[go: up one dir, main page]

JPH06150943A - Oxygen ion conductive material and solid fuel cell - Google Patents

Oxygen ion conductive material and solid fuel cell

Info

Publication number
JPH06150943A
JPH06150943A JP4296214A JP29621492A JPH06150943A JP H06150943 A JPH06150943 A JP H06150943A JP 4296214 A JP4296214 A JP 4296214A JP 29621492 A JP29621492 A JP 29621492A JP H06150943 A JPH06150943 A JP H06150943A
Authority
JP
Japan
Prior art keywords
oxygen ion
conductive material
solid electrolyte
ion conductive
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4296214A
Other languages
Japanese (ja)
Inventor
Takao Ishii
隆生 石井
Yukimichi Tajima
幸道 田嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4296214A priority Critical patent/JPH06150943A/en
Publication of JPH06150943A publication Critical patent/JPH06150943A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To heighten ion conductivity, eliminate a structural modification between room temperature and operation temperature, and enable oxygen ion conductive material to be practically used as the solid electrolyte of a fuel cell by using an oxygen ion conductive material with fixed composition as the solid electrolyte CONSTITUTION:Oxygen ion conductive material having composition expressed by a formula (1-x-y)ZrO2-xSc2O3-yM2O3 (M is one kind selected out of In, Ga, Ti, V, Cr, Fe, Co, Mg, Ca, Zn, Sr, Ba; 0<x+y<0.16 and x>0, y>0) is used as solid electrolyte 2. LaMnO3 doped with Sr is used as an oxygen electrode 1, Ni-ZrO2 as a fuel electrode 3, and LaCrO3 as an interconnector 4. Thereby, conductivity becomes about four times comparing with that of Y2O3 stabilized ZrO3 (YSZ). Further, by stabilizing cubic crystal to room temperature structurally, mechanical strength against a heat cycle is strengthened, and it is possible to obtain material having small conductivity change with the lapse of time at high temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は酸素イオン導伝体及び固
体電解質燃料電池に関するものである。
FIELD OF THE INVENTION The present invention relates to an oxygen ion conductor and a solid electrolyte fuel cell.

【0002】[0002]

【従来の技術】近年、酸素イオン導伝体を用いた固体電
解質燃料電池に関心が高まりつつある。特にエネルギー
の有効利用という観点から、固体燃料電池はカルノー効
率の制約を受けないため本質的に高いエネルギー変換効
率を有し、さらに良好な環境保全が期待されるなどの優
れた特長を持っている。
2. Description of the Related Art In recent years, interest in solid electrolyte fuel cells using oxygen ion conductors is increasing. Particularly, from the viewpoint of effective use of energy, solid fuel cells have essentially high energy conversion efficiency because they are not restricted by Carnot efficiency, and also have excellent features such as good environmental protection is expected. .

【0003】固体電解質燃料電池の電解質として従来最
も有望視されてきた酸素イオン導伝体であるY23安定
化ZrO2(YSZ)において十分なイオン伝導度を得
るには1000℃の高温動作が必要である。
Y 2 O 3 -stabilized ZrO 2 (YSZ), which is the most promising oxygen ion conductor as a solid electrolyte fuel cell electrolyte, has been operated at a high temperature of 1000 ° C. to obtain sufficient ionic conductivity. is necessary.

【0004】しかし、このような高温では電極界面との
反応による部品寿命の劣化が激しく固体燃料電池の実用
化がおくれているのが現状である。このような観点から
動作温度を下げることが望まれそのためYSZより高い
イオン伝導材料の出現が望まれている。
However, at such a high temperature, the life of parts is greatly deteriorated due to the reaction with the electrode interface, and the solid fuel cell is currently put into practical use. From this point of view, it is desired to lower the operating temperature, and therefore, the emergence of an ion conductive material higher than YSZ is desired.

【0005】一般にジルコニア系の酸素イオン導伝体で
はドーパントのイオン半径が小さくなるほどイオン伝導
度が上昇する傾向がある。これはドーパントのイオン半
径がZr4+のイオン半径に近づくと、動きうる酸素イオ
ンの活性化エネルギーが小さくなるためである。事実Z
rO2−Sc23系はジルコニア系で最も高いイオン伝
導度を有することが知られている。しかし、ドーパント
の増加とともに結晶構造は単斜晶−菱面体−立方晶と変
化し、またイオン伝導度が最大の値をとる領域では菱面
体が室温で安定となり立方晶が安定化されない。さらに
650℃以上では立方晶に構造相転移するため熱サイク
ルによる破壊を引き起こし固体電解質材料として使用す
ることは問題が多い。
Generally, in a zirconia-based oxygen ion conductor, the ionic conductivity tends to increase as the ionic radius of the dopant decreases. This is because as the ionic radius of the dopant approaches the ionic radius of Zr 4+ , the activation energy of oxygen ions that can move becomes smaller. Fact Z
It is known that the rO 2 —Sc 2 O 3 system has the highest ionic conductivity in the zirconia system. However, as the dopant increases, the crystal structure changes from monoclinic to rhombohedral-cubic, and in the region where the ionic conductivity has the maximum value, the rhombohedron becomes stable at room temperature and the cubic crystal is not stabilized. Further, at 650 ° C. or higher, the structural phase transitions to cubic, causing destruction due to thermal cycles, and there are many problems in using it as a solid electrolyte material.

【0006】[0006]

【発明が解決しようとする課題】本発明は、YSZに比
ベてイオン伝導率の高く、室温と動作温度の間での構造
変態がなく、さらに、燃料電池の固体電解質としても実
用上使用可能な酸素イオン導伝体及び固体燃料電池を提
供することを目的とする。
The present invention has a higher ionic conductivity than YSZ, no structural transformation between room temperature and operating temperature, and can be used practically as a solid electrolyte for fuel cells. The present invention aims to provide a new oxygen ion conductor and a solid fuel cell.

【0007】[0007]

【課題を解決するための手段】本発明の酸素イオン導伝
体は(1−x−y)ZrO2−xSc23−yM2
3(MはIn,Ga,Ti,V,Cr,Fe,Co,M
g,Ca,Zn,Sr,Baの内から選ばれる1種;0
<x+y<0.16かつx>0,y>0)なる組成なる
ことを特徴とする。
Means for Solving the Problems] Oxygen ions Shirubedentai of the present invention is (1-x-y) ZrO 2 -xSc 2 O 3 -yM 2 O
3 (M is In, Ga, Ti, V, Cr, Fe, Co, M
one selected from g, Ca, Zn, Sr, and Ba; 0
<X + y <0.16 and x> 0, y> 0).

【0008】また、本発明の固体燃料電池は(1−x−
y)ZrO2−xSc23−yM2 3(MはIn,G
a,Ti,V,Cr,Fe,Co,Mg,Ca,Zn,
Sr,Baの内から選ばれる1種;0<x+y<0.1
6かつx>0,y>0)なる組成なる酸素イオン導伝体
を固体電解質として用いたことを特徴とする。
The solid fuel cell of the present invention is (1-x-
y) ZrO2-XSc2O3-YM2O 3(M is In, G
a, Ti, V, Cr, Fe, Co, Mg, Ca, Zn,
One selected from Sr and Ba; 0 <x + y <0.1
6 and x> 0, y> 0) oxygen ion conductor
Is used as a solid electrolyte.

【0009】尚、上記のような酸素イオン導伝体は通常
の固相反応による焼結法で得られる。
The oxygen ion conductor as described above can be obtained by an ordinary sintering method by a solid phase reaction.

【0010】[0010]

【作用】以下に本発明の作用を本発明をなすに際して得
た知見とともに説明する。
The function of the present invention will be described below together with the findings obtained in the present invention.

【0011】本発明者は、まず、ZrO2−Sc23
のイオン導伝体を固体電解質として燃料電池に用いた場
合になぜに電極との間での剥離が生ずるかの原因の解明
を行った。その結果、剥離は次のような理由によって生
ずるのであろうとの知見を得た。
The inventor of the present invention firstly clarified the reason why the separation between the ZrO 2 —Sc 2 O 3 type ion conductor and the electrode occurs when the ion conductor is used as a solid electrolyte in a fuel cell. I went. As a result, it was found that the peeling might be caused by the following reasons.

【0012】すなわち、ドーパントの増加とともに結晶
構造は単斜晶−菱面体−立方晶と変化し、またイオン伝
導度が最大の値をとる領域では菱面体が室温で安定とな
り立方晶が安定化されない。さらに650℃以上では立
方晶に構造変化するため、熱膨張率の相違に基づき、熱
サイクルによる破壊(剥離)を引き起こすものであると
考えられる。
That is, the crystal structure changes as monoclinic-rhombohedral-cubic with the increase of the dopant, and the rhombohedron becomes stable at room temperature and the cubic crystal is not stabilized in the region where the ionic conductivity has the maximum value. . Further, at 650 ° C. or higher, the structure changes to a cubic crystal, and it is considered that the destruction (peeling) due to the thermal cycle is caused based on the difference in the coefficient of thermal expansion.

【0013】そこで、本発明者は、かかる相変態を防止
するための手段を求めるべく、幾多の実験を重ね創意探
求した。ただ、注意を要した点は、相変態を防止するだ
けでは不十分であり、相変態を防止し得るとともに、Y
SZよりも高いイオン伝導度を保持せしめなければなら
ないということである。
Therefore, the inventor of the present invention has repeatedly conducted many experiments and sought to find a means for preventing such phase transformation. However, the point that requires attention is that it is not enough to prevent the phase transformation, and it is possible to prevent the phase transformation and
This means that the ionic conductivity must be maintained higher than that of SZ.

【0014】幾多の実験を重ねる過程において、本発明
者はScの他に副ドーパントを添加すると安定した相構
造が得られ、また、高いイオン伝導度を示す場合がある
ことを見いだした。
In the course of conducting many experiments, the present inventor has found that when a subdopant is added in addition to Sc, a stable phase structure can be obtained and high ionic conductivity may be exhibited.

【0015】そこで、さらに実験を重ねたところ、Sc
の一部を2価または3価が安定な元素で置換すると立方
晶構造が安定して得られることを知見した。
Then, after further experiments, Sc
It was found that a cubic crystal structure can be stably obtained by substituting a part of the element with a divalent or trivalent stable element.

【0016】しかし、そのような副ドーパントであって
も、高い伝導度の得られない場合もあり、その理由をさ
らに探求したところ、主ドーパントであるScと副ドー
パントの合計含有量が一つの要因をなしており、ある限
定された範囲内における添加量とすることが必要である
ことを解明し、本発明をなすにいたった。
However, even with such a sub-dopant, high conductivity may not be obtained in some cases, and when the reason for this is further sought, the total content of the main dopant Sc and the sub-dopant is one factor. Therefore, it was clarified that it was necessary to set the addition amount within a certain limited range, and the present invention was completed.

【0017】本発明は、(1−x−y)ZrO2−xS
23−yM23(MはIn,Ga,Ti,V,Cr,
Fe,Co,Mg,Ca,Zn,Sr,Baの内から選
ばれる1種;0<x+y<0.16かつx>0,y>
0)なる組成なる材料を用いる。
The present invention relates to (1-x-y) ZrO 2 -xS.
c 2 O 3 -yM 2 O 3 (M is In, Ga, Ti, V, Cr,
One selected from Fe, Co, Mg, Ca, Zn, Sr, and Ba; 0 <x + y <0.16 and x> 0, y>
The material having the composition 0) is used.

【0018】すなわち、本発明によって得られるイオン
導伝体は、主ドーパントとしてScを含有する。Scの
イオン半径はZrに近いためYSZより酸素イオンが動
きやすい。このためYSZに比ベて低温で著しく大きな
イオン伝導度を実現できる。
That is, the ion conductor obtained by the present invention contains Sc as a main dopant. Since the ion radius of Sc is close to Zr, oxygen ions move more easily than YSZ. For this reason, it is possible to realize a remarkably large ionic conductivity at a low temperature as compared with YSZ.

【0019】また、本発明では、2価または3価が安定
な副ドーパントを添加する。かかる副ドーパントにより
イオン伝導度はほぼScの特性を保持し、なおかつ、結
晶構造は立方晶に安定化され高温での結晶変態は現われ
ない。
In the present invention, a bi- or tri-valent stable subdopant is added. Due to such a subdopant, the ionic conductivity maintains the characteristic of almost Sc, and the crystal structure is stabilized to cubic crystal, and the crystal transformation does not appear at high temperature.

【0020】さらに本発明では、0<x+y<0.16
とする。かかる限定された範囲における添加量によって
のみ、相変態がなく、しかも高いイオン伝導度を有する
イオン導伝体が得られる。すなわち、x+y>0.16
とすると高いイオン伝導度が得られなくなる。以上のよ
うな構成とすることによって、高イオン伝導度かつ熱サ
イクルに対する機械的強度の強い(例えば、電極との剥
離が生じない)材料を実現できる。
Further, in the present invention, 0 <x + y <0.16
And An ionic conductor having no phase transformation and high ionic conductivity can be obtained only by the addition amount within the limited range. That is, x + y> 0.16
If so, high ionic conductivity cannot be obtained. With the above-mentioned structure, a material having high ionic conductivity and strong mechanical strength against heat cycle (for example, peeling from the electrode does not occur) can be realized.

【0021】[0021]

【実施例】以下に本発明の実施例を説明する。なお、当
然のことであるが本発明は以下の実施例に限定されるも
のではない。
EXAMPLES Examples of the present invention will be described below. Of course, the present invention is not limited to the following examples.

【0022】(実施例1)(1−x−y)ZrO2−x
Sc23−yM23(MはIn,Ga,Ti,V,C
r,Fe,Co,Mg,Ca,Zn,Sr,Baの内か
ら選ばれる1種;0<x+y<0.16かつx>0,y
>0)を表1に示す化学組成で配合した後、十分混合
し、20mmφ厚さ2mmのぺレットに成型したものを
1620℃の温度で空気中60時間焼成を行ってイオン
導伝体を作製した。試料の生成相を粉末X線回折で同定
した後、イオン伝導率をインピーダンスメータにより、
10Hz−1MHzの周波数でスイープした後、インピ
ーダンスプロットを行って測定した。
(Example 1) (1-x-y) ZrO 2 -x
Sc 2 O 3 -yM 2 O 3 (M is In, Ga, Ti, V, C
One selected from r, Fe, Co, Mg, Ca, Zn, Sr, and Ba; 0 <x + y <0.16 and x> 0, y
> 0) with the chemical composition shown in Table 1, mixed well, and molded into a pellet having a diameter of 20 mm and a thickness of 2 mm, and baking the pellet at a temperature of 1620 ° C. for 60 hours in the air to prepare an ion conductor. did. After identifying the production phase of the sample by powder X-ray diffraction, the ionic conductivity was measured by an impedance meter.
After sweeping at a frequency of 10 Hz-1 MHz, impedance plotting was performed and measured.

【0023】図1に0.88ZrO2−0.10Sc2
3−0.02InO3の場合の室温におけるX線回折図形
を示す(図1(a))。尚、副ドーパントを含まない
0.88ZrO2−0.12Sc23の場合も示す(図
1(b))。ドーパントを含まない場合、室温では菱面
体相が単一相として得られる。ところが、温度を上げる
と650℃付近で立方晶に転移する。しかし、副ドーパ
ントの添加により立方晶が安定化されていることがわか
る。
In FIG. 1, 0.88ZrO 2 -0.10Sc 2 O
3 shows the X-ray diffraction pattern at room temperature in the case of -0.02InO 3 (Figure 1 (a)). The case of 0.88ZrO 2 -0.12Sc 2 O 3 containing no subdopant is also shown (FIG. 1 (b)). Without a dopant, the rhombohedral phase is obtained as a single phase at room temperature. However, when the temperature is raised, the crystal transitions to cubic at around 650 ° C. However, it can be seen that the cubic crystal is stabilized by the addition of the subdopant.

【0024】図2にイオン伝導度の温度依存性を示す。
In23を添加していない0.88ZrO2−0.12
Sc23では結晶構造の相転移にともないイオン伝導度
が転移温度付近で不連続的に変化する(図2(b))。
In23を添加した0.88ZrO2−0.10Sc2
3−0.02In23ではイオン伝導度はほぼ直線的な
アレリウスの関係をほぼ満足する(図2(a))。In
23をドープした場合でも800℃で6.1xl0-2
hm-1cm-1と優れたイオン伝導性を示す。
FIG. 2 shows the temperature dependence of ionic conductivity.
0.88ZrO 2 -0.12 without addition of In 2 O 3
In Sc 2 O 3 , the ionic conductivity changes discontinuously near the transition temperature along with the phase transition of the crystal structure (FIG. 2 (b)).
0.88ZrO 2 -0.10Sc 2 O with the addition of In 2 O 3
In 3-0.02In 2 O 3 , the ionic conductivity almost satisfies the linear linear Allerius relation (FIG. 2A). In
6.1 × 10 −2 o at 800 ° C. even when doped with 2 O 3
It exhibits excellent ionic conductivity of hm -1 cm -1 .

【0025】以下同様にして測定した800℃でのイオ
ン伝導度の結果を表1に示す。いずれの場合も800℃
におけるYSZの値2xl0-2ohm-1cm-lより高い
イオン伝導度を示し、また結晶構造は室温まで立方晶が
安定化されていた。
The results of ionic conductivity at 800 ° C. measured in the same manner are shown in Table 1 below. 800 ℃ in either case
Shows high ion conductivity than the value 2xl0 -2 ohm -1 cm -l of YSZ in, also the crystal structure had been cubic stabilized to room temperature.

【0026】[0026]

【表1】 材料 伝導率(ohm-1cm-1) 0.88ZrO2-0.115Sc2O3-0.005In2O3 5.1xl0-2 0.88ZrO2-0.10Sc2O3-0.02In2O3 6.1x10-2 0.88ZrO2-0.08Sc2O3-0.04In2O3 5.7x10-2 0.88ZrO2-0.06Sc2O3-0.06In2O3 5.1x10-2 0.88ZrO2-0.04Sc2O3-0.08In2O3 4.8x10-2 0.88ZrO2-0.02Sc2O3-0.10In2O3 2.2x10-2 (実施例2)(1−x−y)ZrO2−xSc23−y
23(MはIn,Ga,Ti,V,Cr,Fe,C
o,Mg,Ca,Zn,Sr,Baの内から選ばれる1
種;0<x+y<0.16かつx>0,y>0)を表2
に示す化学組成で配合した後、十分混合し、20mmφ
厚さ2mmのぺレットに成型したものを1620℃の温
度で空気中60時間焼成を行ってイオン導伝体を作製し
た。試料の生成相を粉末X線回折で同定した後、イオン
伝導率をインピーダンスメータにより、10Hz−1M
Hzの周波数でスイープした後、インピーダンスプロッ
トを行って測定した。副ドーパントIn23により結晶
構造は菱面体相があらわれず室温まで立方晶が安定化さ
れていた。実施例1と同様にして測定した800℃での
イオン伝導度の結果を表3に示す。x+y<0.16で
は800℃におけるYSZの値2xl0-2ohm-lcm
-lより高いイオン伝導度を示した。
[Table 1] Material Conductivity (ohm -1 cm -1 ) 0.88ZrO 2 -0.115Sc 2 O 3 -0.005In 2 O 3 5.1xl0 -2 0.88ZrO 2 -0.10Sc 2 O 3 -0.02In 2 O 3 6.1 x10 -2 0.88ZrO 2 -0.08Sc 2 O 3 -0.04In 2 O 3 5.7x10 -2 0.88ZrO 2 -0.06Sc 2 O 3 -0.06In 2 O 3 5.1x10 -2 0.88ZrO 2 -0.04Sc 2 O 3 -0.08In 2 O 3 4.8x10 -2 0.88ZrO 2 -0.02Sc 2 O 3 -0.10In 2 O 3 2.2x10 -2 (Example 2) (1-x-y) ZrO 2 -xSc 2 O 3 -y
M 2 O 3 (M is In, Ga, Ti, V, Cr, Fe, C
1 selected from o, Mg, Ca, Zn, Sr, Ba
Species; 0 <x + y <0.16 and x> 0, y> 0)
20mmφ after mixing with the chemical composition shown in
The pellets having a thickness of 2 mm were fired in air at a temperature of 1620 ° C. for 60 hours to prepare an ion conductor. After identifying the produced phase of the sample by powder X-ray diffraction, the ionic conductivity was measured by an impedance meter at 10 Hz-1M.
After sweeping at a frequency of Hz, impedance plots were performed and measured. The rhombohedral phase did not appear in the crystal structure due to the subdopant In 2 O 3, and the cubic crystal was stabilized up to room temperature. Table 3 shows the results of the ionic conductivity at 800 ° C. measured in the same manner as in Example 1. When x + y <0.16, the value of YSZ at 800 ° C. is 2 × 10 −2 ohm −l cm.
It showed higher ionic conductivity than -l .

【0027】[0027]

【表2】 材料 伝導率(ohm-1cm-1) 0.96ZrO2-0.02Sc2O3-0.02In2O3 2.4xl0-2 0.94ZrO2-0.04Sc2O3-0.02In2O3 3.1xl0-2 0.92ZrO2-0.06Sc2O3-0.02In2O3 4.2xl0-2 0.90ZrO2-0.08Sc2O3-0.02In2O3 7.4xl0-2 0.88ZrO2-0.10Sc2O3-0.02In2O3 6.1xl0-2 0.86ZrO2-0.12Sc2O3-0.02In2O3 4.2xl0-2 0.84ZrO2-0.14Sc2O3-0.02In2O3 2.1xl0-2 0.80ZrO2-0.18Sc2O3-0.02In2O3 1.2xl0-2 (実施例3)(1−x−y)ZrO2−xSc23−y
23(MはIn,Ga,Ti,V,Cr,Fe,C
o,Mg,Ca,Zn,Sr,Baの内から選ばれる1
種;0<x+y<0.16かつx>0,y>0)を表3
に示す化学組成で配合した後、十分混合し、20mmφ
厚さ2mmのぺレットに成型したものを1620℃の温
度で空気中60時間焼成を行ってイオン導伝体を作製し
た。試料の生成相を粉末X線回折で同定した後、イオン
伝導率をインピーダンスメータにより、10Hz−1M
Hzの周波数でスイープした後、インピーダンスプロッ
トを行って測定した。副ドーパントM23(MはIn,
Ga,Ti,V,Cr,Fe,Co,Mg,Ca,Z
n,Sr,Baの内から選ばれる1種)により結晶構造
は菱面体相があらわれず室温まで立方晶が安定化されて
いた。
[Table 2] Material Conductivity (ohm -1 cm -1 ) 0.96ZrO 2 -0.02Sc 2 O 3 -0.02In 2 O 3 2.4xl0 -2 0.94ZrO 2 -0.04Sc 2 O 3 -0.02In 2 O 3 3.1 xl0 -2 0.92ZrO 2 -0.06Sc 2 O 3 -0.02In 2 O 3 4.2xl0 -2 0.90ZrO 2 -0.08Sc 2 O 3 -0.02In 2 O 3 7.4xl0 -2 0.88ZrO 2 -0.10Sc 2 O 3 -0.02In 2 O 3 6.1xl0 -2 0.86ZrO 2 -0.12Sc 2 O 3 -0.02In 2 O 3 4.2xl0 -2 0.84ZrO 2 -0.14Sc 2 O 3 -0.02In 2 O 3 2.1xl0 -2 0.80ZrO 2 -0.18Sc 2 O 3 -0.02In 2 O 3 1.2xl0 -2 (Example 3) (1-x-y) ZrO 2 -xSc 2 O 3 -y
M 2 O 3 (M is In, Ga, Ti, V, Cr, Fe, C
1 selected from o, Mg, Ca, Zn, Sr, Ba
Species; 0 <x + y <0.16 and x> 0, y> 0)
20mmφ after mixing with the chemical composition shown in
The pellets having a thickness of 2 mm were fired in air at a temperature of 1620 ° C. for 60 hours to prepare an ion conductor. After identifying the produced phase of the sample by powder X-ray diffraction, the ionic conductivity was measured by an impedance meter at 10 Hz-1M.
After sweeping at a frequency of Hz, impedance plots were performed and measured. Subdopant M 2 O 3 (M is In,
Ga, Ti, V, Cr, Fe, Co, Mg, Ca, Z
The rhombohedral phase did not appear in the crystal structure, and the cubic crystal was stabilized up to room temperature by one kind selected from n, Sr, and Ba).

【0028】実施例1と同様にして測定した800℃で
のイオン伝導度の結果を表3に示す。x+y<0.16
では800℃におけるYSZの値2x10-2ohm-1
-1より高いイオン伝導度を示した。
The results of ionic conductivity at 800 ° C. measured in the same manner as in Example 1 are shown in Table 3. x + y <0.16
Then, the value of YSZ at 800 ° C is 2 × 10 -2 ohm -1 c
It showed an ionic conductivity higher than m -1 .

【0029】[0029]

【表3】 材料 伝導率(ohm-1cm-1) 0.90ZrO2-0.08Sc2O3-0.02In2O3 7.4x10-2 0.90ZrO2-0.08Sc2O3-0.02Ga2O3 3.1x10-2 0.90ZrO2-0.08Sc2O3-0.02Ti2O3 4.2x10-2 0.90ZrO2-0.08Sc2O3-0.02V2O3 5.3x10-2 0.90ZrO2-0.08Sc2O3-0.02Cr2O3 6.1x10-2 0.90ZrO2-0.08Sc2O3-0.02Fe2O3 2.4x10-2 0.90ZrO2-0.08Sc2O3-0.02Co2O3 4.1x10-2 0.90ZrO2-0.08Sc2O3-0.02Mg2O3 3.4x10-2 0.90ZrO2-0.08Sc2O3-0.02Ca2O3 3.1x10-2 0.90ZrO2-0.08Sc2O3-0.02Zn2O3 4.2x10-2 0.90ZrO2-0.08Sc2O3-0.02Sr2O3 4.3x10-2 0.90ZrO2-0.08Sc2O3-0.02Ba2O3 5.1x10-2 (実施例4)図3は本発明の材料を用いた単セルの固体
燃料電池の構成例を示す図である。本実施例の電池構成
において、1は酸素電極、2は固体電解質、3は燃料電
極、4はインターコネクターである。酸素電極としては
SrをドープしたLaMnO 3を、燃料電極にはNi−
ZrO2を、インターコネクターにはLaCrO3を用い
た。単セルの作製方法は次の通りである。
[Table 3] Material Conductivity (ohm-1cm-1) 0.90ZrO2-0.08Sc2O3-0.02In2O3 7.4x10-2 0.90ZrO2-0.08Sc2O3-0.02Ga2O3 3.1x10-2 0.90ZrO2-0.08Sc2O3-0.02Ti2O3 4.2x10-2 0.90ZrO2-0.08Sc2O3-0.02V2O3 5.3x10-2 0.90ZrO2-0.08Sc2O3-0.02Cr2O3 6.1x10-2 0.90ZrO2-0.08Sc2O3-0.02Fe2O3 2.4x10-2 0.90ZrO2-0.08Sc2O3-0.02Co2O3 4.1x10-2 0.90ZrO2-0.08Sc2O3-0.02Mg2O3 3.4x10-2 0.90ZrO2-0.08Sc2O3-0.02Ca2O3 3.1x10-2 0.90ZrO2-0.08Sc2O3-0.02Zn2O3 4.2x10-2 0.90ZrO2-0.08Sc2O3-0.02Sr2O3 4.3x10-2 0.90ZrO2-0.08Sc2O3-0.02Ba2O3 5.1x10-2 (Embodiment 4) FIG. 3 is a single cell solid using the material of the present invention.
It is a figure which shows the structural example of a fuel cell. Battery configuration of this example
, 1 is an oxygen electrode, 2 is a solid electrolyte, 3 is a fuel cell
Poles 4 are interconnectors. As an oxygen electrode
LaMnO doped with Sr 3Ni- for the fuel electrode
ZrO2, The interconnector is LaCrO3Using
It was The method for producing a single cell is as follows.

【0030】まずSrをドープしたLaMnO3を通常
の固相反応法でセラミックスの焼結体に焼き上げ、その
上にドクターブレード法により固体電解質のセラミック
ス薄膜を形成1600℃で焼き上げる。
First, Sr-doped LaMnO 3 is baked into a ceramics sintered body by a normal solid-phase reaction method, and a ceramics thin film of a solid electrolyte is formed thereon by a doctor blade method and baked at 1600 ° C.

【0031】なお、燃料電極及びインターコネクターは
単膜順次積層形成法でそれぞれ1300℃および120
0℃で焼成して作る。次に、本実施例の効果を測定例で
示す。図3において、酸素電極1および燃料電極3の厚
みを1mmとし、固体電解質2の厚みを0.1mmと
し、インターコネクターの厚みを1mmとし、20mm
φの単セルを形成した。固体電解質2の材料が0.90
ZrO2−0.08Sc23−0.02In23の場合
のH2−空気雰囲気800℃における単セルの電流(電
流密度)−電圧特性を図4に示す。YSZ側の曲線が比
較のために示した従来例の特性である。
The fuel electrode and interconnector were formed at 1300 ° C. and 120 ° C., respectively, by the single film sequential lamination forming method.
It is made by baking at 0 ° C. Next, the effect of this embodiment will be shown by a measurement example. In FIG. 3, the oxygen electrode 1 and the fuel electrode 3 have a thickness of 1 mm, the solid electrolyte 2 has a thickness of 0.1 mm, and the interconnector has a thickness of 1 mm.
A single cell of φ was formed. The material of the solid electrolyte 2 is 0.90
FIG. 4 shows the current (current density) -voltage characteristics of a single cell in a H 2 -air atmosphere of 800 ° C. in the case of ZrO 2 -0.08Sc 2 O 3 -0.02In 2 O 3 . The curve on the YSZ side is the characteristic of the conventional example shown for comparison.

【0032】このようにして、本実施例は従来例より良
好な電池特性すなわち電流−電圧特性が得られた。同様
にして本発明の材料を固体電解質として用いた場合、そ
の電池特性はすべて従来例より良好であった。
In this way, the battery characteristic of this example was better than that of the conventional example, that is, the current-voltage characteristic was obtained. Similarly, when the material of the present invention was used as a solid electrolyte, all the battery characteristics were better than those of the conventional example.

【0033】[0033]

【発明の効果】以上説明したように、ZrO2−Sc2
3系はジルコニア系で最も高いイオン伝導度を有するが
結晶構造の不安定性のため材料として使えなかったが第
2ドーパントの工夫により従来用いられている酸素イオ
ン導伝体YSZに比ベて約4倍の伝導度を有し、しかも
構造的には立方晶を室温まで安定化することにより熱サ
イクルに対する機械的強度が強く高温における伝導率の
経時変化の小さな材料を得ることに成功した。
As described above, ZrO 2 --Sc 2 O
The 3 type has the highest ionic conductivity of the zirconia type, but could not be used as a material due to the instability of the crystal structure, but it is about 4 compared with the oxygen ion conductor YSZ which is conventionally used due to the devise of the second dopant. We have succeeded in obtaining a material that has double the conductivity and structurally stabilizes the cubic crystal to room temperature and has a high mechanical strength against thermal cycling and a small change in conductivity with time at high temperatures.

【0034】また、本発明は固体燃料電池の低温動作化
に大きな貢献をなすものである。
The present invention also makes a great contribution to the low temperature operation of the solid fuel cell.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)0.88ZrO2−0.l0Sc23
0.02In23 (b)0.88ZrO2−0.12Sc23のX線回折
図形。
FIG. 1 (a) 0.88ZrO 2 −0. 10 Sc 2 O 3
0.02In 2 O 3 (b) X-ray diffraction pattern of 0.88ZrO 2 -0.12Sc 2 O 3.

【図2】(a)0.88ZrO2−0.10Sc23
0.02In23 (b)0.88ZrO2−0.12Sc23のイオン伝
導度。
FIG. 2 (a) 0.88ZrO 2 −0.10Sc 2 O 3
Ion conductivity of 0.02In 2 O 3 (b) 0.88ZrO 2 -0.12Sc 2 O 3.

【図3】単セルの固体燃料電池の構成図。FIG. 3 is a configuration diagram of a single-cell solid fuel cell.

【図4】単セルの電流−電圧特性図。FIG. 4 is a current-voltage characteristic diagram of a single cell.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 (1−x−y)ZrO2−xSc23
yM23(MはIn,Ga,Ti,V,Cr,Fe,C
o,Mg,Ca,Zn,Sr,Baの内から選ばれる1
種;0<x+y<0.16かつx>0,y>0)なる組
成物であることを特徴とする酸素イオン導伝体。
[Claim 1] (1-x-y) ZrO 2 -xSc 2 O 3 -
yM 2 O 3 (M is In, Ga, Ti, V, Cr, Fe, C
1 selected from o, Mg, Ca, Zn, Sr, Ba
Seed; 0 <x + y <0.16 and x> 0, y> 0).
【請求項2】 (1−x−y)ZrO2−xSc23
yM23(MはIn,Ga,Ti,V,Cr,Fe,C
o,Mg,Ca,Zn,Sr,Baの内から選ばれる1
種;0<x+y<0.16かつx>0,y>0)なる組
成を有する酸素イオン導伝体を固体電解質として用いた
ことを特徴とする固体燃料電池。
Wherein (1-x-y) ZrO 2 -xSc 2 O 3 -
yM 2 O 3 (M is In, Ga, Ti, V, Cr, Fe, C
1 selected from o, Mg, Ca, Zn, Sr, Ba
Seed; a solid fuel cell using an oxygen ion conductor having a composition of 0 <x + y <0.16 and x> 0, y> 0) as a solid electrolyte.
JP4296214A 1992-11-05 1992-11-05 Oxygen ion conductive material and solid fuel cell Pending JPH06150943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4296214A JPH06150943A (en) 1992-11-05 1992-11-05 Oxygen ion conductive material and solid fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4296214A JPH06150943A (en) 1992-11-05 1992-11-05 Oxygen ion conductive material and solid fuel cell

Publications (1)

Publication Number Publication Date
JPH06150943A true JPH06150943A (en) 1994-05-31

Family

ID=17830659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4296214A Pending JPH06150943A (en) 1992-11-05 1992-11-05 Oxygen ion conductive material and solid fuel cell

Country Status (1)

Country Link
JP (1) JPH06150943A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068324A (en) * 2001-06-15 2003-03-07 Ngk Spark Plug Co Ltd Oxygen ion conductive solid electrolytic and electrochemical device and solid electrolytic fuel cell using same
JP2007026874A (en) * 2005-07-15 2007-02-01 Toho Gas Co Ltd Zirconia-based solid electrolyte and solid oxide fuel cell using the same
US7438837B2 (en) 2003-03-20 2008-10-21 Nissan Motor Co., Ltd. Method of producing solid electrolyte and solid electrolyte
JP2015535645A (en) * 2012-11-20 2015-12-14 ブルーム エナジー コーポレーション Doped scandia stabilized zirconia electrolyte composition

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068324A (en) * 2001-06-15 2003-03-07 Ngk Spark Plug Co Ltd Oxygen ion conductive solid electrolytic and electrochemical device and solid electrolytic fuel cell using same
US7438837B2 (en) 2003-03-20 2008-10-21 Nissan Motor Co., Ltd. Method of producing solid electrolyte and solid electrolyte
JP2007026874A (en) * 2005-07-15 2007-02-01 Toho Gas Co Ltd Zirconia-based solid electrolyte and solid oxide fuel cell using the same
JP2015535645A (en) * 2012-11-20 2015-12-14 ブルーム エナジー コーポレーション Doped scandia stabilized zirconia electrolyte composition
US20170117567A1 (en) * 2012-11-20 2017-04-27 Bloom Energy Corporation Doped scandia stabilized zirconia electrolyte compositions
JP2018139220A (en) * 2012-11-20 2018-09-06 ブルーム エナジー コーポレーション Doped scandia stabilized zirconia electrolyte composition
CN110061274A (en) * 2012-11-20 2019-07-26 博隆能源股份有限公司 The Zirconia electrolytic composition of doped scandia stabilized
US10381673B2 (en) 2012-11-20 2019-08-13 Bloom Energy Corporation Doped scandia stabilized zirconia electrolyte compositions
US10978726B2 (en) 2012-11-20 2021-04-13 Bloom Energy Corporation Doped scandia stabilized zirconia electrolyte compositions
CN110061274B (en) * 2012-11-20 2022-09-06 博隆能源股份有限公司 Doped scandia stabilized zirconia electrolyte compositions

Similar Documents

Publication Publication Date Title
Fan et al. Layer-structured LiNi0. 8Co0. 2O2: A new triple (H+/O2−/e−) conducting cathode for low temperature proton conducting solid oxide fuel cells
Nguyen et al. Preparation and evaluation of doped ceria interlayer on supported stabilized zirconia electrolyte SOFCs by wet ceramic processes
Zhao et al. Ln 2 MO 4 cathode materials for solid oxide fuel cells
JP3460727B2 (en) Oxygen ion conductor and solid fuel cell
Liu et al. Fabrication and characterization of micro-tubular cathode-supported SOFC for intermediate temperature operation
WO2002089242A1 (en) Direct hydrocarbon fuel cells
Jafari et al. Enhancement of an IT-SOFC cathode by introducing YSZ: Electrical and electrochemical properties of La0. 6Ca0. 4Fe0. 8Ni0. 2O3-δ-YSZ composites
Fu et al. Performance of Pd-impregnated Sr1. 9FeNb0. 9Mo0. 1O6-δ double perovskites as symmetrical electrodes for direct hydrocarbon solid oxide fuel cells
US5932146A (en) Air electrode composition for solid oxide fuel cell
Solovyev et al. Effect of sintering temperature on the performance of composite La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3–Ce 0.9 Gd 0.1 O 2 cathode for solid oxide fuel cells
US20060057455A1 (en) High-temperature solid electrolyte fuel cell comprising a composite of nanoporous thin-film electrodes and a structured electrolyte
CN100459250C (en) A lack phase adulated anode material for solid oxide fuel battery
JPH04133264A (en) Fuel electrode of solid electrolyte cell and its manufacture
JP3620800B2 (en) Method for producing solid electrolyte sintered body
JP2002151091A (en) Air electrode material for alkaline earth-added nickel- iron perovskite type low-temperature operating solid fuel cell
JPH05294629A (en) Oxygen ionic conductor and solid fuel cell
Zhang et al. Cost-effective solid oxide fuel cell prepared by single step co-press-firing process with lithiated NiO cathode
JPH06150943A (en) Oxygen ion conductive material and solid fuel cell
JP3381544B2 (en) Composite air electrode material for low temperature operation solid fuel cells
KR101100349B1 (en) Solid electrolyte fuel cell manufacturing method and solid oxide fuel cell manufacturing method using same
JP3128099B2 (en) Air electrode material for low temperature operation type solid fuel cell
JP3573519B2 (en) Single cell of solid oxide fuel cell and method of manufacturing the same
Kim et al. Ln (Sr, Ca) 3 (Fe, Co) 3O10 intergrowth oxide cathodes for solid oxide fuel cells
JP3256919B2 (en) Solid electrolyte fuel cell
JPH0773886A (en) Solid electrolyte type fuel cell