[go: up one dir, main page]

JPH06142520A - Hydrocarbon adsorptive catalyst - Google Patents

Hydrocarbon adsorptive catalyst

Info

Publication number
JPH06142520A
JPH06142520A JP4298935A JP29893592A JPH06142520A JP H06142520 A JPH06142520 A JP H06142520A JP 4298935 A JP4298935 A JP 4298935A JP 29893592 A JP29893592 A JP 29893592A JP H06142520 A JPH06142520 A JP H06142520A
Authority
JP
Japan
Prior art keywords
parts
catalyst
zsm
coated
dried
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4298935A
Other languages
Japanese (ja)
Inventor
Takuya Ikeda
卓弥 池田
Tetsuo Ito
哲男 伊藤
Chiemi Hayashi
千絵美 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP4298935A priority Critical patent/JPH06142520A/en
Publication of JPH06142520A publication Critical patent/JPH06142520A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To provide a hydrocarbon(HC) adsorptive catalyst which is put in the upper stream side of an exhaust gas purifying catalyst in a gas discharging system to purify the exhaust gas from an automotive internal combustion engine and purifies HC removed from an adsorptive layer. CONSTITUTION:Regarding a hydrocarbon adsorptive catalyst to be placed in the upper stream side, it is provided with a first catalytic layer and a second layer, wherein the first layer is provided with an adsorbent consisting of ZSM-5 zeolite ion-exchanged with copper and/or palladium to adsorb hydrocarbons in the front part of a monolithic carrier and at least one of platinum and palladium carried on an activated ceria and/or alumina in the rear part and the second layer contains rhodium as a catalytic component carried on activated ceria and/or alumina and is formed on the first layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車の排気系の排ガ
ス浄化装置の排ガス浄化用触媒の上流側に配置する炭化
水素(HC)吸着触媒に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrocarbon (HC) adsorption catalyst arranged upstream of an exhaust gas purifying catalyst of an exhaust gas purifying apparatus for an automobile exhaust system.

【0002】[0002]

【従来の技術】自動車等の内燃機関の排ガス浄化用触媒
としては、一酸化炭素(CO)および炭化水素(HC)
の酸化と、窒素酸化物(NOX )の還元を同時に行なう
触媒が汎用されている。このような触媒は、例えば特公
昭58-20307号公報にもみられるように、耐火性担体上の
アルミナコート層に、Pd,PtおよびRh等の貴金
属、および場合により助触媒成分としてCe,La等の
希土類金属またはNi等のベースメタル酸化物を添加し
てものがほとんどである。
2. Description of the Related Art Carbon monoxide (CO) and hydrocarbon (HC) are used as exhaust gas purifying catalysts for internal combustion engines of automobiles and the like.
A catalyst that simultaneously performs oxidation of nitrogen and reduction of nitrogen oxides (NO x ) is widely used. Such a catalyst is disclosed in, for example, Japanese Examined Patent Publication No. 58-20307, for example, a noble metal such as Pd, Pt, and Rh is contained in an alumina coating layer on a refractory carrier, and optionally Ce, La, or the like as a promoter component. In most cases, a rare earth metal or a base metal oxide such as Ni is added.

【0003】かかる触媒は、排ガス温度とエンジンの設
定空燃比の影響を強く受ける。自動車用触媒が浄化能を
発揮する排ガス温度としては、一般に300 ℃以上必要で
あり、また空燃比は、HCとCOの酸化とNOX の還元
のバランスがとれる理論空燃比(A/F=14.6)付近で
触媒が最も有効に働く。従って、従来の三元触媒を用い
る排ガス浄化装置を取り付けた自動車では、三元触媒が
有効に働くような位置に設置されており、また排気系の
酸素濃度を検出して、混合気を理論空燃比付近に保つよ
うフィードバック制御が行なわれている。
Such a catalyst is strongly influenced by the exhaust gas temperature and the set air-fuel ratio of the engine. The exhaust gas temperature at which an automobile catalyst exerts its purifying ability is generally required to be 300 ° C. or higher, and the air-fuel ratio is a theoretical air-fuel ratio (A / F = 14.6) which can balance the oxidation of HC and CO and the reduction of NO x. The catalyst works most effectively in the vicinity. Therefore, a conventional automobile equipped with an exhaust gas purification device that uses a three-way catalyst is installed at a position where the three-way catalyst works effectively, and the oxygen concentration in the exhaust system is detected to create a theoretical air-fuel mixture. Feedback control is performed so as to keep the fuel ratio close to.

【0004】従来の三元触媒をエキゾーストマニホール
ド直後に設置しても、排ガス温度が低い(300 ℃以下)
エンジン始動直後には触媒活性が低く、始動直後(コー
ルドスタート時)に大量に排出されるHCは浄化されず
にそのまま排出されてしまうという問題がある。
Even if a conventional three-way catalyst is installed immediately after the exhaust manifold, the exhaust gas temperature is low (300 ° C or lower).
There is a problem that the catalyst activity is low immediately after the engine is started, and a large amount of HC discharged immediately after the engine is started (at the time of cold start) is not purified but is discharged as it is.

【0005】上記の課題を解決するための排ガス浄化装
置として、触媒コンバータの排気上流側にコールドHC
を吸着するための吸着材を納めたHCトラッパーを配置
したもの(特開平2-135126号公報)が提案されている。
As an exhaust gas purifying apparatus for solving the above problems, cold HC is provided on the upstream side of the exhaust of a catalytic converter.
There has been proposed one in which an HC trapper containing an adsorbent for adsorbing is disposed (JP-A-2-135126).

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
特開平2-135126号公報に開示されている排気ガス浄化装
置に用いられている吸着材では、 1) CuやPd等がHC浄化触媒金属として部分的に担
持されておりゼオライトがH型モデルナイトまたはH型
ゼオライトであるため、ゼオライトのHC吸着能力が十
分ではない。 2) ゼオライトとアルミナを一緒にコートした後に、触
媒金属を含浸担持しているため、触媒成分の耐久性が十
分ではない。 という問題がある。
However, in the adsorbent used in the exhaust gas purifying apparatus disclosed in Japanese Patent Laid-Open No. 2-135126, 1) Cu, Pd, etc. are used as the HC purifying catalyst metal. Since the zeolite is partially supported and the zeolite is H-type model night or H-type zeolite, the HC adsorption capacity of the zeolite is not sufficient. 2) Since the catalyst metal is impregnated and supported after the zeolite and alumina are coated together, the durability of the catalyst component is not sufficient. There is a problem.

【0007】本発明の目的は、上記従来技術の問題点を
解決し、排気系の排ガス浄化触媒の上流側に用いる、吸
着層から脱離してきたHCを良好に浄化するHC吸着触
媒を提供することにある。
An object of the present invention is to solve the above-mentioned problems of the prior art and to provide an HC adsorbing catalyst which is used upstream of an exhaust gas purifying catalyst of an exhaust system and which purifies HC desorbed from an adsorbing layer. Especially.

【0008】[0008]

【課題を解決するための手段】本発明は、排ガス中のH
Cを浄化するためのHC吸着触媒であって、モノリス担
体前方部分にHC吸着に有効なCuとPdの少なくとも
1種以上の金属でイオン交換したZSM−5ゼオライト
をコートし、後方部分に活性セリアおよび/またはアル
ミナを主成分とした粉末に担持したPtとPdの少なく
とも1種以上を含む触媒第1層と、更に該第1層の上に
触媒成分として活性セリアおよび/またはアルミナに担
持されたRhを含む第2層を備えてなることを特徴とす
るHC吸着触媒である。
The present invention is directed to H in exhaust gas.
An HC adsorption catalyst for purifying C, wherein the front portion of the monolith carrier is coated with ZSM-5 zeolite ion-exchanged with at least one metal of Cu and Pd effective for HC adsorption, and the rear portion is activated ceria. And / or a catalyst first layer containing at least one or more of Pt and Pd supported on a powder containing alumina as a main component, and activated ceria and / or alumina supported on the first layer as a catalyst component. It is an HC adsorption catalyst comprising a second layer containing Rh.

【0009】[0009]

【作用】本発明の自動車排ガス浄化装置に用いるHC吸
着触媒においては、担体後方部分に担持された触媒活性
成分が吸着材の下流側に配置された触媒よりも早く加熱
されるため、担体前方部分にコートされた吸着材からH
Cが脱離し始め、下流からの触媒コンバータ中の触媒が
十分に活性化されない段階においても、吸着材後方部分
にコートされた触媒活性成分が十分に活性化されてお
り、HCが良好に浄化される。しかも、該金属触媒によ
りHCが浄化される際に反応熱が生じるため、これによ
り触媒コンバータ中の触媒が加熱されて活性化が促進さ
れる。
In the HC adsorbing catalyst used in the automobile exhaust gas purifying apparatus of the present invention, the catalytically active component carried on the rear part of the carrier is heated faster than the catalyst arranged on the downstream side of the adsorbent, so that the front part of the carrier is From the adsorbent coated on H
Even when C begins to be desorbed and the catalyst in the catalytic converter from the downstream side is not sufficiently activated, the catalytically active component coated on the rear portion of the adsorbent is sufficiently activated and HC is satisfactorily purified. It Moreover, reaction heat is generated when HC is purified by the metal catalyst, so that the catalyst in the catalytic converter is heated and activation is promoted.

【0010】[0010]

【実施例】以下、本発明を実施例、比較例および試験例
によりさらに詳細に説明する。尚例において、部は特記
しない限り重量部を表わす。 実施例1 Pdでイオン交換したZSM−5ゼオライト(以下、P
d/ZSM−5と記す) 100部、シリカゾル(固形分20
%)65部、水65部を磁気ポットに仕込み、振動ミル装置
で40分間もしくは、ユニバーサルボールミル装置で6.5
時間混合粉砕して、ウォシュコートスラリーを製造し
た。前記で製造したスラリーをコーディライト製モノリ
ス担体前方部分のみに含浸したのちエアーブローして余
計なスラリーを除去し、その後、乾燥を行い、 400℃で
約1時間仮焼成した。これにより、Pd/ZSM−5ゼ
オライトが約100 g/Lのコート量で担体にコートされ
た。上記のウォシュコート、乾燥および焼成をさらに繰
返して合計180 g/LのPd/ZSM−5ゼオライトを
コートし、空気雰囲気中 650℃で2〜6時間(好ましく
は4時間)の焼成を行なった。
EXAMPLES The present invention will be described in more detail with reference to Examples, Comparative Examples and Test Examples. In the examples, "parts" means "parts by weight" unless otherwise specified. Example 1 ZSM-5 zeolite ion-exchanged with Pd (hereinafter referred to as PSM
d / ZSM-5) 100 parts, silica sol (solid content 20
%) 65 parts and 65 parts of water are charged into a magnetic pot and the vibration mill device is used for 40 minutes or the universal ball mill device is 6.5
A washcoat slurry was produced by time-mixing and grinding. After impregnating only the front part of the cordierite monolith carrier with the slurry produced above, excess slurry was removed by air-blowing, followed by drying and calcination at 400 ° C. for about 1 hour. As a result, Pd / ZSM-5 zeolite was coated on the carrier at a coating amount of about 100 g / L. The above wash coating, drying and calcination were further repeated to coat a total of 180 g / L of Pd / ZSM-5 zeolite, and calcination was carried out at 650 ° C. for 2 to 6 hours (preferably 4 hours) in an air atmosphere.

【0011】次に、Ptを担持した活性セリア粉末(以
下、Pt/CeO2 と記す)100 部、アルミナ50部、2
%酢酸150 部を磁気ポットに仕込み、前記と同様にして
ウォシュコートスラリーを製造し、同様の方法で担体後
方部分のみに150 g/LのPt触媒層をコートし、乾燥
後、空気雰囲気中400 ℃で1〜4時間(好ましくは1時
間)の焼成を行なった。
Next, 100 parts of activated ceria powder carrying Pt (hereinafter referred to as Pt / CeO 2 ), 50 parts of alumina, 2
% Of 150% acetic acid was charged into a magnetic pot to prepare a washcoat slurry in the same manner as described above, and a Pt catalyst layer of 150 g / L was coated only on the rear part of the carrier by the same method, and after drying, 400 wt. Firing was carried out at a temperature of 1 to 4 hours (preferably 1 hour).

【0012】さらに、Rhを担持したアルミナ粉末(以
下、Rh/Al2 3 と記す)100部、アルミナ50部、
2%酢酸150 部を磁気ポットに仕込み、前記と同様にし
てウォシュコートスラリーを製造し、同様の方法で担体
後方部分のPt/CeO2 層の上に50g/LのRh/A
2 3 触媒層をコートし、乾燥後、空気雰囲気中400
℃で1〜4時間(好ましくは1時間)の焼成を行ない、
(吸着触媒−1)を得た。
Further, 100 parts of Rh-supported alumina powder (hereinafter referred to as Rh / Al 2 O 3 ), 50 parts of alumina,
150 parts of 2% acetic acid was charged into a magnetic pot, a washcoat slurry was prepared in the same manner as above, and 50 g / L of Rh / A was formed on the Pt / CeO 2 layer in the rear part of the carrier in the same manner.
l 2 O 3 catalyst layer was coated and dried, then 400
Calcination is performed for 1 to 4 hours (preferably 1 hour) at
(Adsorption catalyst-1) was obtained.

【0013】実施例2 Pd/ZSM−5を100 部、シリカゾル(固形分20%)
65部、水65部を磁気ポットに仕込み、実施例1と同様の
方法でウォッシュコートスラリーを製造し、同様のコー
ト方法でモノリス担体前方部分にPd/ZSM−5を 1
80g/Lコートし、乾燥、焼成を行なった。
Example 2 100 parts of Pd / ZSM-5, silica sol (solid content 20%)
65 parts of water and 65 parts of water were charged into a magnetic pot, a washcoat slurry was produced by the same method as in Example 1, and Pd / ZSM-5 was added to the front part of the monolith carrier by the same coating method.
It was coated with 80 g / L, dried and baked.

【0014】次にPdを担持した活性セリア粉末(以
下、Pd/CeO2 と記す)100 部、アルミナ50部、2
%硝酸150 部を磁気ポットに仕込み、実施例1と同様の
方法でウォシュコートスラリーを製造し、同様のコート
方法で担体後方部分に150 g/LのPd触媒層をコート
し、乾燥、焼成を行なった。
Next, 100 parts of activated ceria powder carrying Pd (hereinafter referred to as Pd / CeO 2 ), 50 parts of alumina, 2
% Of 150% nitric acid was charged in a magnetic pot, a washcoat slurry was produced in the same manner as in Example 1, 150 g / L of Pd catalyst layer was coated on the rear part of the carrier by the same coating method, dried and calcined. I did.

【0015】さらに、実施例1と同様の方法でRh/A
2 3 触媒層を50g/Lコートし、乾燥、焼成を行な
い、(吸着触媒−2)を得た。
Further, in the same manner as in Example 1, Rh / A
An l 2 O 3 catalyst layer was coated at 50 g / L, dried and calcined to obtain (Adsorption catalyst-2).

【0016】実施例3 Pd/ZSM−5を100 部、シリカゾル( 固形分20%)
65部、水65部を磁気ポットに仕込み、実施例1と同様の
方法でウォッシュコートスラリーを製造し、同様のコー
ト方法でモノリス担体前方部分にPd/ZSM−5を18
0 g/Lコートし、乾燥、焼成を行なった。
Example 3 100 parts of Pd / ZSM-5, silica sol (solid content 20%)
65 parts of water and 65 parts of water were charged into a magnetic pot, a washcoat slurry was produced by the same method as in Example 1, and Pd / ZSM-5 was added to the front portion of the monolith carrier by the same coating method.
It was coated with 0 g / L, dried and baked.

【0017】次にPtを担持したアルミナ粉末(以下、
Pt/Al2 3 と記す)100 部、アルミナ50部、2%
酢酸150 部を磁気ポットに仕込み、実施例1と同様の方
法でウォッシュコートスラリーを製造し、同様のコート
方法で担体後方部分に150 g/LのPt触媒層をコート
し、乾燥、焼成を行なった。
Next, an alumina powder carrying Pt (hereinafter, referred to as
Pt / Al 2 O 3 ) 100 parts, alumina 50 parts, 2%
150 parts of acetic acid was charged into a magnetic pot, a washcoat slurry was produced in the same manner as in Example 1, and 150 g / L of Pt catalyst layer was coated on the rear part of the carrier by the same coating method, followed by drying and firing. It was

【0018】さらに、実施例1と同様の方法でRh/A
2 3 触媒層を50g/Lコートし、乾燥、焼成を行な
い、( 吸着触媒−3)を得た。
Further, in the same manner as in Example 1, Rh / A
An l 2 O 3 catalyst layer was coated at 50 g / L, dried and calcined to obtain (Adsorption catalyst-3).

【0019】実施例4 Pd/ZSM−5を100 部、シリカゾル(固形分20%)
65部、水65部を磁気ポットに仕込み、実施例1と同様の
方法でウォッシュコートスラリーを製造し、同様のコー
ト方法でモノリス担体前方部分にPd/ZSM−5を18
0 g/Lコートし、乾燥、焼成を行なった。
Example 4 100 parts of Pd / ZSM-5, silica sol (solid content 20%)
65 parts of water and 65 parts of water were charged into a magnetic pot, a washcoat slurry was produced by the same method as in Example 1, and Pd / ZSM-5 was added to the front portion of the monolith carrier by the same coating method.
It was coated with 0 g / L, dried and baked.

【0020】次にPdを担持したアルミナ粉末(以下、
Pd/Al2 3 と記す)100 部、アルミナ50部、2%
酢酸150 部を磁気ポットに仕込み、実施例1と同様の方
法でウォッシュコートスラリーを製造し、同様のコート
方法で担体後方部分に150 g/LのPd触媒層をコート
し、乾燥、焼成を行なった。
Next, an alumina powder carrying Pd (hereinafter referred to as
Pd / Al 2 O 3 ) 100 parts, alumina 50 parts, 2%
150 parts of acetic acid was charged into a magnetic pot, a washcoat slurry was produced in the same manner as in Example 1, 150 g / L of Pd catalyst layer was coated on the rear part of the carrier by the same coating method, dried and calcined. It was

【0021】さらに、実施例1と同様の方法でRh/A
2 3 触媒層を50g/Lコートし、乾燥、焼成を行な
い、(吸着触媒−4)を得た。
Further, in the same manner as in Example 1, Rh / A
An l 2 O 3 catalyst layer was coated at 50 g / L, dried and calcined to obtain (Adsorption catalyst-4).

【0022】実施例5 Cuでイオン交換したZSM−5ゼオライト(以下、C
u/ZSM−5と記す)100 部、シリカゾル( 固形分20
%)65部、水65部を磁気ポットに仕込み、実施例1と同
様の方法でウォッシュコートスラリーを製造し、同様の
コート方法でモノリス担体前方部分にCu/ZSM−5
を180 g/Lコートし、乾燥後、空気雰囲気中400 ℃で
1〜4時間(好ましくは1時間)焼成を行なった。
Example 5 ZSM-5 zeolite ion-exchanged with Cu (hereinafter referred to as C
u / ZSM-5) 100 parts, silica sol (solid content 20
%) 65 parts and 65 parts of water were charged in a magnetic pot, a washcoat slurry was produced in the same manner as in Example 1, and Cu / ZSM-5 was applied to the front portion of the monolith carrier by the same coating method.
Was coated at 180 g / L, dried, and then baked in an air atmosphere at 400 ° C. for 1 to 4 hours (preferably 1 hour).

【0023】次に実施例1と同様の方法で担体後方部分
にPt/CeO2 触媒層を150 g/Lコートし、乾燥、
焼成を行なった。さらに、実施例1と同様の方法でRh
/Al2 3 触媒層を50g/Lコートし、乾燥、焼成を
行ない、(吸着触媒−5)を得た。
Then, in the same manner as in Example 1, a Pt / CeO 2 catalyst layer was coated at 150 g / L on the rear portion of the carrier, and dried,
Firing was performed. Further, in the same manner as in Example 1, Rh
/ Al 2 O 3 catalyst layer was coated at 50 g / L, dried and calcined to obtain (Adsorption catalyst-5).

【0024】実施例6 Cu/ZSM−5を100 部、シリカゾル(固形分20%)
65部、水65部を磁器ポットに仕込み、実施例5と同様の
方法でウォッシュコートスラリーを製造し、同様のコー
ト方法でモノリス担体前方部分にCu/ZSM−5を18
0 g/Lコートし、乾燥、焼成を行なった。
Example 6 100 parts of Cu / ZSM-5, silica sol (solid content 20%)
65 parts and 65 parts of water were charged into a porcelain pot, a washcoat slurry was produced in the same manner as in Example 5, and Cu / ZSM-5 was added to the front portion of the monolith carrier by the same coating method.
It was coated with 0 g / L, dried and baked.

【0025】次に実施例2と同様の方法で担体後方部分
にPd/CeO2 触媒層を150 g/Lコートし、乾燥、
焼成を行なった。さらに、実施例1と同様の方法でRh
/Al2 3 触媒層を50g/Lコートし、乾燥、焼成を
行ない、(吸着触媒−6)を得た。
Then, in the same manner as in Example 2, a Pd / CeO 2 catalyst layer was coated at 150 g / L on the rear portion of the carrier, and dried,
Firing was performed. Further, in the same manner as in Example 1, Rh
/ Al 2 O 3 catalyst layer was coated at 50 g / L, dried and calcined to obtain (Adsorption catalyst-6).

【0026】実施例7 Cu/ZSM−5を100 部、シリカゾル(固形分20%)
65部、水65部を磁器ポットに仕込み、実施例5と同様の
方法でウォッシュコートスラリーを製造し、同様のコー
ト方法でモノリス担体前方部分にCu/ZSM−5を18
0 g/Lコートし、乾燥、焼成を行なった。
Example 7 100 parts of Cu / ZSM-5, silica sol (solid content 20%)
65 parts and 65 parts of water were charged into a porcelain pot, a washcoat slurry was produced in the same manner as in Example 5, and Cu / ZSM-5 was added to the front portion of the monolith carrier by the same coating method.
It was coated with 0 g / L, dried and baked.

【0027】次に実施例3と同様の方法で担体後方部分
にPt/Al2 3 触媒層を150 g/Lコートし、乾
燥、焼成を行なった。さらに、実施例1と同様の方法で
Rh/Al2 3 触媒層を50g/Lコートし、乾燥、焼
成を行ない、(吸着触媒−7)を得た。
Then, in the same manner as in Example 3, a Pt / Al 2 O 3 catalyst layer was coated at 150 g / L on the rear portion of the carrier, dried and fired. Further, 50 g / L of Rh / Al 2 O 3 catalyst layer was coated by the same method as in Example 1, dried and calcined to obtain (Adsorption catalyst-7).

【0028】実施例8 Cu/ZSM−5を100 部、シリカゾル(固形分20%)
65部、水65部を磁器ポットに仕込み、実施例5と同様の
方法でウォッシュコートスラリーを製造し、同様のコー
ト方法でモノリス担体前方部分にCu/ZSM−5を18
0 g/Lコートし、乾燥、焼成を行なった。
Example 8 100 parts of Cu / ZSM-5, silica sol (solid content 20%)
65 parts and 65 parts of water were charged into a porcelain pot, a washcoat slurry was produced in the same manner as in Example 5, and Cu / ZSM-5 was added to the front portion of the monolith carrier by the same coating method.
It was coated with 0 g / L, dried and baked.

【0029】次に実施例4と同様の方法で担体後方部分
にPd/Al2 3 触媒層を150 g/Lコートし、乾
燥、焼成を行なった。さらに、実施例1と同様の方法で
Rh/Al2 3 触媒層を50g/Lコートし、乾燥、焼
成を行ない、(吸着触媒−8)を得た。
Then, in the same manner as in Example 4, a Pd / Al 2 O 3 catalyst layer was coated at 150 g / L on the rear portion of the carrier, dried and calcined. Further, 50 g / L of Rh / Al 2 O 3 catalyst layer was coated in the same manner as in Example 1, dried and calcined to obtain (Adsorption catalyst-8).

【0030】実施例9 Pd/ZSM−5を100 部、シリカゾル(固形分20%)
65部、水65部を磁器ポットに仕込み、実施例1と同様の
方法でウォッシュコートスラリーを製造し、同様のコー
ト方法でモノリス担体前方部分にPd/ZSM−5を90
g/Lコートし、乾燥、焼成を行なった。次にCu/Z
SM−5を100 部、シリカゾル(固形分20%)65部、水
65部を磁器ポットに仕込み、実施例5と同様の方法でウ
ォッシュコートスラリーを製造し、同様のコート方法で
Pd/ZSM−5層の上にCu/ZSM−5を90g/L
コートし、乾燥、焼成を行なった。
Example 9 100 parts of Pd / ZSM-5, silica sol (solid content 20%)
65 parts and 65 parts of water were charged into a porcelain pot, a washcoat slurry was produced in the same manner as in Example 1, and Pd / ZSM-5 was added to the front portion of the monolith carrier by the same coating method.
It was coated with g / L, dried and baked. Then Cu / Z
100 parts of SM-5, 65 parts of silica sol (solid content 20%), water
65 parts were placed in a porcelain pot, a washcoat slurry was produced in the same manner as in Example 5, and 90 g / L of Cu / ZSM-5 was formed on the Pd / ZSM-5 layer by the same coating method.
It was coated, dried and baked.

【0031】次に実施例1と同様の方法で担体後方部分
にPt/CeO2 触媒層を150 g/Lコートし、乾燥、
焼成を行なった。さらに、実施例1と同様の方法でRh
/Al2 3 触媒層を50g/Lコートし、乾燥、焼成を
行ない、(吸着触媒−9)を得た。
Then, in the same manner as in Example 1, a Pt / CeO 2 catalyst layer was coated at 150 g / L on the rear portion of the support, and dried,
Firing was performed. Further, in the same manner as in Example 1, Rh
/ Al 2 O 3 catalyst layer was coated at 50 g / L, dried and calcined to obtain (Adsorption catalyst-9).

【0032】実施例10 Pd/ZSM−5を100 部、シリカゾル(固形分20%)
65部、水65部を磁器ポットに仕込み、実施例1と同様の
方法でウォッシュコートスラリーを製造し、同様のコー
ト方法でモノリス担体前方部分にPd/ZSM−5を90
g/Lコートし、乾燥、焼成を行なった。次にCu/Z
SM−5を100 部、シリカゾル(固形分20%)65部、水
65部を磁器ポットに仕込み、実施例5と同様の方法でウ
ォッシュコートスラリーを製造し、同様のコート方法で
Pd/ZSM−5層の上にCu/ZSM−5を90g/L
コートし、乾燥、焼成を行なった。
Example 10 100 parts of Pd / ZSM-5, silica sol (solid content 20%)
65 parts and 65 parts of water were charged into a porcelain pot, a washcoat slurry was produced in the same manner as in Example 1, and Pd / ZSM-5 was added to the front portion of the monolith carrier by the same coating method.
It was coated with g / L, dried and baked. Then Cu / Z
100 parts of SM-5, 65 parts of silica sol (solid content 20%), water
65 parts were placed in a porcelain pot, a washcoat slurry was produced in the same manner as in Example 5, and 90 g / L of Cu / ZSM-5 was formed on the Pd / ZSM-5 layer by the same coating method.
It was coated, dried and baked.

【0033】次に実施例2と同様の方法で担体後方部分
にPd/CeO2 触媒層を150 g/Lコートし、乾燥、
焼成を行なった。さらに、実施例1と同様の方法でRh
/Al2 3 触媒層を50g/Lコートし、乾燥、焼成を
行ない、(吸着触媒−9)を得た。
Then, in the same manner as in Example 2, a Pd / CeO 2 catalyst layer was coated at 150 g / L on the rear portion of the support and dried,
Firing was performed. Further, in the same manner as in Example 1, Rh
/ Al 2 O 3 catalyst layer was coated at 50 g / L, dried and calcined to obtain (Adsorption catalyst-9).

【0034】実施例11 Pd/ZSM−5を100 部、シリカゾル(固形分20%)
65部、水65部を磁器ポットに仕込み、実施例1と同様の
方法でウォッシュコートスラリーを製造し、同様のコー
ト方法でモノリス担体前方部分にPd/ZSM−5を90
g/Lコートし、乾燥、焼成を行なった。次にCu/Z
SM−5を100 部、シリカゾル(固形分20%)65部、水
65部を磁器ポットに仕込み、実施例5と同様の方法でウ
ォッシュコートスラリーを製造し、同様のコート方法で
Pd/ZSM−5層の上にCu/ZSM−5を90g/L
コートし、乾燥、焼成を行なった。
Example 11 100 parts of Pd / ZSM-5, silica sol (solid content 20%)
65 parts and 65 parts of water were charged into a porcelain pot, a washcoat slurry was produced in the same manner as in Example 1, and Pd / ZSM-5 was added to the front portion of the monolith carrier by the same coating method.
It was coated with g / L, dried and baked. Then Cu / Z
100 parts of SM-5, 65 parts of silica sol (solid content 20%), water
65 parts were placed in a porcelain pot, a washcoat slurry was produced in the same manner as in Example 5, and 90 g / L of Cu / ZSM-5 was formed on the Pd / ZSM-5 layer by the same coating method.
It was coated, dried and baked.

【0035】次に実施例3と同様の方法で担体後方部分
にPt/Al2 3 触媒層を150 g/Lコートし、乾
燥、焼成を行なった。さらに、実施例1と同様の方法で
Rh/Al2 3 触媒層を50g/Lコートし、乾燥、焼
成を行ない、(吸着触媒−11)を得た。
Then, in the same manner as in Example 3, a Pt / Al 2 O 3 catalyst layer was coated at 150 g / L on the rear portion of the carrier, dried and baked. Further, 50 g / L of Rh / Al 2 O 3 catalyst layer was coated in the same manner as in Example 1, dried and calcined to obtain (Adsorption catalyst-11).

【0036】実施例12 Pd/ZSM−5を100 部、シリカゾル(固形分20%)
65部、水65部を磁器ポットに仕込み、実施例1と同様の
方法でウォッシュコートスラリーを製造し、同様のコー
ト方法でモノリス担体前方部分にPd/ZSM−5を90
g/Lコートし、乾燥、焼成を行なった。次にCu/Z
SM−5を100 部、シリカゾル(固形分20%)65部、水
65部を磁器ポットに仕込み、実施例5と同様の方法でウ
ォッシュコートスラリーを製造し、同様のコート方法で
Pd/ZSM−5層の上にCu/ZSM−5を90g/L
コートし、乾燥、焼成を行なった。
Example 12 100 parts of Pd / ZSM-5, silica sol (solid content 20%)
65 parts and 65 parts of water were charged into a porcelain pot, a washcoat slurry was produced in the same manner as in Example 1, and Pd / ZSM-5 was added to the front portion of the monolith carrier by the same coating method.
It was coated with g / L, dried and baked. Then Cu / Z
100 parts of SM-5, 65 parts of silica sol (solid content 20%), water
65 parts were placed in a porcelain pot, a washcoat slurry was produced in the same manner as in Example 5, and 90 g / L of Cu / ZSM-5 was formed on the Pd / ZSM-5 layer by the same coating method.
It was coated, dried and baked.

【0037】次に実施例4と同様の方法で担体後方部分
にPd/Al2 3 触媒層を150 g/Lコートし、乾
燥、焼成を行なった。さらに、実施例1と同様の方法で
Rh/Al2 3 触媒層を50g/Lコートし、乾燥、焼
成を行ない、(吸着触媒−12)を得た。
Next, in the same manner as in Example 4, 150 g / L of Pd / Al 2 O 3 catalyst layer was coated on the rear portion of the carrier, dried and calcined. Further, 50 g / L of Rh / Al 2 O 3 catalyst layer was coated by the same method as in Example 1, dried and calcined to obtain (Adsorption catalyst-12).

【0038】実施例13 Pd/ZSM−5を25部、Cu/ZSM−5を75部とシ
リカゾル65部および、水65部をポットに仕込み、実施例
1と同様の方法でウォッシュコートスラリーを製造し、
同様のコート方法で担体前方部分にPdおよび、Cu混
合のZSM−5ゼオライトを180 g/Lコートし、乾
燥、焼成を行なった。
Example 13 25 parts of Pd / ZSM-5, 75 parts of Cu / ZSM-5, 65 parts of silica sol, and 65 parts of water were charged in a pot, and a washcoat slurry was produced in the same manner as in Example 1. Then
By the same coating method, 180 g / L of PSM and Cu-mixed ZSM-5 zeolite was coated on the front part of the carrier, dried and calcined.

【0039】次に実施例1と同様の方法で担体後方部分
にPt/CeO2 触媒層を150 g/Lコートし、乾燥、
焼成を行なった。さらに、実施例1と同様の方法でRh
/Al2 3 触媒層を50g/Lコートし、乾燥、焼成を
行ない、(吸着触媒−13)を得た。
Then, in the same manner as in Example 1, a Pt / CeO 2 catalyst layer was coated at 150 g / L on the rear portion of the support, and dried,
Firing was performed. Further, in the same manner as in Example 1, Rh
/ Al 2 O 3 catalyst layer was coated at 50 g / L, dried and calcined to obtain (Adsorption catalyst-13).

【0040】実施例14 Pd/ZSM−5を25部、Cu/ZSM−5を75部とシ
リカゾル65部および、水65部をポットに仕込み、実施例
1と同様の方法でウォッシュコートスラリーを製造し、
同様のコート方法で担体前方部分にPdおよびCu混合
のZSM−5ゼオライトを180 g/Lコートし、乾燥、
焼成を行なった。
Example 14 25 parts of Pd / ZSM-5, 75 parts of Cu / ZSM-5, 65 parts of silica sol, and 65 parts of water were charged in a pot, and a washcoat slurry was produced in the same manner as in Example 1. Then
By the same coating method, 180 g / L of ZSM-5 zeolite containing Pd and Cu was coated on the front part of the carrier, and dried.
Firing was performed.

【0041】次に実施例2と同様の方法で担体後方部分
にPd/CeO2 触媒層を150 g/Lコートし、乾燥、
焼成を行なった。さらに、実施例1と同様の方法でRh
/Al2 3 触媒層を50g/Lコートし、乾燥、焼成を
行ない、(吸着触媒−14)を得た。
Then, in the same manner as in Example 2, a Pd / CeO 2 catalyst layer was coated at 150 g / L on the rear portion of the support, dried and
Firing was performed. Further, in the same manner as in Example 1, Rh
/ Al 2 O 3 catalyst layer was coated at 50 g / L, dried and calcined to obtain (Adsorption catalyst-14).

【0042】実施例15 Pd/ZSM−5を25部、Cu/ZSM−5を75部とシ
リカゾル65部および、水65部をポットに仕込み、実施例
1と同様の方法でウォッシュコートスラリーを製造し、
同様のコート方法で担体前方部分にPdおよび、Cu混
合のZSM−5ゼオライトを180 g/Lコートし、乾
燥、焼成を行なった。
Example 15 25 parts of Pd / ZSM-5, 75 parts of Cu / ZSM-5, 65 parts of silica sol, and 65 parts of water were charged in a pot, and a washcoat slurry was produced in the same manner as in Example 1. Then
By the same coating method, 180 g / L of PSM and Cu-mixed ZSM-5 zeolite was coated on the front part of the carrier, dried and calcined.

【0043】次に実施例3と同様の方法で担体後方部分
にPt/Al2 3 触媒層を150 g/Lコートし、乾
燥、焼成を行なった。さらに、実施例1と同様の方法で
Rh/Al2 3 触媒層を50g/Lコート、乾燥、焼成
を行ない、(吸着触媒−15)を得た。
Then, in the same manner as in Example 3, a Pt / Al 2 O 3 catalyst layer was coated at 150 g / L on the rear portion of the support, dried and baked. Further, in the same manner as in Example 1, a Rh / Al 2 O 3 catalyst layer was coated at 50 g / L, dried and calcined to obtain (Adsorption catalyst-15).

【0044】実施例16 Pd/ZSM−5を25部、Cu/ZSM−5を75部とシ
リカゾル65部および、水65部をポットに仕込み、実施例
1と同様の方法でウォッシュコートスラリーを製造し、
同様のコート方法で担体前方部分にPdおよびCu混合
のZSM−5ゼオライトを180 g/Lコートし、乾燥、
焼成を行なった。
Example 16 25 parts of Pd / ZSM-5, 75 parts of Cu / ZSM-5, 65 parts of silica sol, and 65 parts of water were charged in a pot, and a washcoat slurry was produced in the same manner as in Example 1. Then
By the same coating method, 180 g / L of ZSM-5 zeolite containing Pd and Cu was coated on the front part of the carrier, and dried.
Firing was performed.

【0045】次に実施例4と同様の方法で担体後方部分
にPd/Al2 3 触媒層を150 g/Lコートし、乾
燥、焼成を行なった。さらに、実施例1と同様の方法で
Rh/Al2 3 触媒層を50g/Lコートし、乾燥、焼
成を行ない、(吸着触媒−16)を得た。
Then, in the same manner as in Example 4, 150 g / L of Pd / Al 2 O 3 catalyst layer was coated on the rear portion of the carrier, dried and calcined. Further, 50 g / L of Rh / Al 2 O 3 catalyst layer was coated in the same manner as in Example 1, dried and calcined to obtain (Adsorption catalyst-16).

【0046】比較例1 Pd/ZSM−5を100 部、シリカゾル(固形分20%)
65部、水65部を磁器ポットに仕込み、実施例1と同様の
方法でウォッシュコートスラリーを製造し、同様のコー
ト方法でモノリス担体にPd/ZSM−5を180 g/L
コート、乾燥、焼成を行ない、(吸着触媒−17)を得
た。
Comparative Example 1 100 parts of Pd / ZSM-5, silica sol (solid content 20%)
65 parts and 65 parts of water were charged into a porcelain pot, a washcoat slurry was produced in the same manner as in Example 1, and 180 g / L of Pd / ZSM-5 was added to a monolith carrier by the same coating method.
After coating, drying and baking, (adsorption catalyst-17) was obtained.

【0047】比較例2 Cu/ZSM−5を100 部、シリカゾル(固形分20%)
65部、水65部を磁器ポットに仕込み、実施例5と同様の
方法でウォッシュコートスラリーを製造し、同様のコー
ト方法でモノリス担体にCu/ZSM−5を180 g/L
コートし、乾燥、焼成を行ない、(吸着触媒−18)を得
た。以上の実施例の担体としては、モノリス担体、メタ
ル担体等任意のものを使用することができる。
Comparative Example 2 100 parts of Cu / ZSM-5, silica sol (solid content 20%)
65 parts and 65 parts of water were charged into a porcelain pot, a washcoat slurry was produced in the same manner as in Example 5, and 180 g / L of Cu / ZSM-5 was added to the monolith carrier by the same coating method.
It was coated, dried and calcined to obtain (Adsorption catalyst-18). Any carrier such as a monolith carrier or a metal carrier can be used as the carrier in the above embodiments.

【0048】試験例 実施例1〜16および比較例1と2の各吸着触媒に付き下
記条件で評価を行ない、HC吸着浄化率を測定した。得
た結果を表1に示す。 触媒容量 120 cm3 (SV:40000 /h) 評価エンジン 2000ccエンジン(EGI使用)
Test Example The adsorbed catalysts of Examples 1 to 16 and Comparative Examples 1 and 2 were evaluated under the following conditions to measure the HC adsorption purification rate. The results obtained are shown in Table 1. Catalyst capacity 120 cm 3 (SV: 40,000 / h) Evaluation engine 2000cc engine (using EGI)

【0049】評価モードは、コールド状態(水温25℃)
からエンジン始動し、アイドル状態(700 rpm)に20
秒間保持(図1)し、その後2000rpm、−200 mmHg
に加速、保持する。吸着率は、ガス流入後100 秒間の積
算値(1−吸着触媒出口/吸着触媒入口)より求めた。
図1にエンジン入口温度の経時変化とこれに伴う炭化水
素の基準温度変化を示す。
Evaluation mode is cold (water temperature 25 ° C.)
Engine started from 20 to idle state (700 rpm)
Hold for 2 seconds (Fig. 1), then 2000 rpm, -200 mmHg
Accelerate and hold. The adsorption rate was calculated from the integrated value (1-adsorption catalyst outlet / adsorption catalyst inlet) for 100 seconds after gas flow.
FIG. 1 shows changes with time in the engine inlet temperature and accompanying changes in the reference temperature of hydrocarbons.

【0050】[0050]

【表1】 [Table 1]

【0051】[0051]

【発明の効果】本発明の排ガス浄化用触媒においては、
吸着材の後方部分に排ガス浄化触媒が担持されているた
め、HC吸着材からHCが離脱し始める温度において
も、脱離したHCが良好に浄化され、しかも吸着材後方
部分の触媒によりHCが浄化される際の反応熱により、
触媒コンバーター中の触媒の活性化が促進されるため、
HCが吸着材から離脱し始める比較的低い温度における
HCの浄化性能が著しく向上する。
EFFECT OF THE INVENTION In the exhaust gas purifying catalyst of the present invention,
Since the exhaust gas purifying catalyst is carried in the rear portion of the adsorbent, the desorbed HC is favorably purified even at the temperature at which the HC begins to desorb from the HC adsorbent, and the HC in the rear portion of the adsorbent purifies the HC. Depending on the heat of reaction when
Since the activation of the catalyst in the catalytic converter is promoted,
The purification performance of HC at a relatively low temperature at which HC starts to separate from the adsorbent is significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】試験例におけるエンジン入口温度の経時変化と
これに伴う炭化水素の基準濃度変化を示すグラフであ
る。
FIG. 1 is a graph showing changes with time in engine inlet temperature and accompanying changes in reference concentration of hydrocarbons in a test example.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 排気系の排ガス浄化触媒の上流側に配置
する炭化水素吸着触媒において、銅とパラジウムの少な
くとも1種以上の金属でイオン交換したZSM−5ゼオ
ライトからなる炭化水素を吸着する吸着材をモノリス担
体の前方部分に備え、後方部分に活性セリアおよび/ま
たはアルミナに担持された白金とパラジウムの少なくと
も1種以上を含む触媒第1層と、更に該第1層の上に触
媒成分として活性セリアおよび/またはアルミナに担持
されたロジウムを含む第2層を備えてなることを特徴と
する炭化水素吸着触媒。
1. An adsorbent for adsorbing a hydrocarbon composed of ZSM-5 zeolite ion-exchanged with at least one metal of copper and palladium in a hydrocarbon adsorbing catalyst arranged upstream of an exhaust gas purifying catalyst of an exhaust system. Is provided in the front part of the monolithic carrier, and the rear part thereof comprises a catalyst first layer containing at least one or more of platinum and palladium supported on active ceria and / or alumina, and further active as a catalyst component on the first layer. A hydrocarbon adsorption catalyst comprising a second layer containing rhodium supported on ceria and / or alumina.
JP4298935A 1992-11-09 1992-11-09 Hydrocarbon adsorptive catalyst Pending JPH06142520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4298935A JPH06142520A (en) 1992-11-09 1992-11-09 Hydrocarbon adsorptive catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4298935A JPH06142520A (en) 1992-11-09 1992-11-09 Hydrocarbon adsorptive catalyst

Publications (1)

Publication Number Publication Date
JPH06142520A true JPH06142520A (en) 1994-05-24

Family

ID=17866096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4298935A Pending JPH06142520A (en) 1992-11-09 1992-11-09 Hydrocarbon adsorptive catalyst

Country Status (1)

Country Link
JP (1) JPH06142520A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6191061B1 (en) 1997-04-23 2001-02-20 Toyota Jidosha Kabushiki Kaisha Method of purifying exhaust gas and catalyst for purifying exhaust gas
KR20030038035A (en) * 2001-11-08 2003-05-16 현대자동차주식회사 A system for the three way catalytic aftertreatment of gasoline automotive emissions
WO2017159628A1 (en) * 2016-03-18 2017-09-21 株式会社キャタラー Catalyst for exhaust gas purification
US10975745B2 (en) * 2015-10-06 2021-04-13 Johnson Matthey Public Limited Company Passive NOx adsorber

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6191061B1 (en) 1997-04-23 2001-02-20 Toyota Jidosha Kabushiki Kaisha Method of purifying exhaust gas and catalyst for purifying exhaust gas
KR20030038035A (en) * 2001-11-08 2003-05-16 현대자동차주식회사 A system for the three way catalytic aftertreatment of gasoline automotive emissions
US10975745B2 (en) * 2015-10-06 2021-04-13 Johnson Matthey Public Limited Company Passive NOx adsorber
WO2017159628A1 (en) * 2016-03-18 2017-09-21 株式会社キャタラー Catalyst for exhaust gas purification
JPWO2017159628A1 (en) * 2016-03-18 2019-01-24 株式会社キャタラー Exhaust gas purification catalyst
US11110435B2 (en) 2016-03-18 2021-09-07 Cataler Corporation Exhaust gas purification catalyst

Similar Documents

Publication Publication Date Title
JP3311051B2 (en) Exhaust gas purification method and apparatus
US7820123B2 (en) Device for the purification of exhaust gas
JP3965711B2 (en) Nitrogen oxide purification catalyst and purification method
JP3479980B2 (en) Exhaust gas purification method and exhaust gas purification catalyst
JP2022521131A (en) Catalyst articles, and their use for the treatment of exhaust fumes
JPH07124468A (en) Production of hydrocarbon adsorbent and adsorption catalyst
US20040209761A1 (en) Exhaust gas purifying catalyst and process for purifying exhaust gas
JP3282344B2 (en) Exhaust gas purification device
JP2682404B2 (en) Method for producing hydrocarbon adsorbent and catalyst
JPH10118457A (en) Exhaust gas purification device for internal combustion engine
JPH07332073A (en) Exhaust emission control device
JPH06142519A (en) Hydrocarbon adsorptive catalyst
JPH10263364A (en) Exhaust gas purifying system
JPH06142520A (en) Hydrocarbon adsorptive catalyst
JP3295989B2 (en) Exhaust gas purification catalyst
JP3695394B2 (en) Exhaust gas purification device and manufacturing method
JPH07241471A (en) Production of adsorptive catalyst for purification of exhaust gas
JP2003290629A (en) Cleaning system for exhaust gas
JPH04293519A (en) Exhaust gas purification device
JP3459037B2 (en) Exhaust gas purification equipment
JPH09225265A (en) Exhaust gas purifying device
JPH06170172A (en) Hydrocarbon adsorbing catalyst
JP3321831B2 (en) Exhaust gas purification catalyst
JP3991908B2 (en) Exhaust gas purification method
JPH0568888A (en) Waste gas cleaning catalyst