JPH06144820A - Production of liquid carbon dioxide using cold heat - Google Patents
Production of liquid carbon dioxide using cold heatInfo
- Publication number
- JPH06144820A JPH06144820A JP4301084A JP30108492A JPH06144820A JP H06144820 A JPH06144820 A JP H06144820A JP 4301084 A JP4301084 A JP 4301084A JP 30108492 A JP30108492 A JP 30108492A JP H06144820 A JPH06144820 A JP H06144820A
- Authority
- JP
- Japan
- Prior art keywords
- intermediate refrigerant
- lng
- gas
- liquefied
- heat exchange
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 14
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title 2
- 229910002092 carbon dioxide Inorganic materials 0.000 title 1
- 239000001569 carbon dioxide Substances 0.000 title 1
- 239000000203 mixture Substances 0.000 claims abstract description 39
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 13
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 9
- UJPMYEOUBPIPHQ-UHFFFAOYSA-N 1,1,1-trifluoroethane Chemical compound CC(F)(F)F UJPMYEOUBPIPHQ-UHFFFAOYSA-N 0.000 claims abstract 2
- XPDWGBQVDMORPB-UHFFFAOYSA-N Fluoroform Chemical compound FC(F)F XPDWGBQVDMORPB-UHFFFAOYSA-N 0.000 claims abstract 2
- 239000003507 refrigerant Substances 0.000 claims description 48
- 125000004432 carbon atom Chemical group C* 0.000 claims description 3
- 229910052731 fluorine Inorganic materials 0.000 claims description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims 1
- 239000011737 fluorine Substances 0.000 claims 1
- 239000004215 Carbon black (E152) Substances 0.000 abstract description 6
- 238000004880 explosion Methods 0.000 abstract description 3
- 239000002826 coolant Substances 0.000 abstract 5
- NPNPZTNLOVBDOC-UHFFFAOYSA-N 1,1-difluoroethane Chemical compound CC(F)F NPNPZTNLOVBDOC-UHFFFAOYSA-N 0.000 abstract 1
- 239000003949 liquefied natural gas Substances 0.000 description 27
- 239000007789 gas Substances 0.000 description 17
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 12
- 238000009835 boiling Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 239000001294 propane Substances 0.000 description 6
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 238000007711 solidification Methods 0.000 description 5
- 230000008023 solidification Effects 0.000 description 5
- 239000000654 additive Substances 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 3
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- -1 C 4 hydrocarbon compound Chemical class 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0027—Oxides of carbon, e.g. CO2
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/50—Carbon dioxide
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0221—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
- F25J1/0222—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop in combination with an intermediate heat exchange fluid between the cryogenic component and the fluid to be liquefied
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/62—Liquefied natural gas [LNG]; Natural gas liquids [NGL]; Liquefied petroleum gas [LPG]
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はCO2 ガスをLNGの冷
熱を利用して液化する方法に関し、特に、発電所より大
量に発生するCO2 を地球温暖化防止のため吸収法、吸
着法または膜分離などにより回収したガス状のCO2 を
液化する方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for liquefying CO 2 gas by utilizing cold heat of LNG, and in particular, for absorbing a large amount of CO 2 generated from a power plant by an absorption method, an adsorption method or a method for preventing global warming. The present invention relates to a method for liquefying gaseous CO 2 recovered by membrane separation or the like.
【0002】[0002]
【従来の技術】従来、LNGによるCO2 の液化はLN
Gの低温約−160℃によりCO2 が容易にその固化温
度約−56℃に達するために行われていない。 2. Description of the Related Art Conventionally, liquefaction of CO 2 by LNG is LN
The low temperature of G of about -160 ° C does not allow CO 2 to easily reach its solidification temperature of about -56 ° C.
【0003】[0003]
【発明が解決しようとする課題】本発明者らは上記技術
水準に鑑み、火力発電所で大量に発生するCO2 ガス
を、発電所の燃料として用いられているLNGの冷熱を
利用して、CO2 ガスを固化させることなく、取扱いの
容易な液体に変換させる方法を既に提案している。(特
開平4〜148182号公報)In view of the above-mentioned state of the art, the present inventors utilize a large amount of CO 2 gas generated in a thermal power plant by utilizing the cold heat of LNG used as fuel in the power plant, A method has already been proposed for converting CO 2 gas into a liquid that is easy to handle without solidifying. (JP-A-4-148182)
【0004】しかしながら、上記提案方法は中間冷媒と
してエタン,プロパンなどの可燃性ガスを利用してお
り、これらのガスが外部に漏れた場合には引火・爆発の
恐れがあり、その改善が必要となっている。However, the above proposed method uses flammable gases such as ethane and propane as the intermediate refrigerant, and if these gases leak to the outside, there is a risk of ignition or explosion, and improvement thereof is necessary. Has become.
【0005】本発明は上記事情に鑑み、先に提案した方
法における引火・爆発の恐れを解消した方法を提供しよ
うとするものである。In view of the above circumstances, the present invention is to provide a method which eliminates the risk of ignition and explosion in the previously proposed method.
【0006】[0006]
【課題を解決するための手段】本発明は、密閉容器内部
に中間冷媒を収納し、該容器内部の該中間冷媒が蒸気状
にある上部空間に第1熱交換部を、また該容器内部の該
中間冷媒が液体状にある下部空間に第2熱交換部をそれ
ぞれ設置し、LNGを第1熱交換部に供給し、CO2 ガ
スを第2熱交換部に供給することによりCO2 ガスから
液化CO2 を製造するに際し、CHF3 ,CH3 C
F3 ,CH3 CHF2 およびCH2 FCF3よりなる群
から選ばれた1種以上のフッ素化炭化水素と炭素数2〜
4の炭化水素系化合物の1種以上との混合物を前記中間
冷媒として用いることを特徴とするLNG冷熱による液
化CO2 の製造方法である。SUMMARY OF THE INVENTION According to the present invention, an intermediate refrigerant is stored in a closed container, a first heat exchange section is provided in an upper space of the container where the intermediate refrigerant is in a vapor state, and an interior space of the container. The second heat exchange section is installed in each of the lower spaces where the intermediate refrigerant is in a liquid state, LNG is supplied to the first heat exchange section, and CO 2 gas is supplied to the second heat exchange section so that the CO 2 gas is separated from the CO 2 gas. In producing liquefied CO 2 , CHF 3 , CH 3 C
One or more fluorinated hydrocarbons selected from the group consisting of F 3 , CH 3 CHF 2 and CH 2 FCF 3 and having 2 to 2 carbon atoms
4. A method for producing liquefied CO 2 by LNG cold heat, which comprises using a mixture with one or more hydrocarbon compounds of No. 4 as the intermediate refrigerant.
【0007】本発明でいうLNGは液化天然ガスのこと
で、メタンを主成分とする混合物で、高カロリーと低カ
ロリーがあり、表1に示すように沸点に数度の差があ
る。LNG as referred to in the present invention is liquefied natural gas, which is a mixture containing methane as a main component, and has high calories and low calories, and as shown in Table 1, there are differences in boiling points by several degrees.
【0008】[0008]
【表1】 [Table 1]
【0009】なお、LNGの主成分であるCH4 とCO
2 の凝固点,沸点(大気圧下)を表2に示す。CH 4 , which is the main component of LNG, and CO
2 of the freezing point, boiling point (at atmospheric pressure) shown in Table 2.
【0010】[0010]
【表2】 [Table 2]
【0011】また、本発明でいう中間冷媒の主成分とし
て使用する冷媒は下記表3に示すようなフッ素化炭化水
素であり、それらを単独または混合物として使用しうる
ものである。The refrigerant used as the main component of the intermediate refrigerant in the present invention is a fluorinated hydrocarbon as shown in Table 3 below, which can be used alone or as a mixture.
【0012】[0012]
【表3】 [Table 3]
【0013】また、本発明でいう中間冷媒のもう一つの
成分は下記表4に示すC2 〜C4 の炭化水素化合物であ
り、それぞれ単独または混合物として使用しうるもので
ある。Another component of the intermediate refrigerant in the present invention is a C 2 to C 4 hydrocarbon compound shown in Table 4 below, which can be used alone or as a mixture.
【0014】[0014]
【表4】 [Table 4]
【0015】[0015]
【作用】以下、本発明の作用を、中間冷媒の主成分であ
るフッ素化炭化水素としてCHF3 (R23)を使用す
る場合について、図1に従って詳述する。CHF3 を主
成分とし、炭素数2〜4の炭化水素系化合物を添加した
中間冷媒を以下中間冷媒混合物という。図1において、
1:密閉容器、2:第1熱交換部、3:第2熱交換部、
4:LNG供給ライン、5:LNG出口ライン、6:L
NG流量制御弁、7:液化中間冷媒混合物の温度計、
8:CO2 ガス入口ライン、9:液体CO2 出口ライ
ン、10:液化中間冷媒混合物、11:中間冷媒混合物
供給ライン、12:中間冷媒混合物ガス出口ライン、1
3:圧力制御弁、14:内容器圧力計である。The operation of the present invention will be described in detail below with reference to FIG. 1 in the case of using CHF 3 (R23) as the fluorinated hydrocarbon which is the main component of the intermediate refrigerant. An intermediate refrigerant containing CHF 3 as a main component and a hydrocarbon compound having 2 to 4 carbon atoms is referred to as an intermediate refrigerant mixture hereinafter. In FIG.
1: closed container, 2: first heat exchange section, 3: second heat exchange section,
4: LNG supply line, 5: LNG exit line, 6: L
NG flow control valve, 7: liquefied intermediate refrigerant mixture thermometer,
8: CO 2 gas inlet line, 9: liquid CO 2 outlet line, 10: liquefied intermediate refrigerant mixture, 11: intermediate refrigerant mixture supply line, 12: intermediate refrigerant mixture gas outlet line, 1
3: pressure control valve, 14: inner container pressure gauge.
【0016】LNG(液体)をライン4より供給し、第
1熱交換部2を経由してライン5より抜き出す。次に、
ライン11より中間冷媒混合物を供給し、LNGにより
冷却されている第1熱交換部2で中間冷媒混合物を冷却
・液化し、第2熱交換部3より上方に液化中間冷媒混合
物10の液面を保持するに必要な中間冷媒混合物を供給
し、その後、中間冷媒混合物の供給を止める。LNG (liquid) is supplied from the line 4 and extracted from the line 5 via the first heat exchange section 2. next,
The intermediate refrigerant mixture is supplied from the line 11, the intermediate refrigerant mixture is cooled and liquefied in the first heat exchange section 2 cooled by LNG, and the liquid surface of the liquefied intermediate refrigerant mixture 10 is provided above the second heat exchange section 3. The intermediate refrigerant mixture required to hold is supplied and then the intermediate refrigerant mixture is stopped.
【0017】次に、ライン8よりCO2 ガスを供給し、
液化中間冷媒混合物10により冷却されている第2熱交
換部3によりCO2 ガスを冷却液化し、ライン9より液
体CO2 を抜き出す。Next, CO 2 gas is supplied from the line 8,
The CO 2 gas is cooled and liquefied by the second heat exchange section 3 cooled by the liquefied intermediate refrigerant mixture 10, and the liquid CO 2 is extracted from the line 9.
【0018】このような方法により、中間冷媒混合物は
第2熱交換部3表面でCO2 の熱で沸騰し、第1熱交換
部2でLNG冷熱により凝縮する沸騰・凝縮を繰り返し
ながら、密閉容器1内部を循環し、容易にLNGにより
CO2 が液化できる。By such a method, the intermediate refrigerant mixture is boiled by the heat of CO 2 on the surface of the second heat exchange section 3 and is condensed by LNG cold heat in the first heat exchange section 2 while repeating boiling / condensation, and the closed container is closed. CO 2 can be easily liquefied by LNG by circulating inside 1.
【0019】CO2 の液化条件は温度と圧力によってそ
の領域があり、圧力5.1arm では−56℃以上の温度
で液体となり、−56℃以下では固体となる。圧力5.
1atm 以上になれば、液化温度も−56℃より高くなり
液化しやすくなるが、CO2ガスを高圧に圧縮しなけれ
ばならず、その圧縮動力が増大して好ましくない。その
ため、可能な限り低圧で液化することが好ましいが、固
化温度よりも5℃位高めの温度約−50℃位が安全で好
ましく、この場合、CO2 の蒸気圧は約6.7atm であ
るから6.7atm より少し加圧した状態であれば100
%液化することができる。The liquefaction condition of CO 2 has its region depending on temperature and pressure. At a pressure of 5.1 arm, it becomes liquid at a temperature of -56 ° C or higher and becomes solid at a temperature of -56 ° C or lower. Pressure 5.
If it is 1 atm or more, the liquefaction temperature becomes higher than -56 ° C. and it is easy to liquefy, but CO 2 gas must be compressed to a high pressure, and the compression power increases, which is not preferable. Therefore, it is preferable to liquefy as low a pressure as possible, but a temperature of about -50 ° C higher than the solidification temperature by about -50 ° C is safe and preferable, and in this case, the vapor pressure of CO 2 is about 6.7 atm. 100 if the pressure is slightly higher than 6.7 atm
% Can be liquefied.
【0020】一方、CO2 の臨界温度は31℃であり、
これ以上の温度では液体、気体の区別はなくなるので、
液体であるためには少なくとも31℃以下の温度にする
必要がある。On the other hand, the critical temperature of CO 2 is 31 ° C.,
At temperatures higher than this, the distinction between liquid and gas disappears, so
In order to be a liquid, the temperature must be at least 31 ° C or lower.
【0021】本発明で用いる中間冷媒混合物は、LNG
が常圧の場合は温度が約−160℃のLNGにより冷却
されるので、中間冷媒混合物の凝固点は−160℃以下
が好ましい。The intermediate refrigerant mixture used in the present invention is LNG.
When is normal pressure, it is cooled by LNG having a temperature of about -160 ° C. Therefore, the freezing point of the intermediate refrigerant mixture is preferably -160 ° C or lower.
【0022】本発明者らは、先願(特開平04〜148
182)で用いた中間冷媒、例えばプロパンの場合は凝
固温度(または融点)が−187.7℃であり、−16
0℃より低いので、−160℃でもプロパンは凝固しな
いが、プロパンは外部空気中に漏れた場合に火源がある
と容易に引火・爆発するために、大容量のCO2 を液化
する大型プラントでは、その対策が望まれている。本発
明者らはその対策を鋭意検討した結果、本発明に到った
のである。The inventors of the present invention have filed a prior application (JP-A-04-148).
182) the intermediate refrigerant used, for example, propane, has a solidification temperature (or melting point) of −187.7 ° C.
Since it is lower than 0 ℃, propane does not solidify even at -160 ℃, but if propane leaks into the outside air, it easily ignites and explodes if there is a fire source, so a large plant that liquefies a large amount of CO 2 is liquefied. Then, the measures are desired. The present inventors have arrived at the present invention as a result of earnestly examining the measures.
【0023】すなわち、前記表3に示すようにClを有
しない新フロンの内、CHF3 ,CF3 CF3 ,CF3
CHF2 ,CH2 FCF3 は引火性は全くなく人体にも
無害で、しかも大気中のオゾン破壊係数も零と極めて安
全無害の物質を用いるのである。しかしながら、これら
の物質は表3に示すように融点が−160℃よりやや高
く、常圧のLNG(−160℃)により凝固・固化しや
すい欠点を有している。That is, as shown in Table 3, CHF 3 , CF 3 CF 3 and CF 3 among the new CFC-free CFCs are used.
CHF 2 and CH 2 FCF 3 are substances that are extremely safe and harmless, with no flammability, no harm to the human body, and an ozone depletion coefficient in the atmosphere of zero. However, as shown in Table 3, the melting point of these substances is slightly higher than -160 ° C, and they have a drawback that they are easily solidified and solidified by LNG at normal pressure (-160 ° C).
【0024】そこで、本発明者らは更に鋭意検討した結
果、前記表4に示すように融点がより低い物質を、表3
に示したフッ素化炭化水素に添加混合することにより、
凝固・固化を防止できることを見いだし、本発明を完成
したものである。Therefore, as a result of further diligent studies, the present inventors have shown in Table 3 that substances having a lower melting point are
By adding and mixing to the fluorinated hydrocarbon shown in
The present invention has been completed by finding that it is possible to prevent solidification and solidification.
【0025】LNGが常圧の場合は、LNGは−160
℃で気化するので中間冷媒混合物の主成分は表3に示し
たフッ素化炭化水素(こゝではCHF3 )とし、添加剤
としては融点が−160℃以下のエタン,エチレン,プ
ロパン,プロピレンなどを用い、その添加量は−160
℃で中間冷媒混合物が実質的に固化しない程度にし、ま
た、添加剤の添加量の上限は、中間冷媒+添加剤混合物
が空気中で引火・爆発しない量とするものである。When LNG is at normal pressure, LNG is -160
Since it vaporizes at ℃, the main component of the intermediate refrigerant mixture is the fluorinated hydrocarbon (CHF 3 in this case ) shown in Table 3, and additives such as ethane, ethylene, propane and propylene having a melting point of −160 ° C. or less are used. The amount of addition is -160
The intermediate refrigerant mixture is not substantially solidified at 0 ° C., and the upper limit of the additive amount is such that the intermediate refrigerant + additive mixture does not ignite or explode in the air.
【0026】一方、LNGが加圧された状態では、後記
表5に示したようにLNGの主成分メタンの沸点は高く
なるので、フッ素化炭化水素とその添加剤の融点はそれ
に応じて前記表3,表4の中から広範囲に選定すること
ができるが、LNGを加圧するにはポンプが必要となり
それだけ経済的に不利となる。On the other hand, when LNG is pressurized, the boiling point of methane, which is the main component of LNG, becomes high as shown in Table 5 below, so that the melting points of the fluorinated hydrocarbon and its additive are accordingly changed to those in the above table. 3, a wide range can be selected from Table 4, but a pump is required to pressurize LNG, which is economically disadvantageous.
【0027】[0027]
【表5】 [Table 5]
【0028】また、CO2 は−56℃以下では固化する
ので中間冷媒混合物は約−56℃以上で沸騰・凝縮させ
る必要があり、冷媒の蒸気圧が大気圧に近いほど装置コ
ストの低減になるので、中間冷媒混合物の大気圧下にお
ける沸点は約−56℃近傍が好ましい。Further, since CO 2 solidifies at -56 ° C or lower, it is necessary to boil and condense the intermediate refrigerant mixture at about -56 ° C or higher. The closer the vapor pressure of the refrigerant is to atmospheric pressure, the lower the apparatus cost. Therefore, the boiling point of the intermediate refrigerant mixture under atmospheric pressure is preferably about -56 ° C.
【0029】沸点はその組成または圧力によって変える
ことができるので、中間冷媒混合物として適切な組成の
ものを用いることにより、中間冷媒混合物の沸騰・凝縮
温度を−56℃から31℃の範囲に調節することができ
る。また、純物質でも全圧を調整することにより、沸騰
・凝縮温度を−56℃から31℃の範囲に調整すること
ができる。Since the boiling point can be changed depending on its composition or pressure, the boiling / condensing temperature of the intermediate refrigerant mixture is adjusted in the range of -56 ° C to 31 ° C by using an intermediate refrigerant mixture having an appropriate composition. be able to. Further, even with a pure substance, the boiling / condensing temperature can be adjusted within the range of -56 ° C to 31 ° C by adjusting the total pressure.
【0030】CHF3 の沸点は−82.0℃であるが、
CHF3 の蒸気圧と温度の関係より圧力を増加させるこ
とにより−56℃以上の温度で沸騰・凝縮させることが
できる。一方、CH2 FCF3 は圧力をわずかに低下さ
せることにより−50℃の温度で沸騰・凝縮させること
ができる。The boiling point of CHF 3 is -82.0 ° C,
By increasing the pressure based on the relationship between the vapor pressure of CHF 3 and the temperature, it is possible to boil and condense at a temperature of −56 ° C. or higher. On the other hand, CH 2 FCF 3 can be boiled and condensed at a temperature of −50 ° C. by slightly lowering the pressure.
【0031】なお、LNGにより中間冷媒混合物が−5
6℃以下に過冷却されないように、中間冷媒混合物10
の温度を温度計で検知し、流量制御弁6でLNGの流量
を制御するのが好ましい。Incidentally, the intermediate refrigerant mixture is -5 by LNG.
The intermediate refrigerant mixture 10 so as not to be overcooled to 6 ° C or lower.
It is preferable that the temperature of 1 is detected by a thermometer and the flow rate control valve 6 controls the flow rate of LNG.
【0032】[0032]
【実施例】以下、本発明の一実施例を図1によって説明
する。図1において、ライン4より温度−160℃、圧
力1.5atm のLNGを100kg/hで供給し、第1熱
交換部2を冷却しながら、ライン5より連続的に抜き出
した。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to FIG. In FIG. 1, LNG having a temperature of −160 ° C. and a pressure of 1.5 atm was supplied from a line 4 at 100 kg / h and continuously withdrawn from a line 5 while cooling the first heat exchange section 2.
【0033】次に、ライン11より純度99.9%のC
HF3 (R23)100重量部と純度99.5%のプロ
パン5重量部よりなる中間冷媒混合物を供給し、第1熱
交換部2で冷却・液化し、容器1の約1/2の所まで液
化中間冷媒混合物を満たした。液化中間冷媒混合物の温
度は時間とともに低下していき、−50℃の時点でライ
ン8より圧力7atm 、温度25℃のCO2 ガスを60kg
/hで供給し、第2熱交換部3を経由してライン9より
液体CO2 を抜き出した。液化中間冷媒混合物10の温
度を−50℃±1℃となるように温度制御系6,7でL
NGの流量を制御した。この結果、ライン9より温度−
44℃の液体CO2 が連続的に得られた。Next, from line 11, C having a purity of 99.9% is used.
An intermediate refrigerant mixture consisting of 100 parts by weight of HF 3 (R23) and 5 parts by weight of propane having a purity of 99.5% is supplied, cooled and liquefied in the first heat exchange section 2, and reaches about half of the container 1. The liquefied intermediate refrigerant mixture was filled. The temperature of the liquefied intermediate refrigerant mixture decreases with time. At -50 ° C, 60 kg of CO 2 gas having a pressure of 7 atm and a temperature of 25 ° C is supplied from the line 8.
The liquid CO 2 was extracted from the line 9 via the second heat exchange section 3. The temperature of the liquefied intermediate refrigerant mixture 10 is set to -50 ° C. ± 1 ° C. by the temperature control systems 6 and 7.
The NG flow rate was controlled. As a result, the temperature from line 9
Liquid CO 2 at 44 ° C. was obtained continuously.
【0034】容器1に設けた内部観察用ガラス窓より、
容器1内の液化中間冷媒混合物10は第2熱交換部3で
沸騰し、第1熱交換部2で固化することなく液化凝縮し
て循環している状態が観察された。From the glass window for internal observation provided in the container 1,
It was observed that the liquefied intermediate refrigerant mixture 10 in the container 1 boiled in the second heat exchange section 3 and was liquefied and condensed without circulating in the first heat exchange section 2 and circulated.
【0035】この実施例で用いたLNGの組成は下記表
5のとおりである。The composition of LNG used in this example is shown in Table 5 below.
【0036】[0036]
【表6】 [Table 6]
【0037】次に、ライン12によりガスをサンプリン
グし、引火・爆発性のテストを行ったが、任意の空気と
の混合ガス中において引火・爆発性はみられなかった。Next, the gas was sampled through the line 12 and a flammability / explosiveness test was conducted, but no flammability / explosiveness was observed in a mixed gas with arbitrary air.
【0038】[0038]
【発明の効果】本発明は以上詳述したように適切で安
全、無害な中間冷媒混合物を用いることによりLNGの
冷熱を利用してCO2 及び中間冷媒を固化させることな
く容易に液化できるとともに、中間冷媒の沸騰・凝縮を
利用した内部循環を組み込れることにより、中間冷媒用
のポンプ設備が不要なるという効果を奏する。INDUSTRIAL APPLICABILITY As described in detail above, the present invention makes it possible to easily liquefy CO 2 and an intermediate refrigerant without solidifying them by utilizing the cold heat of LNG by using an appropriate, safe and harmless intermediate refrigerant mixture. By incorporating internal circulation utilizing boiling / condensation of the intermediate refrigerant, it is possible to eliminate the need for pump equipment for the intermediate refrigerant.
【図1】本発明の一実施態様の説明図。FIG. 1 is an explanatory diagram of an embodiment of the present invention.
Claims (1)
器内部の該中間冷媒が蒸気状にある上部空間に第1熱交
換部を、また該容器内部の該中間冷媒が液体状にある下
部空間に第2熱交換部をそれぞれ設置し、LNGを第1
熱交換部に供給し、CO2 ガスを第2熱交換部に供給す
ることによりCO2 ガスから液化CO 2 を製造するに際
し、CHF3 ,CH3 CF3 ,CH3 CHF2 およびC
H2 FCF3 よりなる群から選ばれた1種以上のフッ素
化炭化水素と炭素数2〜4の炭化水素系化合物の1種以
上との混合物を前記中間冷媒として用いることを特徴と
するLNG冷熱による液化CO2 の製造方法。1. An intermediate refrigerant is stored in a closed container,
The first heat exchange is performed in the upper space where the intermediate refrigerant in vapor form is inside the vessel.
And the lower part where the intermediate refrigerant inside the container is in liquid form.
The second heat exchange section is installed in each partial space, and the LNG is set to the first
Supply to the heat exchange section, CO2Supply gas to the second heat exchange section
CO by2Liquefied CO from gas 2When manufacturing
And CHF3, CH3CF3, CH3CHF2And C
H2FCF3Fluorine selected from the group consisting of
One or more of hydrocarbons and hydrocarbon compounds having 2 to 4 carbon atoms
Characterized by using a mixture with the above as the intermediate refrigerant
LNG Liquefied CO by cold heat2Manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30108492A JP3372277B2 (en) | 1992-11-11 | 1992-11-11 | Method for producing liquefied carbon dioxide by LNG refrigeration |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30108492A JP3372277B2 (en) | 1992-11-11 | 1992-11-11 | Method for producing liquefied carbon dioxide by LNG refrigeration |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06144820A true JPH06144820A (en) | 1994-05-24 |
JP3372277B2 JP3372277B2 (en) | 2003-01-27 |
Family
ID=17892675
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30108492A Expired - Lifetime JP3372277B2 (en) | 1992-11-11 | 1992-11-11 | Method for producing liquefied carbon dioxide by LNG refrigeration |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3372277B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2869404A1 (en) * | 2004-04-27 | 2005-10-28 | Inst Francais Du Petrole | PROCESS FOR LIQUEFACTING CARBON DIOXIDE GAS. |
US20080302103A1 (en) * | 2005-02-17 | 2008-12-11 | Ari Minkkinen | Liquefied Natural Regasification Plant |
JP2010261038A (en) * | 2009-05-05 | 2010-11-18 | Air Products & Chemicals Inc | Natural gas stream liquefaction method and apparatus |
JP2017190829A (en) * | 2016-04-13 | 2017-10-19 | 美浜株式会社 | System that integrates gas supply facility and cooling facility |
JP2020051674A (en) * | 2018-09-26 | 2020-04-02 | 関西電力株式会社 | Heat exchange equipment, power generation facility and heat exchange method |
CN112556244A (en) * | 2020-12-29 | 2021-03-26 | 浙江大学常州工业技术研究院 | High-efficient heat exchanger for LNG idle call |
-
1992
- 1992-11-11 JP JP30108492A patent/JP3372277B2/en not_active Expired - Lifetime
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2869404A1 (en) * | 2004-04-27 | 2005-10-28 | Inst Francais Du Petrole | PROCESS FOR LIQUEFACTING CARBON DIOXIDE GAS. |
US20080302103A1 (en) * | 2005-02-17 | 2008-12-11 | Ari Minkkinen | Liquefied Natural Regasification Plant |
JP2010261038A (en) * | 2009-05-05 | 2010-11-18 | Air Products & Chemicals Inc | Natural gas stream liquefaction method and apparatus |
JP2017190829A (en) * | 2016-04-13 | 2017-10-19 | 美浜株式会社 | System that integrates gas supply facility and cooling facility |
JP2020051674A (en) * | 2018-09-26 | 2020-04-02 | 関西電力株式会社 | Heat exchange equipment, power generation facility and heat exchange method |
CN112556244A (en) * | 2020-12-29 | 2021-03-26 | 浙江大学常州工业技术研究院 | High-efficient heat exchanger for LNG idle call |
Also Published As
Publication number | Publication date |
---|---|
JP3372277B2 (en) | 2003-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100338882B1 (en) | Improved cascade refrigeration process for liquefaction of natural gas | |
CA2293191C (en) | Variable load refrigeration system particularly for cryogenic temperatures | |
US4012212A (en) | Process and apparatus for liquefying natural gas | |
Nellis et al. | Equation of state of shock‐compressed liquids: Carbon dioxide and air | |
CN104919260B (en) | The preparation of liquefied natural gas | |
JP2010002055A (en) | Composition and method for hydrogen storage | |
EP0271989B1 (en) | Refrigerant | |
US3418819A (en) | Liquefaction of natural gas by cascade refrigeration | |
CN1030638A (en) | It under usual conditions the degree of depth cooling means of the hydrocarbon mixture of gaseous state | |
CA2277269C (en) | Method for transfer-filling of liquefied gases | |
KR20000052601A (en) | Mutiple circuit cyrogenic liquefaction of industrial gas | |
CA2436053A1 (en) | Industrial gas liquefaction with azeotropic fluid forecooling | |
JPH06144820A (en) | Production of liquid carbon dioxide using cold heat | |
FR2829569A1 (en) | Liquefaction of natural gas under pressure, containing methane and hydrocarbons with two or more carbon atoms, involves cooling in two cycles | |
US3827247A (en) | Process of complete cryogenic vaporization of liquefied natural gas | |
FR2848651A1 (en) | APPARATUS FOR DOUBLE REFRIGERATION OF A FLUID | |
JP2566338B2 (en) | CO ▲ 2 ▼ Liquefaction device | |
Campestrini | Thermodynamic study of solid-liquid-vapor equilibrium: application to cryogenics and air separation unit | |
US5588307A (en) | Process for liquefaction of a pressurized hydrocarbon-rich fraction | |
US4045189A (en) | Method for preparing fuel mixtures for torches and burners | |
TW201137103A (en) | Method for producing a hydrocarbon mixed refrigerant | |
US12111102B2 (en) | Mixed refrigerants in LNG cascade | |
JP3720415B2 (en) | LIQUID CARBONATE MANUFACTURING FILTER, LIQUID CARBONATE MANUFACTURING OPERATION METHOD, AND HEAT EXCHANGER | |
JPH04148182A (en) | Liquefying method of co2 by cold heat of lng | |
US5766514A (en) | Method of storing acetylene |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20021022 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081122 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091122 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101122 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101122 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111122 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111122 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121122 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term |