 14 穴 1 semiconductor substrate 2 thin film to be lifted off 3 layer constituting device 4 etching layer (lift-off layer) 5 protective film layer 6 wax 7 stitched carrier sheet 8 silicon substrate 9 sheet supporting frame 10 alignment mark 11 silicon LSI circuit part 12 Adhesion position of thin film 13 Small part of carrier sheet 14 Hole

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 デバイスを実現してなる上層とリフトオ
フ層である下層とを含む多層の半導体膜を有する第一の
半導体基板の下層をエッチングにより取り去り、上層を
薄膜として剥離し、その薄膜を第二の半導体基板に張り
付けるモノリシック集積回路の構成法において、前記薄
膜のリフトオフ前に穴を有する弾性のキャリヤシートを
前記薄膜のキャリヤシートとして用いるべく前記薄膜に
接着し、しかる後にリフトオフし前記薄膜を前記キャリ
ヤシートに張り付けた状態で前記第二の基板上に配置
し、前記薄膜と前記第二の基板とを張り付けることを特
徴とするモノリシック集積回路の構成法。
1. A lower layer of a first semiconductor substrate having a multilayer semiconductor film including an upper layer realizing a device and a lower layer which is a lift-off layer is removed by etching, the upper layer is separated as a thin film, and the thin film is separated into In a method of constructing a monolithic integrated circuit attached to a second semiconductor substrate, an elastic carrier sheet having holes before the thin film lift-off is adhered to the thin film so as to be used as the thin film carrier sheet, and then lifted off to remove the thin film. A method for constructing a monolithic integrated circuit, which is arranged on the second substrate while being attached to the carrier sheet, and the thin film and the second substrate are attached.
【請求項2】 応力付与膜を前記薄膜上に付加しその上
に前記キャリヤシートを張り付けることを特徴とする請
求項1記載のモノリシック集積回路の構成法。
2. The method for constructing a monolithic integrated circuit according to claim 1, wherein a stress applying film is applied onto the thin film, and the carrier sheet is attached thereon.
【請求項3】 前記薄膜の上に直接前記キャリヤシート
を置き応力付与膜を前記薄膜とキャリヤシートの接着を
兼ねて、後から付加することを特徴とする請求項1記載
のモノリシック集積回路の構成法。
3. The structure of a monolithic integrated circuit according to claim 1, wherein the carrier sheet is placed directly on the thin film, and a stress-imparting film is added later also for adhering the thin film and the carrier sheet. Law.
【請求項4】 位置合わせマークを前記キャリヤシート
上あるいは前記応力付与膜表面、あるいは前記薄膜上に
配置してなることを特徴とする請求項1,2または3記
載のモノリシック集積回路の構成法。
4. The method for constructing a monolithic integrated circuit according to claim 1, wherein an alignment mark is arranged on the carrier sheet, the surface of the stress applying film, or the thin film.
JP4302631A 1992-11-12 1992-11-12 Constructing method monolithic integrated circuit Pending JPH06151720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4302631A JPH06151720A (en) 1992-11-12 1992-11-12 Constructing method monolithic integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4302631A JPH06151720A (en) 1992-11-12 1992-11-12 Constructing method monolithic integrated circuit

Publications (1)

Publication Number Publication Date
JPH06151720A true JPH06151720A (en) 1994-05-31

Family

ID=17911311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4302631A Pending JPH06151720A (en) 1992-11-12 1992-11-12 Constructing method monolithic integrated circuit

Country Status (1)

Country Link
JP (1) JPH06151720A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003014010A1 (en) * 2001-08-08 2003-02-20 Jsr Corporation Three-dimensional opto-electronic micro-system
JP2003168762A (en) * 2001-12-03 2003-06-13 Sony Corp Electronic component and method of manufacturing the same
JP2003197881A (en) * 2001-12-27 2003-07-11 Seiko Epson Corp Semiconductor integrated circuit, method of manufacturing semiconductor integrated circuit, semiconductor element member, electro-optical device, electronic apparatus
JP2004047691A (en) * 2002-07-11 2004-02-12 Seiko Epson Corp Semiconductor device manufacturing method, electro-optical device, and electronic apparatus
US6858872B2 (en) 2002-06-18 2005-02-22 Seiko Epson Corporation Optical interconnection integrated circuit, method of manufacturing optical interconnection integrated circuit, electro-optical apparatus, and electronic apparatus
US6858518B2 (en) 2001-12-28 2005-02-22 Seiko Epson Corporation Method for manufacturing semiconductor integrated circuit
JP2006032784A (en) * 2004-07-20 2006-02-02 Sharp Corp Semiconductor device and method for manufacturing the same
US7180924B2 (en) 2002-05-30 2007-02-20 Seiko Epson Corporation Semiconductor apparatus and a semiconductor unit, the semiconductor unit including a functional layer including a semiconductor element, and a highly conductive layer
US7368754B2 (en) 2002-06-10 2008-05-06 Seiko Epson Corporation Semiconductor integrated circuit, signal transmitting device, electro-optical device, and electronic apparatus
US7435998B2 (en) 2002-06-20 2008-10-14 Seiko Epson Corporation Semiconductor device, method of manufacturing the same, electro-optic device and electronic apparatus with a protective film
JP2009105445A (en) * 2009-02-06 2009-05-14 Oki Data Corp Semiconductor thin film manufacturing method and semiconductor device manufacturing method
JP2011176363A (en) * 2011-05-20 2011-09-08 Oki Data Corp Method of manufacturing semiconductor thin film, and method of manufacturing semiconductor device
JP2013004633A (en) * 2011-06-14 2013-01-07 Canon Components Inc Semiconductor device manufacturing method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7387913B2 (en) 2001-08-08 2008-06-17 Jsr Corporation 3D optoelectronic micro system
WO2003014010A1 (en) * 2001-08-08 2003-02-20 Jsr Corporation Three-dimensional opto-electronic micro-system
JP2003168762A (en) * 2001-12-03 2003-06-13 Sony Corp Electronic component and method of manufacturing the same
JP2003197881A (en) * 2001-12-27 2003-07-11 Seiko Epson Corp Semiconductor integrated circuit, method of manufacturing semiconductor integrated circuit, semiconductor element member, electro-optical device, electronic apparatus
US7244662B2 (en) 2001-12-27 2007-07-17 Seiko Epson Corporation Method for manufacturing semiconductor integrated circuit
US6858518B2 (en) 2001-12-28 2005-02-22 Seiko Epson Corporation Method for manufacturing semiconductor integrated circuit
US7180924B2 (en) 2002-05-30 2007-02-20 Seiko Epson Corporation Semiconductor apparatus and a semiconductor unit, the semiconductor unit including a functional layer including a semiconductor element, and a highly conductive layer
US7368754B2 (en) 2002-06-10 2008-05-06 Seiko Epson Corporation Semiconductor integrated circuit, signal transmitting device, electro-optical device, and electronic apparatus
US6858872B2 (en) 2002-06-18 2005-02-22 Seiko Epson Corporation Optical interconnection integrated circuit, method of manufacturing optical interconnection integrated circuit, electro-optical apparatus, and electronic apparatus
US7435998B2 (en) 2002-06-20 2008-10-14 Seiko Epson Corporation Semiconductor device, method of manufacturing the same, electro-optic device and electronic apparatus with a protective film
US7709283B2 (en) 2002-06-20 2010-05-04 Seiko Epson Corporation Method of manufacturing a semiconductor device having an insulating protective film covering at least a portion of a tile-shaped element
US6943050B2 (en) 2002-07-11 2005-09-13 Seiko Epson Corporation Method for making semiconductor device, semiconductor element composite, electro-optical apparatus, and electronic system
JP2004047691A (en) * 2002-07-11 2004-02-12 Seiko Epson Corp Semiconductor device manufacturing method, electro-optical device, and electronic apparatus
JP2006032784A (en) * 2004-07-20 2006-02-02 Sharp Corp Semiconductor device and method for manufacturing the same
JP2009105445A (en) * 2009-02-06 2009-05-14 Oki Data Corp Semiconductor thin film manufacturing method and semiconductor device manufacturing method
JP2011176363A (en) * 2011-05-20 2011-09-08 Oki Data Corp Method of manufacturing semiconductor thin film, and method of manufacturing semiconductor device
JP2013004633A (en) * 2011-06-14 2013-01-07 Canon Components Inc Semiconductor device manufacturing method

Similar Documents

Publication Publication Date Title
US6913985B2 (en) Method of manufacturing a semiconductor device
US7459343B2 (en) Method of manufacturing semiconductor device and support structure for semiconductor substrate
TWI639248B (en) Systems and methods for preparing gan and related materials for micro assembly
US8865520B2 (en) Carrier bonding and detaching processes for a semiconductor wafer
US6214733B1 (en) Process for lift off and handling of thin film materials
US5286335A (en) Processes for lift-off and deposition of thin film materials
US6455945B1 (en) Semiconductor device having a fragment of a connection part provided on at least one lateral edge for mechanically connecting to adjacent semiconductor chips
JPH06151720A (en) Constructing method monolithic integrated circuit
US20070218649A1 (en) Semiconductor wafer thinning
CN111199951B (en) Semiconductor device, manufacturing method thereof and manufacturing method of alignment mark
US6974721B2 (en) Method for manufacturing thin semiconductor chip
JP4488702B2 (en) Manufacturing method of semiconductor device
CN110970340B (en) A kind of flexible InP HBT device and preparation method thereof
CN113921442B (en) Chip transfer assembly and manufacturing method thereof, chip transfer method and display backplane
JP2003162231A (en) Method of manufacturing element, method of arraying element and method of manufacturing image display device
US11699677B2 (en) Die-to-wafer bonding utilizing micro-transfer printing
JP2008181990A (en) Method of manufacturing semiconductor device and semiconductor device
CN113903695A (en) Micro LED chip transfer method, display backplane and display device
JPWO2021019855A1 (en) Semiconductor device manufacturing method and semiconductor device manufacturing system
JPH01133341A (en) Manufacture of semiconductor device and manufacturing equipment therefor
CN115424981B (en) Cutting method and bonding method
US8033011B2 (en) Method for mounting a thinned semiconductor wafer on a carrier substrate
US6142853A (en) Method and apparatus for holding laser wafers during a fabrication process to minimize breakage
JP7665016B2 (en) Sheet, handling sheet, handling method, method for handling thin device, method for removing thinned wafer, method for removing mold-sealed relocation element, method for manufacturing thinned wafer, mold-sealed relocation element, and method for manufacturing package
JP6622445B1 (en) Semiconductor device manufacturing method and semiconductor substrate