JPH06148062A - Method for evaluating service life of metallic material - Google Patents
Method for evaluating service life of metallic materialInfo
- Publication number
- JPH06148062A JPH06148062A JP4316250A JP31625092A JPH06148062A JP H06148062 A JPH06148062 A JP H06148062A JP 4316250 A JP4316250 A JP 4316250A JP 31625092 A JP31625092 A JP 31625092A JP H06148062 A JPH06148062 A JP H06148062A
- Authority
- JP
- Japan
- Prior art keywords
- life
- photograph
- time
- evaluated
- miller
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims description 20
- 239000007769 metal material Substances 0.000 title claims description 11
- 238000011156 evaluation Methods 0.000 claims abstract description 26
- 239000002184 metal Substances 0.000 claims abstract description 16
- 229910052751 metal Inorganic materials 0.000 claims abstract description 16
- 239000000463 material Substances 0.000 claims abstract description 11
- 230000003287 optical effect Effects 0.000 claims description 5
- 230000032683 aging Effects 0.000 abstract description 3
- 238000010438 heat treatment Methods 0.000 abstract description 3
- 150000002739 metals Chemical class 0.000 abstract description 3
- 238000000635 electron micrograph Methods 0.000 description 16
- 238000000879 optical micrograph Methods 0.000 description 10
- 239000002244 precipitate Substances 0.000 description 7
- 230000035882 stress Effects 0.000 description 7
- 239000010953 base metal Substances 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 5
- 230000001066 destructive effect Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 229910001562 pearlite Inorganic materials 0.000 description 4
- 239000011800 void material Substances 0.000 description 3
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- 229910000851 Alloy steel Inorganic materials 0.000 description 2
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 101150000971 SUS3 gene Proteins 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000009659 non-destructive testing Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Landscapes
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
- Investigating And Analyzing Materials By Characteristic Methods (AREA)
Abstract
(57)【要約】
【目的】 高温高圧で使用される金属の寿命を非破壊で
高精度で評価する。
【構成】 評価対象と同一材料のサンプルを種々の条件
で時効熱処理し、処理したものの組織写真を得、これを
各熱処理のラルソン−ミラー値等の時間・熱パラメータ
と関連づけておく。実際の評価対象につきレプリカ採取
により組織写真を得、これをサンプルの写真と対比し実
評価対象のラルソン−ミラー値を推定し、これにより寿
命評価をする。
(57) [Summary] [Purpose] Nondestructive and highly accurate evaluation of the life of metals used at high temperature and high pressure. [Structure] A sample of the same material as the evaluation target is subjected to an aging heat treatment under various conditions to obtain a microstructure photograph of the treated material, which is associated with time / thermal parameters such as the Larson-Miller value of each heat treatment. A tissue photograph is obtained by collecting a replica of an actual evaluation target, and this is compared with a sample photo to estimate the Larsson-Miller value of the actual evaluation target, and thereby the life is evaluated.
Description
【0001】[0001]
【産業上の利用分野】本発明は火力発電設備のボイラー
管等の高温,高圧の条件で使用される金属材の寿命評価
方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating the life of a metal material used in a boiler pipe of a thermal power plant under high temperature and high pressure conditions.
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】火力発
電設備のボイラー管等、高温,高圧下で使用されている
金属材は、長期の使用によりクリープ破断するので、安
全運転のために適宜交換する必要があり、無駄のない交
換のためにその寿命評価をすることが必要である。即ち
予測寿命と、安全性とを考慮して可及的に交換時期を遅
らせるのが望ましいからである。2. Description of the Related Art Metal materials used under high temperature and high pressure, such as boiler tubes of thermal power generation facilities, will creep rupture due to long-term use, and should be replaced as appropriate for safe operation. It is necessary to evaluate the life of the replacement for efficient replacement. That is, it is desirable to delay the replacement time as much as possible in consideration of the expected life and safety.
【0003】従来使用されている寿命評価方法には破壊
試験法と、非破壊評価法とがある。前者は評価対象の中
から一部の管を抜き出し、これに対してクリープ破断試
験を行い、同材料の新材のクリープ破断試験値との対比
で消費寿命を算出し、又は余命を予測する方法である。
この方法は比較的正確に評価することが可能ではある
が、管の抜き出し、その代替品の装着に多大の工数を要
するし、それが不可能な大径のヘッダー管には適用でき
ない。Conventionally used life evaluation methods include a destructive test method and a non-destructive evaluation method. The former is a method of extracting some pipes from the evaluation target, performing a creep rupture test on this, and calculating the life expectancy by comparing it with the creep rupture test value of a new material of the same material, or predicting the remaining life. Is.
Although this method can be evaluated relatively accurately, it requires a lot of man-hours for extracting the tube and mounting a substitute thereof, and cannot be applied to a large-diameter header tube where it is impossible.
【0004】このために後者の非破壊評価法が重視され
ている。従来の非破壊評価法としては、クリープに伴っ
て生じるボイドを検出して評価する方法があるが、ボイ
ド発生まで、即ち全寿命の30〜40%を消費する迄はボイ
ドが現れず適用できない。またボイドはレプリカ法によ
り検出するのであるが、計測者により検出ボイドのバラ
ツキが大きくこのために評価の精度が低いという問題が
ある。For this reason, the latter nondestructive evaluation method is emphasized. As a conventional nondestructive evaluation method, there is a method of detecting and evaluating voids caused by creep, but the voids do not appear until the occurrence of voids, that is, until 30 to 40% of the total life is consumed, and therefore it cannot be applied. Further, although the void is detected by the replica method, there is a problem that the accuracy of evaluation is low due to the large variation in the detected void depending on the measurer.
【0005】本発明はこのような問題点を解消するため
になされたものであり、評価対象と実質的に同一の材質
のサンプル複数に相異なる熱履歴を与えて、その組織写
真を得、この写真の組織と熱履歴に係る時間・温度パラ
メータとの関係を予め求めておき、実評価時には評価対
象物の組織写真を得てこれを前記関係にあてはめて時間
・温度パラメータを求めることにより、非破壊的に、ま
た個人差なく、また余命が長い段階においても高精度に
寿命評価ができる金属材の寿命評価方法を提供すること
を目的とする。The present invention has been made in order to solve such a problem, and a plurality of samples having substantially the same material as the object to be evaluated are given different thermal histories to obtain a structural photograph of the samples. By previously obtaining the relationship between the structure of the photograph and the time / temperature parameter related to the thermal history, and obtaining the structure photograph of the evaluation object at the time of actual evaluation and applying this to the above relationship to obtain the time / temperature parameter, It is an object of the present invention to provide a method for evaluating the life of a metal material, which is destructive, does not differ among individuals, and can highly accurately evaluate the life even when the life is long.
【0006】[0006]
【課題を解決するための手段】本発明に係る金属材の寿
命評価方法は、熱履歴を表す時間・温度パラメータと破
断応力との関係に基づき金属材の寿命を評価する方法に
おいて、評価対象と実質的に同一の材質のサンプル複数
に異なる熱履歴を経させた上で各サンプルの組織写真を
得、該組織写真に基づきその組織と各熱履歴に対応する
時間・温度パラメータとの関係を予め求めておき、評価
対象の組織写真を得、該組織写真に係る組織と前記関係
とから時間・温度パラメータを特定し、特定した時間・
温度パラメータに基づいてその寿命を評価することを特
徴とする。A method for evaluating the life of a metal material according to the present invention is a method for evaluating the life of a metal material based on the relationship between time / temperature parameters representing thermal history and fracture stress. A plurality of samples of substantially the same material were subjected to different thermal histories, and then a microstructure photograph of each sample was obtained. Obtained in advance, obtain the structure photograph of the evaluation target, specify the time and temperature parameters from the structure related to the structure photograph and the relationship, and specify the specified time
It is characterized in that its life is evaluated based on a temperature parameter.
【0007】[0007]
【作用】金属の組織は消費寿命又は時間・温度パラメー
タと関連を有するので、サンプルについて予め求めてお
いた関係を利用して評価対象の時間・温度パラメータを
特定できる。この時間・温度パラメータと評価対象の使
用時間 (既知) からその時間で連続使用したと看做せる
使用等価温度が求められ、この使用等価温度から寿命が
求められる。Since the structure of the metal has a relationship with the consumption life or the time / temperature parameter, the time / temperature parameter to be evaluated can be specified by utilizing the relationship obtained in advance for the sample. From this time / temperature parameter and the usage time (known) of the evaluation target, the equivalent operating temperature that can be regarded as continuous use at that time is obtained, and the life is obtained from this equivalent temperature.
【0008】[0008]
【実施例】以下本発明をその実施例を示す図面に基づい
て詳述する評価対象の鋼管がSTBA24を素材とするもので
ある場合、同素材からなるサンプルにつき表1に示す温
度(550,600,650 及び700 ℃) 、時間 (100,1000,3000
及び10000 時間) の条件で時効熱処理を行う。評価対象
が溶接部を有しているのでサンプルも同様の溶接を行っ
たものを用いる。EXAMPLES The present invention will be described in detail below with reference to the drawings showing the examples. When the steel pipe to be evaluated is made of STBA24, the temperatures (550, 600, 650 and 700) shown in Table 1 for samples made of the same material are shown. ℃), time (100,1000,3000
And 10,000 hours). Since the object to be evaluated has a welded part, the same welded sample is used.
【0009】[0009]
【表1】 [Table 1]
【0010】表1内の数値は前記時間・熱パラメータと
して採用したラルソン−ミラー値である。ラルソン−ミ
ラー値は T(K+log t) 但し、T:温度(K) t:時間(Hr) K:定数 で表わされる。Kはここでは20を採用した。The values in Table 1 are Larsson-Miller values adopted as the time / heat parameters. The Larson-Miller value is T (K + log t) where T: temperature (K) t: time (Hr) K: constant. K adopted 20 here.
【0011】時間・温度パラメータとしてはラルソン−
ミラー値に限らず従来から知られているものが用いられ
る。例えば Orr−Srerby−Dorn法, Manson−Succop法, Manson−Haf
erd法, 及びManson−Brown 法のパラメータが挙げられ
る。Larson-
Not only the mirror value but also a conventionally known one is used. For example, Orr-Srerby-Dorn method, Manson-Succop method, Manson-Haf
The parameters of the erd method and the Manson-Brown method are listed.
【0012】時効熱処理の後、母材部, 溶着金属部, 熱
影響部 (溶接金属に至近する部分及び遠い部分) の4箇
処について金属組織のレプリカ採取を行い、その光学顕
微鏡写真及び電子顕微鏡写真撮影を行う。これらの写真
は図1〜14に示すように分類整理できる。光学顕微鏡写
真についてみるとパーライト部の炭化物密集形態、これ
が消えたあとの、つまり元パーライト部の析出物の大き
さ、フェライト部の析出物の状態、ベイナイト部の状
態、並びに溶着金属部及びこれに近い熱影響部での全般
的な析出物の状態が分類の基準となる。電子顕微鏡写真
の場合は針状析出物及び粒状析出物等の状態が分類の基
準となる。After the aging heat treatment, a replica of the metal structure was taken at four points of the base metal portion, the deposited metal portion, and the heat affected zone (the portion close to the weld metal and the portion far from the weld metal). Take a photo. These photographs can be classified and organized as shown in Figures 1-14. Looking at the optical micrograph, the carbide dense morphology of the pearlite part, after this disappears, that is, the size of the precipitate of the original pearlite part, the state of the precipitate of the ferrite part, the state of the bainite part, and the deposited metal part and this The general state of precipitates in the heat affected zone is the criterion for classification. In the case of electron micrographs, the state of needle-like precipitates, granular precipitates, etc. is the criterion for classification.
【0013】そしてこの分類は左欄に記す範囲の各サン
プルのラルソン−ミラー値と対応している。図1の母材
についてみると特徴模式図 (中欄) に示すようにパーラ
イト部は濃い黒であり、フェライト部に析出物がない場
合の各サンプルはラルソン−ミラー値が18.92 ×103 以
下であった。またパーライト部が灰色となり、フェライ
ト部の一部に微小点状析出物が存在する状態になったも
ののラルソン−ミラー値は18.92 ×103 〜19.32 ×103
であった。This classification corresponds to the Larson-Miller value of each sample in the range shown in the left column. Looking at the base metal in Fig. 1, the pearlite part is dark black as shown in the characteristic pattern diagram (middle column), and each sample in the case where there is no precipitate in the ferrite part has a Larson-Miller value of 18.92 × 10 3 or less. there were. In addition, the pearlite part became gray, and the minute dot-like precipitates were present in part of the ferrite part, but the Larson-Miller value was 18.92 × 10 3 to 19.32 × 10 3
Met.
【0014】図15は本発明方法によって寿命評価をする
場合に便利なように作成したノモグラムである。横軸は
ラルソン−ミラー値を示している。下部の縦軸は評価対
象のクリープ破壊応力又は評価対象に加わる応力を示
し、この部分に示す曲線は評価対象の平均クリープラプ
チャー曲線である。この曲線は独自に作成してもよいが
評価対象について公表されている曲線を使用してもよ
い。上部の縦軸は温度を示しこの温度と横軸のラルソン
−ミラー値とによって定まる時間をパラメータとして直
線で描いてある。横軸の, …の位置は図1〜14のラ
ルソン−ミラー値の分類に相当する。FIG. 15 is a nomogram prepared so as to be convenient when the life is evaluated by the method of the present invention. The horizontal axis shows the Larson-Miller value. The vertical axis in the lower part indicates the creep fracture stress of the evaluation target or the stress applied to the evaluation target, and the curve shown in this part is the average creep rupture curve of the evaluation target. This curve may be created independently, or a curve published for the evaluation target may be used. The vertical axis in the upper part indicates the temperature, and a straight line is drawn with the time determined by this temperature and the Larsson-Miller value on the horizontal axis as a parameter. Positions on the horizontal axis correspond to the classification of Larson-Miller values in FIGS.
【0015】以上のような資料の準備を行っておいた上
で実際の評価対象についての寿命評価を行う。評価対象
に公知の表面処理を施し、そのレプリカを得、光学顕微
鏡写真及び/又は電子顕微鏡写真を撮影する。この写真
を図1〜14に示す如くサンプルについて予め得ておいた
写真と対比し、組織の特徴、類似性に従いラルソン−ミ
ラー値Px を決定する。火力発電設備においては評価対
象の管の使用時間tCを厳重に管理しているのでこれを Px =Tx (20+log tC ) ×10-3 に代入してこのtC の間の使用等価温度Tx を算出す
る。After preparing the above-mentioned materials, the life of the actual object to be evaluated is evaluated. A known surface treatment is applied to the evaluation target, a replica thereof is obtained, and an optical microscope photograph and / or an electron microscope photograph is taken. This photograph is compared with photographs obtained in advance for the sample as shown in FIGS. 1 to 14, and the Larson-Miller value P x is determined according to the characteristics and similarity of the tissue. In the thermal power generation equipment, the usage time t C of the pipe to be evaluated is strictly controlled, so substitute this into P x = T x (20 + log t C ) × 10 -3 and use equivalent during this t C Calculate the temperature T x .
【0016】図15ではその上部を使用してTx を読取る
ことができる。即ちPx が (ラルソン−ミラー値 20.
49×103 ) 、使用時間tC が20×104 時間であるとする
とDの直線を用いてTx = 537℃と求めることができ
る。一方図15のグラフの下部より評価対象に作用してい
る応力σx からそのラルソン−ミラー値Pt を求める。
これはその応力が印加され続けた場合に破壊することに
なる時間, 熱によって定まるラルソン−ミラー値、つま
りその応力下での全寿命を表すラルソン−ミラー値であ
るということになる。The upper portion of FIG. 15 can be used to read T x . That is, P x is (Larsson-Miller value 20.
49 × 10 3 ), and the operating time t C is 20 × 10 4 hours, it is possible to obtain T x = 537 ° C. by using the straight line of D. On the other hand, from the lower part of the graph of FIG. 15, the Larsson-Miller value P t is obtained from the stress σ x acting on the evaluation target.
This means the Larson-Miller value, which is determined by the time and the time when the stress continues to be applied, and which is determined by heat, that is, the Larson-Miller value representing the total life under the stress.
【0017】このPt とTx との交点を求める。この交
点の直線の並記方向の位置は使用等価温度Tx で応力σ
x を受け続けた場合の全寿命(時間)を表すことにな
る。図示の例ではこれは1.5 ×106 時間に相当する。消
費寿命は20×104 時間であるから両者の差が余命とな
る。なおPt ,Tx をラルソン−ミラー値の計算式に代
入して対応する時間tx を算出してもよいことは勿論で
ある。The intersection of P t and T x is obtained. The position of the straight line of this intersection in the parallel direction is the stress σ at the equivalent temperature T x used.
It represents the total life (hours) when continuously receiving x . In the example shown, this corresponds to 1.5 × 10 6 hours. The life expectancy is 20 × 10 4 hours, so the difference between the two is life expectancy. It is needless to say that P t and T x may be substituted into the Larson-Miller value calculation formula to calculate the corresponding time t x .
【0018】図16は実際の火力発電所のボイラー管の母
材部の光学顕微鏡写真(a) 及び電子顕微鏡写真である。
図16(a) と図1,2との対比よりラルソン−ミラー値は
20.95 ×103 〜21.67 ×103 の間、また図16(b) と図9
との対比よりラルソン−ミラー値は21.22 ×103 と推定
される。図17は同評価対象の熱影響部(a) 及び溶着金属
部(b) の電子顕微鏡写真であり、図12より21.41 ×1
03 、図13,14 より20.49×103 〜23.35 ×103 の間と推
定される。FIG. 16 shows an optical microscope photograph (a) and an electron microscope photograph of a base material portion of a boiler tube of an actual thermal power plant.
From the comparison between Fig. 16 (a) and Figs. 1 and 2, the Larson-Miller value is
Between 20.95 × 10 3 and 21.67 × 10 3 , and Fig. 16 (b) and Fig. 9
The Larson-Miller value is estimated to be 21.22 × 10 3 from the comparison with. Figure 17 shows electron micrographs of the heat-affected zone (a) and the weld metal (b) under the same evaluation.
0 3 , and it is estimated from Fig. 13 and 14 that it is between 20.49 × 10 3 and 23.35 × 10 3 .
【0019】同一評価対象であるのでその熱履歴は同一
である筈であるが、実際にはこの程度の幅がある。これ
らの平均値はクリープ破断データとよく一致した。つま
り複数の情報に基づいたラルソン−ミラー値の特定が望
ましいということができる。Since the objects to be evaluated are the same, their thermal histories should be the same, but actually there is a width of this extent. These average values are in good agreement with the creep rupture data. That is, it can be said that it is desirable to specify the Larson-Miller value based on a plurality of information.
【0020】図18〜23は評価対象金属がSUS321H の場合
のサンプルの電子顕微鏡写真及び組織の特徴の説明図と
ラルソン−ミラー値との対比図である。図18,19 は母材
部、図20,21 は熱影響部、図22,23 は溶着金属部につい
て示している。熱影響部は溶着金属部寄りと母材部寄り
とで差は見られない。ステンレス鋼材では光学顕微鏡写
真は有用ではない。表2は時効処理条件とラルソン−ミ
ラー値との関係を示し、ここではK=17としている。18 to 23 are an electron micrograph of a sample in the case where the metal to be evaluated is SUS321H, an explanatory view of the features of the structure, and a comparison diagram of the Larson-Miller value. Figures 18 and 19 show the base metal, Figures 20 and 21 show the heat-affected zone, and Figures 22 and 23 show the weld metal. There is no difference between the heat-affected zone and the base metal. Optical micrographs are not useful for stainless steel. Table 2 shows the relationship between the aging treatment conditions and the Larson-Miller value, where K = 17.
【0021】[0021]
【表2】 [Table 2]
【0022】図24は実際の評価対象金属の母材部の組織
写真である。図19との対比によりラルソン−ミラー値は
20.46×103 と判定される。FIG. 24 is a photograph of the structure of the base metal portion of the actual metal to be evaluated. By comparison with Fig. 19, the Larson-Miller value is
It is determined to be 20.46 × 10 3 .
【0023】以上2種類の金属 (低合金鋼とオーステナ
イトステンレス鋼) を例にとって示したが、本発明は前
記金属の他、例えばSTB42,STB52 等の炭素鋼、STBA22,S
TBA23,STPA22,STPA23,STPA24等の低合金鋼、更にはSUS3
47H 等のオーステナイトステンレス鋼にも適用すること
が可能である。The above two kinds of metals (low alloy steel and austenitic stainless steel) have been shown as an example. In addition to the above metals, the present invention also includes carbon steels such as STB42, STB52 and STBA22, S.
Low alloy steel such as TBA23, STPA22, STPA23, STPA24, etc., and SUS3
It can also be applied to austenitic stainless steel such as 47H.
【0024】[0024]
【発明の効果】表3は各種評価対象につき本発明方法と
従来方法とを適用して求めた寿命消費率を対比したもの
である。従来法(1) はクリープ破断試験、従来法(2) は
ボイド面積率法による。破壊試験で直接的に寿命評価を
する従来法(1) ではバラツキが±10%程度であるとされ
ている。これを考慮すると本願発明は従来法(1) と略一
致しており、従来法(2) 比して格段に高精度であると言
うことができる。なおヘッダーは大径管であり管抜き出
しによる破壊試験は不可能であった。EFFECT OF THE INVENTION Table 3 compares the life consumption rates obtained by applying the method of the present invention and the method of the related art to various objects to be evaluated. The conventional method (1) is based on the creep rupture test, and the conventional method (2) is based on the void area ratio method. In the conventional method (1), in which the life is evaluated directly by a destructive test, the variation is said to be about ± 10%. Considering this, the present invention is substantially in agreement with the conventional method (1) and can be said to be significantly more accurate than the conventional method (2). The header was a large-diameter pipe, and a destructive test by pulling out the pipe was impossible.
【0025】[0025]
【表3】 [Table 3]
【0026】以上のように本発明によれば非破壊試験な
がら高精度の寿命評価が可能となり、本発明は高温, 高
圧設備の保守業務に寄与する処多大である。As described above, according to the present invention, highly accurate life evaluation can be performed while performing non-destructive testing, and the present invention greatly contributes to maintenance work of high temperature and high pressure equipment.
【図1】STBA24 の光学顕微鏡写真と組織の特徴の説明
図である。FIG. 1 is an optical micrograph of STBA24 and an explanatory view of the features of the structure.
【図2】STBA24 の光学顕微鏡写真と組織の特徴の説明
図である。FIG. 2 is an optical micrograph of STBA24 and an explanatory view of the features of the structure.
【図3】STBA24 の光学顕微鏡写真と組織の特徴の説明
図である。FIG. 3 is an optical micrograph of STBA24 and an explanatory view of the features of the structure.
【図4】STBA24 の光学顕微鏡写真と組織の特徴の説明
図である。FIG. 4 is an optical micrograph of STBA24 and an explanatory view of the features of the structure.
【図5】STBA24 の光学顕微鏡写真と組織の特徴の説明
図である。FIG. 5 is an explanatory view of the optical micrograph of STBA24 and the features of the structure.
【図6】STBA24 の光学顕微鏡写真と組織の特徴の説明
図である。FIG. 6 is an explanatory view of the optical micrograph of STBA24 and the features of the structure.
【図7】STBA24 の光学顕微鏡写真と組織の特徴の説明
図である。FIG. 7 is an optical micrograph of STBA24 and an explanatory view of the features of the structure.
【図8】STBA24 の光学顕微鏡写真と組織の特徴の説明
図である。FIG. 8 is an optical micrograph of STBA24 and an explanatory diagram of the features of the structure.
【図9】STBA24 の電子顕微鏡写真と組織の特徴の説明
図である。FIG. 9 is an electron micrograph of STBA24 and an explanatory view of the features of the structure.
【図10】STBA24 の電子顕微鏡写真と組織の特徴の説
明図である。FIG. 10 is an electron micrograph of STBA24 and an explanatory view of the features of the structure.
【図11】STBA24 の電子顕微鏡写真と組織の特徴の説
明図である。FIG. 11 is an electron micrograph of STBA24 and an explanatory view of the features of the structure.
【図12】STBA24 の電子顕微鏡写真と組織の特徴の説
明図である。FIG. 12 is an electron micrograph of STBA24 and an explanatory diagram of the features of the structure.
【図13】STBA24 の電子顕微鏡写真と組織の特徴の説
明図である。FIG. 13 is an electron micrograph of STBA24 and an explanatory view of the features of the structure.
【図14】STBA24 の電子顕微鏡写真と組織の特徴の説
明図である。FIG. 14 is an electron micrograph of STBA24 and an explanatory view of the features of the structure.
【図15】寿命評価用ノモグラムである。FIG. 15 is a nomogram for life evaluation.
【図16】STBA24の光学顕微鏡写真及び電子顕微鏡写真
である。FIG. 16 is an optical microscope photograph and an electron microscope photograph of STBA24.
【図17】STBA24の光学顕微鏡写真及び電子顕微鏡写真
である。FIG. 17 is an optical microscope photograph and an electron microscope photograph of STBA24.
【図18】SUS321H の電子顕微鏡写真と組織の特徴の説
明図である。FIG. 18 is an electron micrograph of SUS321H and an explanatory view of the features of the structure.
【図19】SUS321H の電子顕微鏡写真と組織の特徴の説
明図である。FIG. 19 is an electron micrograph of SUS321H and an explanatory view of the features of the structure.
【図20】SUS321H の電子顕微鏡写真と組織の特徴の説
明図である。FIG. 20 is an illustration of an electron micrograph of SUS321H and a feature of the structure.
【図21】SUS321H の電子顕微鏡写真と組織の特徴の説
明図である。FIG. 21 is an electron micrograph of SUS321H and an explanatory view of the features of the structure.
【図22】SUS321H の電子顕微鏡写真と組織の特徴の説
明図である。FIG. 22 is an electron micrograph of SUS321H and an explanatory view of the features of the structure.
【図23】SUS321H の電子顕微鏡写真と組織の特徴の説
明図である。FIG. 23 is an electron micrograph of SUS321H and an explanatory view of the features of the structure.
【図24】SUS321H の電子顕微鏡写真と組織の特徴の説
明図である。FIG. 24 is an electron micrograph of SUS321H and an explanatory view of the features of the structure.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 久保田 稔 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 (72)発明者 大北 芳久 福岡県福岡市中央区渡辺通二丁目1番82号 九州電力株式会社内 (72)発明者 川上 繁幸 福岡県福岡市中央区渡辺通二丁目1番82号 九州電力株式会社内 (72)発明者 押川 辰也 福岡県福岡市中央区渡辺通二丁目1番82号 九州電力株式会社内 (72)発明者 渡邉 肇 福岡県福岡市中央区渡辺通二丁目1番82号 九州電力株式会社内 (72)発明者 太田 邦雄 兵庫県尼崎市扶桑町1番8号 住友金属テ クノロジー株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Minor Kubota Minoru Kubota 4-53-3 Kitahama, Chuo-ku, Osaka City, Osaka Prefecture Sumitomo Metal Industries, Ltd. (72) Yoshihisa Ohkita, Douji Watanabe, Chuo-ku, Fukuoka-shi, Fukuoka 1-82, Kyushu Electric Power Co., Inc. (72) Inventor Shigeyuki Kawakami 2-82-1, Watanabe-dori, Chuo-ku, Fukuoka-shi, Fukuoka Prefecture Kyushu Electric Power Co., Ltd. (72) Tatsuya Oshikawa Watanabe, Chuo-ku, Fukuoka-shi, Fukuoka No. 82-82 Tsudori, Kyushu Electric Power Co., Inc. (72) Inventor Hajime Watanabe No. 1-282 Watanabe, Chuo-ku, Fukuoka-shi, Fukuoka Kyushu Electric Power Co., Inc. (72) Kunio Ota Fuso, Amagasaki-shi, Hyogo 1-8 Machi Sumitomo Metal Technology Co., Ltd.
Claims (3)
断応力との関係に基づき金属材の寿命を評価する方法に
おいて、 評価対象と実質的に同一の材質のサンプル複数に異なる
熱履歴を経させた上で各サンプルの組織写真を得、該組
織写真に基づきその組織と各熱履歴に対応する時間・温
度パラメータとの関係を予め求めておき、評価対象の組
織写真を得、 該組織写真に係る組織と前記関係とから時間・温度パラ
メータを特定し、 特定した時間・温度パラメータに基づいてその寿命を評
価することを特徴とする金属材の寿命評価方法。1. A method for evaluating the life of a metal material based on the relationship between time / temperature parameters representing thermal history and fracture stress, wherein a plurality of samples of substantially the same material as the object of evaluation are subjected to different thermal histories. Then, the structure photograph of each sample is obtained, the relationship between the structure and the time / temperature parameter corresponding to each heat history is obtained in advance based on the structure photograph, and the structure photograph to be evaluated is obtained. A life evaluation method for a metal material, characterized in that a time / temperature parameter is specified from the structure and the relationship, and the life is evaluated based on the specified time / temperature parameter.
は電子顕微鏡写真である請求項1の金属材の寿命評価方
法。2. The method for evaluating the life of a metal material according to claim 1, wherein the structure photograph is an optical microscope photograph and / or an electron microscope photograph.
に溶接部を含み、前記組織写真は母材部、溶着金属部及
び熱影響部のものを得る請求項1又は2記載の金属材寿
命評価方法。3. The metal material life evaluation according to claim 1 or 2, wherein both the metal material to be evaluated and the sample include a welded portion, and the photograph of the structure is obtained from the base material portion, the deposited metal portion and the heat affected zone. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4316250A JPH06148062A (en) | 1992-10-30 | 1992-10-30 | Method for evaluating service life of metallic material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4316250A JPH06148062A (en) | 1992-10-30 | 1992-10-30 | Method for evaluating service life of metallic material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06148062A true JPH06148062A (en) | 1994-05-27 |
Family
ID=18075004
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4316250A Withdrawn JPH06148062A (en) | 1992-10-30 | 1992-10-30 | Method for evaluating service life of metallic material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06148062A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001305067A (en) * | 2000-04-18 | 2001-10-31 | Mitsubishi Heavy Ind Ltd | Method of evaluating service life of material |
JP2002310958A (en) * | 2001-04-10 | 2002-10-23 | Mitsubishi Heavy Ind Ltd | Evaluation system of material life and evaluation method thereof |
JP2012137242A (en) * | 2010-12-27 | 2012-07-19 | Mitsubishi Heavy Ind Ltd | Temperature estimation method and life determination method of high-temperature member |
JP2018059763A (en) * | 2016-10-04 | 2018-04-12 | 株式会社Ihi | Service temperature estimation method of stainless steel and life calculation method thereof |
WO2021199937A1 (en) * | 2020-03-31 | 2021-10-07 | Jfeスチール株式会社 | Method for determining condition for imaging of metallographic structure, method for imaging metallographic structure, method for classifying phases of metallographic structure, device for determining condition for imaging of metallographic structure, device for imaging metallographic structure, device for classifying phases of metallographic structure, method for predicting material properties of metallic material, and device for predicting material properties of metallic material |
-
1992
- 1992-10-30 JP JP4316250A patent/JPH06148062A/en not_active Withdrawn
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001305067A (en) * | 2000-04-18 | 2001-10-31 | Mitsubishi Heavy Ind Ltd | Method of evaluating service life of material |
JP2002310958A (en) * | 2001-04-10 | 2002-10-23 | Mitsubishi Heavy Ind Ltd | Evaluation system of material life and evaluation method thereof |
JP2012137242A (en) * | 2010-12-27 | 2012-07-19 | Mitsubishi Heavy Ind Ltd | Temperature estimation method and life determination method of high-temperature member |
JP2018059763A (en) * | 2016-10-04 | 2018-04-12 | 株式会社Ihi | Service temperature estimation method of stainless steel and life calculation method thereof |
WO2021199937A1 (en) * | 2020-03-31 | 2021-10-07 | Jfeスチール株式会社 | Method for determining condition for imaging of metallographic structure, method for imaging metallographic structure, method for classifying phases of metallographic structure, device for determining condition for imaging of metallographic structure, device for imaging metallographic structure, device for classifying phases of metallographic structure, method for predicting material properties of metallic material, and device for predicting material properties of metallic material |
JPWO2021199937A1 (en) * | 2020-03-31 | 2021-10-07 | ||
US12106466B2 (en) | 2020-03-31 | 2024-10-01 | Jfe Steel Corporation | Photographing condition determining method for metal structure, photographing method for metal structure, phase classification method for metal structure, photographing condition determining device for metal structure, photographing device for metal structure, phase classification device for metal structure, material property estimating method for metal material, and material property estimating device for metal material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Field et al. | Handbook on the Material Properties of FeCrAl Alloys for Nuclear Power Production Applications (FY18 Version: Revision 1) | |
Siefert et al. | Evaluation of the creep cavitation behavior in Grade 91 steels | |
CN100526848C (en) | High precision method and device for evaluating creeping damage | |
Wang et al. | Characteristics of premature creep failure in over-tempered base metal of grade 91 steel weldment | |
JPH06148062A (en) | Method for evaluating service life of metallic material | |
Shingledecker et al. | Development and performance of INCONEL® alloy 740H® seam-welded piping | |
JP3486315B2 (en) | High temperature damage evaluation method for tempered martensitic steel | |
Athira et al. | Effect of keyhole gas tungsten arc welding and post-welding heat treatment on microstructure and hardness of inconel 740H | |
Young et al. | The stress corrosion crack growth rate of alloy 600 heat affected zones exposed to high purity water | |
JPH05223809A (en) | Remaining service life estimating method for gamma' phase precipitation reinforcement type alloy | |
JP3281147B2 (en) | Method for predicting deterioration of metal materials and remaining life | |
Jamrozik et al. | Temperature-Based Prediction of Joint Hardness in TIG Welding of Inconel 600, 625 and 718 Nickel Superalloys. Materials 2021, 14, 442 | |
JPH04240552A (en) | Method for evaluating residual life of metal welding member under high temperature stress | |
Brinkman | Long-term creep-rupture behavior of Modified 9Cr-1Mo steel base and weldment behavior | |
JP4011160B2 (en) | Cr-Mo steel furnace tube remaining life judgment method | |
Bruemmer | Grain boundary composition effects on environmentally induced cracking of engineering materials | |
JP2801741B2 (en) | Damage diagnosis method for gas turbine hot parts. | |
JP2729679B2 (en) | Evaluation method of aging and embrittlement of chromium-molybdenum steel by electrochemical method | |
Roy et al. | Microstructure Atlas of P22 Steel | |
Smith et al. | Assessment of mechanical properties and microstructure characterizing techniques in their ability to quantify amount of cold work in 316L alloy | |
Pettersson et al. | Corrosion testing of welds, a review of methods | |
JPH06148049A (en) | Life evaluation method for metal materials | |
Okazaki et al. | Creep-fatigue strength of long-term post-service 2· 1/4 Cr-1· Mo steel and remaining life estimation | |
Yaguchi | Remaining creep life prediction method for in-service boiler pipe weldment using small scale specimen | |
JP7563820B1 (en) | A rapid and comprehensive method for evaluating the pitting corrosion resistance of stainless steel pipe welds. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20000104 |