JPH06146927A - Compound power generating plant - Google Patents
Compound power generating plantInfo
- Publication number
- JPH06146927A JPH06146927A JP29699292A JP29699292A JPH06146927A JP H06146927 A JPH06146927 A JP H06146927A JP 29699292 A JP29699292 A JP 29699292A JP 29699292 A JP29699292 A JP 29699292A JP H06146927 A JPH06146927 A JP H06146927A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- gas turbine
- temperature
- reducing device
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 150000001875 compounds Chemical class 0.000 title abstract 2
- 239000007789 gas Substances 0.000 claims abstract description 118
- 239000002737 fuel gas Substances 0.000 claims abstract description 14
- 239000000446 fuel Substances 0.000 claims description 5
- 238000010248 power generation Methods 0.000 claims description 2
- 239000000428 dust Substances 0.000 abstract description 4
- 239000000567 combustion gas Substances 0.000 abstract description 2
- 238000007599 discharging Methods 0.000 abstract 1
- 239000000498 cooling water Substances 0.000 description 5
- 229910000975 Carbon steel Inorganic materials 0.000 description 4
- 239000010962 carbon steel Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 230000003628 erosive effect Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 230000006837 decompression Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000003245 coal Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005243 fluidization Methods 0.000 description 1
- 229910000856 hastalloy Inorganic materials 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
Landscapes
- Fluidized-Bed Combustion And Resonant Combustion (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、加圧流動床ボイラで製
造された高温・高圧ガスを燃料とするガスタービンを有
する複合発電プラントに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combined cycle power plant having a gas turbine that uses a high temperature and high pressure gas produced by a pressurized fluidized bed boiler as a fuel.
【0002】[0002]
【従来の技術】加圧流動床ボイラと同ボイラでつくられ
た高温・高圧ガスを燃料とするガスタービンをもつ複合
発電プラントの従来の例を図2によって説明する。図2
において、1は加圧流動床ボイラで、同ボイラを構成す
る加圧容器2内で製造された高温・高圧ガスはサイクロ
ン3、ガスタービン燃料ガス入口止弁9を経てガスター
ビン5へ導かれる。2. Description of the Related Art A conventional example of a combined cycle power plant having a pressurized fluidized bed boiler and a gas turbine produced by the boiler and using high temperature and high pressure gas as a fuel will be described with reference to FIG. Figure 2
In FIG. 1, 1 is a pressurized fluidized bed boiler, and the high temperature / high pressure gas produced in a pressurized container 2 constituting the boiler is guided to a gas turbine 5 through a cyclone 3 and a gas turbine fuel gas inlet stop valve 9.
【0003】ガスタービン5では、その高温・高圧ガス
が圧縮機を経た空気4によって燃焼され燃焼ガスは脱硝
装置6、排熱回収熱交換器7、煙突8を経て排出され
る。10はガスタービンバイパス弁で、ガスタービン入
口燃料止弁9の上流に設置されるこの弁10をもつ高温
・高圧ガス放出システムは、プラント起動時の炉内パー
ジ、ガスタービントリップ時の炉内圧力を大気11へ逃
がす操作を行なう働きをもつ。In the gas turbine 5, the high temperature and high pressure gas is combusted by the air 4 passing through the compressor, and the combustion gas is discharged through the denitration device 6, the exhaust heat recovery heat exchanger 7 and the chimney 8. Reference numeral 10 denotes a gas turbine bypass valve, which is installed upstream of the gas turbine inlet fuel stop valve 9 and has a high-temperature / high-pressure gas release system. Has a function of performing an operation of releasing the air into the atmosphere 11.
【0004】[0004]
【発明が解決しようとする課題】前記したように複合発
電プラントにおいて高温・高圧ガス放出システムとして
大気放出弁のみを設置している従来の装置には次のよう
な問題点がある。As described above, the conventional apparatus in which only the atmosphere release valve is installed as the high temperature / high pressure gas release system in the combined power plant has the following problems.
【0005】(1)取扱うガスの温度が600℃を越え
るような高温である場合、大気放出弁の弁材質をハステ
ロイやインコネル等にしなければならないため、弁が高
価なものになる。また、炭素鋼を使用する場合は弁体、
弁座、弁箱等を冷却する必要がありシステムが複雑にな
り、弁体寿命消費が増加するため、弁を短期間で取替え
る必要がある。(1) When the temperature of the gas to be handled is high such that it exceeds 600 ° C., the valve material of the atmosphere release valve must be Hastelloy, Inconel, or the like, which makes the valve expensive. When using carbon steel, the valve body,
Since it is necessary to cool the valve seat, the valve box, etc., the system becomes complicated and the valve body life consumption increases, so it is necessary to replace the valve in a short period of time.
【0006】(2)ガス温度が高い場合は、弁サイズを
大きくしなければならず、また弁の設置台数も増加す
る。(2) If the gas temperature is high, the valve size must be increased and the number of installed valves also increases.
【0007】(3)ガス温度が高い場合は弁での発生騒
音が大きく大がかりな騒音対策が必要となる。(3) When the gas temperature is high, the noise generated in the valve is large and a large-scale noise countermeasure is required.
【0008】(4)この高温・高圧ガス放出ラインは使
用頻度が多いため、プラントの信頼性を著しく低下させ
る要因となっている。(4) Since this high temperature and high pressure gas discharge line is frequently used, it is a factor that significantly reduces the reliability of the plant.
【0009】(5)ボイラから放出されるガスは高濃度
の塵埃を含んでおり、サイクロンで荒脱塵されるが、大
気放出弁入口で40〜50ppm 程度の濃度があり弁のエ
ロージョンが懸念される。本発明は、これらの問題点を
解消した高温・高圧ガス放出構成を具えた複合発電プラ
ントを提供することを課題としている。(5) The gas discharged from the boiler contains high-concentration dust and is roughly dust-removed by a cyclone. However, there is a concentration of about 40 to 50 ppm at the inlet of the atmospheric release valve, which may cause erosion of the valve. It An object of the present invention is to provide a combined cycle power generation plant having a high temperature / high pressure gas discharge configuration that solves these problems.
【0010】[0010]
【課題を解決するための手段】本発明は、加圧流動床ボ
イラ及び同ボイラで製造された高温・高圧ガスを燃料と
するガスタービンを有する複合発電プラントにおける前
記した課題を解決するため、ボイラから前記ガスタービ
ンの燃料ガス入口止弁を結ぶ燃料ガス供給管路に高温脱
塵装置を配設し、同高温脱塵装置を出た前記燃料ガス供
給管路から分岐され、減温装置、ガスタービンバイパス
弁及び減圧装置が介在され大気に到るガスタービンバイ
パス管路を設けた構成を採用する。大気放出はガスター
ビン出口煙道を介したり、又は、直接放出する。SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems in a combined cycle power plant having a pressurized fluidized bed boiler and a gas turbine that uses the high temperature and high pressure gas produced by the boiler as a fuel. From the fuel gas supply pipeline that connects the fuel gas inlet stop valve of the gas turbine to the high temperature dedusting device, and is branched from the fuel gas supply pipeline that exits the high temperature dedusting device. A configuration is provided in which a gas turbine bypass pipe that reaches the atmosphere is provided with a turbine bypass valve and a pressure reducing device interposed. Atmospheric emissions can be via the gas turbine exit flue or directly.
【0011】[0011]
【作用】本発明による複合発電プラントは前記したガス
タービンバイパス管路を設けてあり、ガスタービントリ
ップ時においてガスタービン入口止弁を全閉としたあと
流動床内にガス流れをつくり、層内の流動化を図るため
にガスタービンバイパス管路に設置しているバイパス弁
を開とする。これによって、流動床内の高温ガスがガス
タービンバイパス管路に流入してくる。The combined cycle power plant according to the present invention is provided with the above-mentioned gas turbine bypass line, and when the gas turbine trips, the gas turbine inlet stop valve is fully closed, and then a gas flow is created in the fluidized bed to form a gas flow in the bed. The bypass valve installed in the gas turbine bypass line for fluidization is opened. This causes the hot gas in the fluidized bed to flow into the gas turbine bypass line.
【0012】この場合において、ガスタービンバイパス
管路の上流部に設置された減温装置により高温ガスを冷
却するので、ガスタービンバイパス弁入口のガス温度を
下げることが出来る。これによりバイパス弁体の材質を
安価な炭素鋼とすることが可能となる。In this case, since the high temperature gas is cooled by the temperature reducing device installed upstream of the gas turbine bypass pipe, the gas temperature at the gas turbine bypass valve inlet can be lowered. This makes it possible to use inexpensive carbon steel as the material of the bypass valve body.
【0013】このように、バイパスされるガスの温度を
下げることにより処理ガスの比容積が小さくなるので従
来技術に比べバイパス弁を小さく出来、台数も少なくす
ることが可能である。さらに、バイパス弁の下流側に減
圧装置をつけているためバイパス弁での差圧を少なくす
ることが出来、ガス中に含まれるダストによる弁体、弁
座部の摩耗を防止することができる。As described above, since the specific volume of the processing gas is reduced by lowering the temperature of the bypassed gas, the bypass valve can be made smaller and the number of units can be reduced as compared with the prior art. Further, since the pressure reducing device is provided on the downstream side of the bypass valve, the differential pressure in the bypass valve can be reduced, and the wear of the valve body and the valve seat portion due to the dust contained in the gas can be prevented.
【0014】また、バイパス弁の下流に配設された減圧
装置においては超臨界流とならないように多段減圧を行
ない、ガス温度を下げればガスエネルギー低下による相
乗効果により騒音レベルも低くすることが出来る。Further, in the pressure reducing device disposed downstream of the bypass valve, multistage depressurization is performed so that a supercritical flow does not occur, and if the gas temperature is lowered, the noise level can be lowered by a synergistic effect due to the reduction of gas energy. .
【0015】またガスタービンバイパス管路へ流入して
くるガスは加圧流動床ボイラの出口に設置された高温脱
塵装置によりガス中の塵埃濃度を10ppm 程度の低レベ
ルにまで減少させるのでガスタービンバイパス弁のエロ
ージョンが従来に比べ少なくなる。Further, since the gas flowing into the gas turbine bypass line is reduced to a low level of about 10 ppm by the high temperature dedusting device installed at the outlet of the pressurized fluidized bed boiler, the gas turbine is reduced. Bypass valve erosion is less than before.
【0016】[0016]
【実施例】以下、本発明による複合発電プラントを図1
に示した実施例に基いて具体的に説明する。なお、図1
において図2に示した従来の装置と同等の部分には同一
の符号を付けており、それらの説明は省略する。図1に
示す装置ではガスタービン燃料ガス入口止弁9の上流部
から分岐したガスタービンバイパス管路12の最上流部
に減温装置13を、減温装置13の下流側にガスタービ
ンバイパス弁15を、ガスタービンバイパス弁15の下
流側に減圧装置16を設置したシステムである。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a combined power plant according to the present invention.
A specific description will be given based on the embodiment shown in FIG. Note that FIG.
2, the same parts as those of the conventional device shown in FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted. In the device shown in FIG. 1, the temperature reducing device 13 is provided at the most upstream part of the gas turbine bypass pipeline 12 branched from the upstream part of the gas turbine fuel gas inlet stop valve 9, and the gas turbine bypass valve 15 is provided downstream of the temperature reducing device 13. Is a system in which a pressure reducing device 16 is installed on the downstream side of the gas turbine bypass valve 15.
【0017】なお、加圧流動床ボイラ1からガスタービ
ンに到るガス管路において、サイクロン3の下流には高
温脱塵装置17が配設されている。プラント通常停止時
或は事故時などの緊急停止時においてはガスタービン5
停止後、この時点においてガスタービン燃料ガス入口止
弁9は全閉となっているが、加圧流動床ボイラ1の圧力
容器2内の石炭層を流動化させておくために、圧力容器
2に滞留しているガスを外部に抜き、減圧操作を行な
う。A high temperature dedusting device 17 is disposed downstream of the cyclone 3 in the gas pipeline extending from the pressurized fluidized bed boiler 1 to the gas turbine. When the plant is normally shut down or in an emergency stop such as an accident, the gas turbine 5
At this point in time after the stop, the gas turbine fuel gas inlet stop valve 9 is fully closed, but in order to keep the coal bed in the pressure vessel 2 of the pressurized fluidized bed boiler 1 fluidized, The accumulated gas is discharged to the outside and the pressure is reduced.
【0018】圧力容器2内のガスはガスタービンバイパ
ス弁15を開けることによりサイクロン3及び高温脱塵
装置17により清浄化された後、ガスタービンバイパス
管路12へ流入してくる。ガスタービンバイパス管路1
2へ流入したガスは減温装置13で冷却水14によって
600℃以下の温度になるまで冷却される。The gas in the pressure vessel 2 is cleaned by the cyclone 3 and the high temperature dedusting device 17 by opening the gas turbine bypass valve 15, and then flows into the gas turbine bypass line 12. Gas turbine bypass line 1
The gas flowing into 2 is cooled by the cooling device 13 by the cooling water 14 until the temperature reaches 600 ° C. or lower.
【0019】減温装置13は冷却水14とガスとの直接
接触方式によるもの又は冷却水14とガスとの間接接触
方式によるもののうちいずれを採用した場合においても
冷却水14を減温装置13の中に常時循環させておくこ
とにより減温装置13下流側の設計温度を下げることが
出来る。Whether the cooling device 14 uses the direct contact method between the cooling water 14 and the gas or the indirect contact method between the cooling water 14 and the gas, the cooling water 14 is controlled by the cooling device 14 of the cooling device 14. The design temperature on the downstream side of the temperature reducing device 13 can be lowered by constantly circulating the temperature inside.
【0020】減音装置13を出たガスはガスタービンバ
イパス弁15へ流入し、さらに多段式の減圧装置16に
て大気圧力近くまで減圧され、煙道へ放出される。減温
装置13を出たガスは600℃以下の温度になるので、
図示した装置は従来技術と比べ次の様な利点が得られ
る。The gas exiting the noise reduction device 13 flows into the gas turbine bypass valve 15, is further decompressed by the multi-stage decompression device 16 to near atmospheric pressure, and is discharged to the flue. The temperature of the gas exiting the temperature reducer 13 is below 600 ° C, so
The illustrated device has the following advantages over the prior art.
【0021】(1)処理ガスの比容積が従来の70%以
下と小さくなるため減温装置13下流側の配管口径のサ
イズダウン、ガスタービンバイパス弁15の小容量化を
図ることが出来る。(1) Since the specific volume of the processing gas is reduced to 70% or less of the conventional one, it is possible to reduce the size of the pipe diameter on the downstream side of the temperature reducing device 13 and reduce the capacity of the gas turbine bypass valve 15.
【0022】(2)処理ガスの温度600℃以下とする
ことでガスタービンバイパス弁15の材質を炭素鋼など
の安価なものとすることが出来る。また、弁体、弁座、
弁箱等を冷却する必要がなく簡素な構造にすることが出
来る。(2) By setting the temperature of the processing gas to 600 ° C. or lower, the material of the gas turbine bypass valve 15 can be made inexpensive such as carbon steel. Also, the valve body, valve seat,
A simple structure can be achieved without the need to cool the valve box or the like.
【0023】(3)処理ガスの比容積が従来の70%以
下と小さくなるためガスタービンバイパス弁15や減圧
装置16での発生騒音を10dB以上低減することが出来
る。(3) Since the specific volume of the treated gas is as small as 70% or less of the conventional one, the noise generated in the gas turbine bypass valve 15 and the pressure reducing device 16 can be reduced by 10 dB or more.
【0024】(4)ガスタービンバイパス弁15の下流
側に減圧装置16を設置し、ガスタービンバイパス弁1
5に大きな差圧を持たせないことによりガスタービンバ
イパス弁15の弁体、弁座部の摩耗を低減させることが
出来る。以上の(1)〜(4)によってプラント運用の
信頼性向上、騒音低減を達成することが出来る。(4) A decompression device 16 is installed on the downstream side of the gas turbine bypass valve 15, and the gas turbine bypass valve 1
By not giving a large differential pressure to 5, it is possible to reduce the wear of the valve body and the valve seat portion of the gas turbine bypass valve 15. By the above (1) to (4), it is possible to improve the reliability of plant operation and reduce noise.
【0025】(5)また、ガスタービンバイパス管路1
2へ流入してくるガスはサイクロン3と高温脱じん装置
17で十分に清浄化されているのでガスタービンバイパ
ス弁15のエロージョンが防止できる。(5) Further, the gas turbine bypass line 1
Since the gas flowing into 2 is sufficiently cleaned by the cyclone 3 and the high temperature dedusting device 17, the erosion of the gas turbine bypass valve 15 can be prevented.
【0026】以上、本発明を図示した実施例に基いて具
体的に説明したが、本発明がこの実施例に限定されず、
本発明の範囲内で種々変更を加えてよいことはいうまで
もない。例えば、図1に示した装置ではガスタービンバ
イパス管路12を出たガスは、ガスタービン出口煙道を
介して大気に放出されるように構成されているが、これ
はガスタービン煙道を介さずに直接大気中に放出するよ
うに構成してもよい。Although the present invention has been specifically described based on the illustrated embodiment, the present invention is not limited to this embodiment.
It goes without saying that various modifications may be made within the scope of the present invention. For example, in the device shown in FIG. 1, the gas exiting the gas turbine bypass line 12 is configured to be discharged to the atmosphere via the gas turbine outlet flue, which does not pass through the gas turbine flue. Alternatively, the gas may be directly emitted into the atmosphere.
【0027】[0027]
【発明の効果】以上説明したように、本発明による複合
発電プラントでは加圧流動床ボイラからガスタービンの
燃料ガス入口止弁を結ぶ燃料ガス供給管路に高温脱塵装
置を配設し、同高温脱塵装置を出た前記燃料ガス供給管
路から分岐され、減温装置、ガスタービンバイパス弁及
び減圧装置が介在され大気に到るガスタービンバイパス
管路を設けた構成を採用しているので、次のように多く
の効果を奏することができ、プラント運用の信頼性向
上、騒音低減を達成することができる。As described above, in the combined cycle power plant according to the present invention, the high temperature dedusting device is arranged in the fuel gas supply pipe line connecting the fuel gas inlet stop valve of the gas turbine from the pressurized fluidized bed boiler, Since the fuel gas supply line that has exited the high-temperature dedusting device is branched, and a temperature reducing device, a gas turbine bypass valve, and a pressure reducing device are interposed, a gas turbine bypass line that reaches the atmosphere is provided. As described below, many effects can be obtained, and reliability of plant operation can be improved and noise can be reduced.
【0028】(1)ガスタービンバイパス弁に流れて来
るガスは減温装置を通って冷却されているので処理ガス
の比容積が例えば従来の70%以下と小さくなり、減温
装置下流側の配管口径のサイズダウン、ガスタービンバ
イパス弁の小容量化を図ることが出来る。(1) Since the gas flowing into the gas turbine bypass valve is cooled through the temperature reducing device, the specific volume of the treated gas is reduced to, for example, 70% or less of the conventional volume, and the pipe on the downstream side of the temperature reducing device is reduced. It is possible to reduce the size of the bore and reduce the capacity of the gas turbine bypass valve.
【0029】(2)同上の理由により、ガスタービンバ
イパス弁の材質を炭素鋼などの安価なものとすることが
出来る。また、弁体、弁座、弁箱等を冷却する必要がな
く簡素な構造にすることが出来る。(2) For the same reason as above, the material of the gas turbine bypass valve can be made inexpensive such as carbon steel. Further, it is not necessary to cool the valve body, the valve seat, the valve box, etc., and the structure can be simple.
【0030】(3)同様に、処理ガスの比容積が例えば
従来の70%以下というように小さくなるためガスター
ビンバイパス管路に設けられるバイパス弁や減圧装置で
の発生騒音を10dB以上低減することが出来る。(3) Similarly, since the specific volume of the treated gas becomes small, for example, 70% or less of that in the conventional case, noise generated in the bypass valve provided in the gas turbine bypass line or the pressure reducing device should be reduced by 10 dB or more. Can be done.
【0031】(4)ガスタービンバイパス弁の下流側に
減圧装置を設置しているので、ガスタービンバイパス弁
に大きな差圧を持たせないことによりガスタービンバイ
パス弁の弁体、弁座部の摩耗を低減させることが出来
る。(4) Since the pressure reducing device is installed on the downstream side of the gas turbine bypass valve, wear of the valve body and the valve seat portion of the gas turbine bypass valve is prevented by preventing the gas turbine bypass valve from having a large differential pressure. Can be reduced.
【0032】(5)ガスタービンバイパス管へ流入して
くるガスはサイクロンと高温脱塵装置で十分に清浄化さ
れているのでガスタービンバイパス弁のエロージョンが
防止できる。(5) Since the gas flowing into the gas turbine bypass pipe has been sufficiently cleaned by the cyclone and the high temperature dedusting device, erosion of the gas turbine bypass valve can be prevented.
【図1】本発明の1実施例による複合発電プラントの構
成を示す機器配置図。FIG. 1 is an equipment layout diagram showing a configuration of a combined cycle power plant according to an embodiment of the present invention.
【図2】従来の複合発電プラントの構成を示す機器配置
図。FIG. 2 is an equipment layout diagram showing a configuration of a conventional combined cycle power plant.
1 加圧流動床ボイラ 2 圧力容器 3 サイクロン 4 空気 5 ガスタービン 6 脱硝装置 7 排熱回収熱交換器 8 煙突 9 ガスタービン燃料ガス入口止弁 12 ガスタービンバイパス管路 13 減温装置 14 冷却水 15 ガスタービンバイパス弁 16 減圧装置 17 高温脱塵装置 1 pressurized fluidized bed boiler 2 pressure vessel 3 cyclone 4 air 5 gas turbine 6 denitration device 7 exhaust heat recovery heat exchanger 8 chimney 9 gas turbine fuel gas inlet stop valve 12 gas turbine bypass line 13 temperature reducer 14 cooling water 15 Gas turbine bypass valve 16 Pressure reducing device 17 High temperature dedusting device
Claims (1)
れた高温・高圧ガスを燃料とするガスタービンを有する
複合発電プラントにおいて、前記ボイラから前記ガスタ
ービンの燃料ガス入口止弁を結ぶ燃料ガス供給管路に高
温脱塵装置を配設し、同高温脱塵装置を出た前記燃料ガ
ス供給管路から分岐され、減温装置、ガスタービンバイ
パス弁及び減圧装置が介在され大気に到るガスタービン
バイパス管路を設けたことを特徴とする複合発電プラン
ト。1. In a combined power plant having a pressurized fluidized bed boiler and a gas turbine using the high temperature and high pressure gas produced by the boiler as a fuel, a fuel gas connecting a fuel gas inlet stop valve of the gas turbine to the boiler. Gas that reaches the atmosphere by arranging a high-temperature dedusting device in the supply pipeline and branching from the fuel gas supply pipeline that exits the high-temperature dedusting equipment and interposing a temperature reducing device, a gas turbine bypass valve and a pressure reducing device A combined power generation plant characterized by having a turbine bypass pipe line.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29699292A JPH06146927A (en) | 1992-11-06 | 1992-11-06 | Compound power generating plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29699292A JPH06146927A (en) | 1992-11-06 | 1992-11-06 | Compound power generating plant |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06146927A true JPH06146927A (en) | 1994-05-27 |
Family
ID=17840856
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29699292A Withdrawn JPH06146927A (en) | 1992-11-06 | 1992-11-06 | Compound power generating plant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06146927A (en) |
-
1992
- 1992-11-06 JP JP29699292A patent/JPH06146927A/en not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4353207A (en) | Apparatus for removing NOx and for providing better plant efficiency in simple cycle combustion turbine plants | |
US7981369B2 (en) | Plant for the generation of electricity | |
CA1161653A (en) | Compressor protective control system for a gas turbine power plant | |
US4498286A (en) | Gas turbine plant with a fluidized bed combustion chamber | |
JP3851165B2 (en) | Gas turbine and its operating method | |
PT84185B (en) | CONTROL PROCESS OF A COMBUSTION INSTALLATION IN PRESSURIZED FLUIDIZED COW IN CASE OF PERTURBATION OF OPERATION OF THE GAS TURBINE AND COMBUSTION INSTALLATION IN FLUIDIZED COURT PRESSURIZED WITH EQUIPMENT TO PERFORM THIS CONTROL | |
JPH06146927A (en) | Compound power generating plant | |
FI99045C (en) | Methods to regulate a PFBC plant in the event of an operational failure in gas turbine units and a PFBC plant with equipment for such control | |
JPH04358708A (en) | Gasified compound power generation plant | |
JP3978888B2 (en) | Thermal power plant and operation method thereof | |
KR102624232B1 (en) | Combined SCR System | |
JP3700075B2 (en) | Pressurized fluidized bed combined power plant | |
JP2659499B2 (en) | Pressurized fluidized bed boiler power plant | |
KR20160009366A (en) | Exhaust System With Eco-SCR System and Operating Method Thereof | |
JPH0343457B2 (en) | ||
JP4514684B2 (en) | Stop control method for pressurized fluidized bed plant | |
JP3322503B2 (en) | Fluidized bed height control device | |
JPS5843320A (en) | Denitrifying apparatus | |
JP2655968B2 (en) | Pressurized fluidized bed boiler power plant | |
JP2928678B2 (en) | Pressurized fluidized bed plant and its operation method | |
JPH0688537A (en) | Power plant | |
JP2003114004A (en) | Emergency pressure reducing system for pressurization fluidized bed boiler | |
JPS621764B2 (en) | ||
JPH0886410A (en) | Decompression device for pressurized fluidized bed boiler | |
JPH09112817A (en) | Pressurized fluidized-bed boiler and emergent stop for the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20000201 |