JPH0614186Y2 - Beam scanning device - Google Patents
Beam scanning deviceInfo
- Publication number
- JPH0614186Y2 JPH0614186Y2 JP1986194794U JP19479486U JPH0614186Y2 JP H0614186 Y2 JPH0614186 Y2 JP H0614186Y2 JP 1986194794 U JP1986194794 U JP 1986194794U JP 19479486 U JP19479486 U JP 19479486U JP H0614186 Y2 JPH0614186 Y2 JP H0614186Y2
- Authority
- JP
- Japan
- Prior art keywords
- image
- lens
- optical system
- scanning
- polygon mirror
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000003287 optical effect Effects 0.000 claims description 26
- 238000010586 diagram Methods 0.000 description 12
- 238000005452 bending Methods 0.000 description 8
- 238000012937 correction Methods 0.000 description 5
- 238000003384 imaging method Methods 0.000 description 3
- 230000004907 flux Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Landscapes
- Mounting And Adjusting Of Optical Elements (AREA)
- Mechanical Optical Scanning Systems (AREA)
Description
【考案の詳細な説明】 〔産業上の利用分野〕 本考案はレーザービームを回転多面鏡で偏向し、このビ
ームを感光体上に結像させて画像を形成するレーザービ
ームプリンターのビーム走査装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to a beam scanning device of a laser beam printer for deflecting a laser beam by a rotating polygon mirror and forming an image by imaging this beam on a photoconductor. It is a thing.
レーザービームを回転多面鏡で偏向し、これを感光体上
に結像させ画像を形成するレーザービームプリンターの
光学系は回転多面鏡で偏向された後の偏向角と感光体上
の像の像高が比例関係になっている必要がある。即ち第
3図で偏向角θとし、像高をYとし結像レンズの焦点距
離をfとした場合、Y=fθとなる必要がある。一般の
結像レンズはY=ftanθの関係にあり、このレンズを使
用した場合等速で回転多面鏡でビームを偏向させ感光体
上を走査した場合画像の周辺部は中央部と較べ偏向角の
変化に対する像点の移動が大きく周辺部へ行くほど走査
方向に伸びた画像となる。これを防ぐため歪曲収差を一
般のレンズとは異なる補正を行いY=fθの関係を得て
いる。これをfθ光学系と呼んでいる。レーザービーム
プリンターは光源から発したレーザ光をある径の平行光
束に変え、これを回転多面鏡で反射させfθ光学系によ
って感光上に結像させて、回転多面鏡を回転させfθレ
ンズによって感光体上にできるレーザースポツト像を走
査している。この場合回転多面鏡の各面の回転多面鏡の
回転軸方向の倒れにばらつきが大きいと各面の反射によ
ってできる感光体面上のスポツト像の高さが異なり、定
速で回転する感光体を一定、間隔で走査することができ
ず画像にむらが生ずる。これを防ぐため第4図(a),
(b)に示す様に光学系が使われている。これは第4図
(b)に示す如く平行光束にしたレーザー光をビーム偏
向面の方向に母線をもつシリンドリカルレンズ3を通し
偏向面と垂直な断面は回転多面鏡上11で結像させ、平
行な断面は平行光束の状態で回転多面鏡上11で反射さ
せ、偏向面と平行な方向と垂直な方向で異なった曲率を
もち、異なった屈折力をもったレンズ6(これを今後ト
ーリツクレンズを呼ぶ)を使用したfθ特性をもつ結像
レンズに入射させる。第4図(a)の如く偏向面と平行
な断面では回転多面鏡11で反射された平行光束はfθ
レンズで感光体上に結像され、又第4図(b)の如く垂
直な断面では回転多面鏡11で反射された光は発散光束
となっているが、fθレンズはこの発散光束をも感光体
上12で結像する様に平行な断面より屈折力を大きくし
ている。The optical system of a laser beam printer, which deflects the laser beam with a rotating polygon mirror and forms an image on the photoconductor, forms an image.The deflection angle after the deflection with the rotating polygon mirror and the image height of the image on the photoconductor. Must be in a proportional relationship. That is, when the deflection angle is θ in FIG. 3, the image height is Y, and the focal length of the imaging lens is f, it is necessary that Y = fθ. A general image forming lens has a relationship of Y = ftan θ. When this lens is used, when a beam is deflected by a rotating polygon mirror at a constant speed and a photoconductor is scanned, the peripheral portion of the image has a deflection angle larger than that of the central portion. The movement of the image point with respect to the change is large, and the image extends in the scanning direction toward the peripheral portion. In order to prevent this, the distortion is corrected differently from that of a general lens to obtain a relation of Y = fθ. This is called an fθ optical system. A laser beam printer converts a laser beam emitted from a light source into a parallel light beam of a certain diameter, reflects it by a rotary polygon mirror, forms an image on a photoconductor by an fθ optical system, and rotates the rotary polygon mirror to a photoconductor by an fθ lens. Scanning laser spot image created above. In this case, if there is a large variation in the tilt of the rotary polygonal mirror in the direction of the rotation axis of the rotary polygonal mirror, the height of the spot image on the surface of the photoconductor that is formed by the reflection of each surface will be different, and the photoconductor that rotates at a constant speed will be constant. , It is not possible to scan at intervals, causing unevenness in the image. To prevent this, Fig. 4 (a),
An optical system is used as shown in (b). As shown in FIG. 4 (b), the parallel laser beam is passed through a cylindrical lens 3 having a generatrix in the direction of the beam deflecting surface, and a cross section perpendicular to the deflecting surface is imaged on a rotating polygon mirror 11 to be parallel. The parallel cross section reflects the parallel light flux on the rotating polygon mirror 11, and the lens 6 has different curvatures in the direction parallel to the deflecting surface and in the direction perpendicular to the deflecting surface. It is incident on the imaging lens having the fθ characteristic. In the cross section parallel to the deflecting surface as shown in FIG. 4A, the parallel light flux reflected by the rotary polygon mirror 11 is fθ.
The light imaged on the photoconductor by the lens and reflected by the rotary polygon mirror 11 in the vertical section as shown in FIG. 4 (b) is a divergent light beam, but the fθ lens also exposes this divergent light beam. The refractive power is made larger than that of the parallel cross section so that an image is formed on the body 12.
即ち偏向面と垂直な断面では回転多面鏡の面と感光体上
とが共役関係にある。この場合回転多面鏡11の各面の
倒れにばらつきがあっても感光体面上12のビームの高
さは変化しない。この光学系を倒れ補正光学系と呼ぶ。
この倒れ補正光学系はシリンドリカルレンズ3と球面レ
ンズ5とトーリツクレンズ6から成っている。これを框
体に組込む場合多少の組立誤差は避けられない。この誤
差は種々な現象として現れるが、その一つとして第5図
に示す様にスポツト像の走査軌跡が直線とならずに曲が
りを生ずる。単独のレーザースポツト走査装置で画像を
形成する場合この曲りはあまり気にならないが、第8図
に示す様に複数のレーザースポツト走査装置を使って画
像を形成する場合、この様な走査軌跡に曲りがあると当
然各々で曲りの状態が異なり、第9図の如くこれを重ね
合わせるとどうしても一致しない箇所が出てくる。That is, in the cross section perpendicular to the deflecting surface, the surface of the rotary polygon mirror and the surface of the photoconductor have a conjugate relationship. In this case, the height of the beam on the surface 12 of the photoconductor does not change even if the tilt of each surface of the rotary polygon mirror 11 varies. This optical system is called a tilt correction optical system.
This tilt correction optical system comprises a cylindrical lens 3, a spherical lens 5 and a toric lens 6. When incorporating this into the frame, some assembly errors are unavoidable. This error appears as various phenomena, and one of them is that the scanning locus of the spot image does not become a straight line but is bent as shown in FIG. When forming an image with a single laser spot scanning device, this bending is not very noticeable, but when forming an image using a plurality of laser spot scanning devices, as shown in FIG. Naturally, the bending state is different for each, and when they are overlapped as shown in FIG.
上記の様に従来のfθ倒れ補正光学系を組込む框体は部
品の加工誤差による偏向面と垂直な断面での結像位置の
ずれを補正するためシリンドリカルレンズ3の光軸方向
の位置を調整する機構はあったが他には調整機構がな
く、スポツト走査軌跡の曲がりはそのままであった。本
考案は、このスポツト走査軌跡の曲りを補正し走査軌跡
を一直線にし複数のレーザースポツト走査装置で画像を
形成する場合でも各々の走査装置の画像を合致できる様
にするものである。As described above, the frame incorporating the conventional fθ tilt correction optical system adjusts the position of the cylindrical lens 3 in the optical axis direction in order to correct the deviation of the image forming position in the cross section perpendicular to the deflecting surface due to the processing error of the component. Although there was a mechanism, there was no other adjustment mechanism, and the bending of the spot scanning locus remained unchanged. The present invention corrects the curvature of the spot scanning locus so that the scanning loci are aligned and the images of the respective scanning devices can be matched even when images are formed by a plurality of laser spot scanning devices.
本考案によれば、画像信号によって変調されたレーザー
ビームを回転多面鏡又はガルバノミラーによって偏向さ
せ、このビームをfθ光学系で被走査面上に結像させて
走査するビーム走査装置に於いて、前記fθ光学系を構
成するレンズの少くとも一つのレンズをビーム偏向面と
垂直な方向に微少に平行移動できその移動量を調整可能
にする機構を設けることによりスポツト走査軌跡の曲が
りを補正するものである。According to the present invention, in a beam scanning device for deflecting a laser beam modulated by an image signal by a rotary polygon mirror or a galvano mirror and forming an image of the beam on a surface to be scanned by an fθ optical system to scan the beam. At least one of the lenses forming the f.theta. Optical system can be moved in parallel in a direction perpendicular to the beam deflection surface, and a mechanism for adjusting the amount of movement can be provided to correct the bending of the spot scanning locus. Is.
第1図(a),(b)は、本考案の実施例を示し第一図
は本考案の特徴を最っとも良く表わす図面であり同図に
於いて1は光源となるレーザーチツプ、2は発散するレ
ーザー光を平行光束にするコリメーター、3は偏向面と
垂直な断面のみ回転多面鏡上に結像させ、偏向面と平行
な断面は平行光束のままさせるシリンドリカルレンズ、
4は回転多面鏡、5は球面レンズ、6は偏向面と平行な
断面と垂直な断面とで屈折力が異なるトーリツクレン
ズ、7はレンズが組込まれる框体、8はトーリツクレン
ズの下側の面を受け止める3点のボツをもつレンズ受け
板、9は8の部材の高さを調整するワツシヤー、10はト
ーリックレンズを上から固定する板である。1 (a) and 1 (b) show an embodiment of the present invention, and FIG. 1 is a drawing showing the features of the present invention at best. In FIG. 1, 1 is a laser chip as a light source, and 2 is a drawing. Is a collimator for collimating a diverging laser beam into a parallel light beam, 3 is a cylindrical lens for forming an image on the rotary polygon mirror only in a cross section perpendicular to the deflecting surface, and leaving a parallel light beam in the cross section parallel to the deflecting surface,
Reference numeral 4 is a rotary polygon mirror, 5 is a spherical lens, 6 is a toric lens having different refracting powers in a cross section parallel to the deflecting surface and a cross section perpendicular to the deflecting surface, 7 is a frame into which the lens is incorporated, and 8 is a lower surface of the toric lens. A lens receiving plate having three points for receiving the light, 9 is a washer for adjusting the height of the member of 8, and 10 is a plate for fixing the toric lens from above.
走査線の曲りを補正する原理について第10図から第1
3図を用いて説明する。本考案では、球面レンズ5とト
ーリックレンズ6よりfθ光学系が構成されている。The principle of correcting the curve of the scanning line
This will be described with reference to FIG. In the present invention, the spherical lens 5 and the toric lens 6 form an fθ optical system.
fθ光学系は負のディストーションを持つので、第10
図のように、枡目を結像させると像は樽型となる。ま
た、第11図のように、平行線を結像させると、光軸上
は直線となるが、光軸の上側では上向きの弓形、光軸の
下側では下向きの弓形となる。Since the fθ optical system has negative distortion,
As shown in the figure, when the cells are imaged, the image becomes barrel-shaped. Further, as shown in FIG. 11, when a parallel line is imaged, a straight line is formed on the optical axis, but an upward arc shape is formed above the optical axis and a downward arc shape is formed below the optical axis.
この現象を利用して、第12図、第13図の破線のよう
に、走査線が上向きの弓形の場合は、トーリックレンズ
6の位置を上方に移動し、光軸の位置を上側にずらすこ
とにより、走査線はディストーションによって実線のよ
うに直線となる。By utilizing this phenomenon, when the scanning line has an upward arc shape as shown by broken lines in FIGS. 12 and 13, the position of the toric lens 6 is moved upward and the position of the optical axis is shifted upward. As a result, the scanning line becomes a straight line like a solid line due to the distortion.
先ずトーリツクレンズ6を設計上の基準の位置に置き偏
向面と垂直な断面の結像位置が平行な断面の結像位置と
が一致する様にシリンドリカルレンズの光軸方向の位置
を調整した後、感光体が位置する面でのスポツト像の高
さを端の方から中央へ、又更に他の端の方へと順次測定
してゆく。その測定結果を第6図の様にグラフ上にプロ
ツトし、両端の測定点を直線で結ぶとスポツト走査の軌
跡の曲りが判る。曲りが許容値以内ならば第2図(a)
の如くそのままでよいが許容値を越えた場合は第2図
(b)又はcの如くトーリツクレンズ受け板8の下のワ
ツシヤー9厚さを調整して曲がりを補正しなければなら
ない。ワツシヤー厚の補正量及び厚くするか薄くするか
は光学系によって異なる。First, the toric lens 6 is placed at a design reference position, and the position of the cylindrical lens in the optical axis direction is adjusted so that the image forming position of the cross section perpendicular to the deflection surface coincides with the image forming position of the parallel cross section. The height of the spot image on the surface on which the photoconductor is located is measured from the end toward the center and further toward the other end. By plotting the measurement results on a graph as shown in FIG. 6 and connecting the measurement points at both ends with a straight line, the curve of the spot scanning locus can be seen. If the bend is within the allowable value, Fig. 2 (a)
However, if the allowable value is exceeded, the thickness of the washer 9 below the toric lens receiving plate 8 must be adjusted to correct the bending as shown in FIG. 2 (b) or c. The correction amount of the washer thickness and whether to increase or decrease the thickness depend on the optical system.
以上に示した様にレーザービームプリンターに於けるレ
ーザービーム走査装置の中で光学系が組込まれている框
体のトーリツクレンズ取付部をトーリツクレンズの高さ
を調整可能にする機構にすることにより、スポツト像の
走査軌跡の曲りを補正することが可能となり、複写のレ
ーザースポツト走査装置で画像を形成する場合も走査軌
跡が直線であれば傾きがあっても折返しミラー13,13′
又は框体自体14,14′の調整で容易に複写のレーザース
ポツト走査装置からの走査位置を第7図の様に合致させ
ることができる。As described above, by making the toric lens mounting part of the frame in which the optical system is incorporated in the laser beam scanning device in the laser beam printer a mechanism that allows the height of the toric lens to be adjusted, It becomes possible to correct the bending of the scanning locus of the spot image, and even when the image is formed by the laser spot scanning apparatus for copying, if the scanning locus is a straight line, the folding mirrors 13, 13 'are provided.
Alternatively, the scanning position from the laser spot scanning device for copying can be easily matched as shown in FIG. 7 by adjusting the frame bodies 14 and 14 '.
第1図(b)は本考案の実施例の平面、第1図(a)は
第1図(b)のA−A′断面図、 第2図(a),第2図(b),第2図(c)は第1図
(b)のトーリツクレンズの取付部分を拡大しトーリツ
クレンズの高さ調整方法を説明する図、 第3図はfθレンズの特性Y=fθの関係を示す図、 第4図は倒れ補正光学系を説明する図、 第5図はスポツト像走査軌跡の曲りを示す図、 第6図はスポツト像走査軌跡の曲りを補正した後の図、 第7図は複数のレーザースポツト走査装置で軌跡を合致
させた図、 第8図は複数のレーザースポツト走査装置で画像を形成
させる場合の一例を示す図、 第9図は複数のレーザースポツト走査装置で軌跡を補正
してない場合を示す図。 第10図は、fθ光学系で枡目を結像させた場合を示す
図。 第11図は、fθ光学系で平行線を結像させた場合を示
す図。 第12図は、走査線の曲がりを補正するためにトーリッ
クレンズを移動させる様子を示す図。 第13図は、走査線の曲がりを補正するためにトーリッ
クレンズを移動させる様子を示す図。 1はレーザーチツプ、2はコリメータ、3はシリンドリ
カルレンズ、4は回転多面鏡、5は球面レンズ、6はト
ーリツクレンズ、7は光学系の框体、8はトーリツクレ
ンズ受け板、9はワツシヤー、10はレンズ固定板。1 (b) is a plan view of an embodiment of the present invention, FIG. 1 (a) is a sectional view taken along the line AA 'of FIG. 1 (b), FIG. 2 (a), FIG. 2 (b), FIG. 2 (c) is a diagram for explaining the method of adjusting the height of the toric lens by enlarging the mounting portion of the toric lens of FIG. 1 (b), and FIG. 3 is a diagram showing the relationship of the characteristic Y = fθ of the fθ lens. 4, FIG. 4 is a diagram for explaining the tilt correction optical system, FIG. 5 is a diagram showing the bending of the spot image scanning locus, FIG. 6 is a diagram after correcting the bending of the spot image scanning locus, and FIG. Fig. 8 is a diagram in which the loci are matched by the laser spot scanning device of Fig. 8, Fig. 8 is a diagram showing an example in which an image is formed by a plurality of laser spot scanning devices, and Fig. 9 is a diagram in which the loci are corrected by a plurality of laser spot scanning devices. FIG. FIG. 10 is a diagram showing a case where a mesh is imaged by the fθ optical system. FIG. 11 is a diagram showing a case where parallel lines are imaged by the fθ optical system. FIG. 12 is a diagram showing a state in which the toric lens is moved to correct the curve of the scanning line. FIG. 13 is a diagram showing a state in which the toric lens is moved to correct the curve of the scanning line. 1 is a laser chip, 2 is a collimator, 3 is a cylindrical lens, 4 is a rotary polygon mirror, 5 is a spherical lens, 6 is a toric lens, 7 is a frame of an optical system, 8 is a toric lens receiving plate, 9 is a washer and 10 Is a lens fixing plate.
Claims (1)
ムを回転多面鏡又はガルバノミラーによって偏向させ、
このビームをfθ光学系で被走査面上に結像させて走査
するビーム走査装置に於いて、前記fθ光学系を構成す
るレンズの少くとも一つのレンズをビーム偏向面と垂直
な方向に微少に平行移動できその移動量を調整可能にす
る機構をもつ事を特徴とするビーム走査装置。1. A laser beam modulated by an image signal is deflected by a rotating polygon mirror or a galvanometer mirror,
In a beam scanning device for forming an image of this beam on a surface to be scanned by an fθ optical system and scanning it, at least one lens of the lenses constituting the fθ optical system is finely moved in a direction perpendicular to the beam deflecting surface. A beam scanning device characterized by having a mechanism capable of parallel movement and adjusting the amount of movement.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1986194794U JPH0614186Y2 (en) | 1986-12-18 | 1986-12-18 | Beam scanning device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1986194794U JPH0614186Y2 (en) | 1986-12-18 | 1986-12-18 | Beam scanning device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63174316U JPS63174316U (en) | 1988-11-11 |
JPH0614186Y2 true JPH0614186Y2 (en) | 1994-04-13 |
Family
ID=31152097
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1986194794U Expired - Lifetime JPH0614186Y2 (en) | 1986-12-18 | 1986-12-18 | Beam scanning device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0614186Y2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54126051A (en) * | 1978-03-23 | 1979-09-29 | Ricoh Co Ltd | Anamorphic f lens system |
JPS57144517A (en) * | 1981-03-03 | 1982-09-07 | Canon Inc | Scan optical system having fall compensating function |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57160112U (en) * | 1981-04-01 | 1982-10-07 | ||
JPS58157303U (en) * | 1982-04-17 | 1983-10-20 | ミノルタ株式会社 | Toroidal lens positioning device for light beam scanning device |
JPS5971305U (en) * | 1982-10-30 | 1984-05-15 | コニカ株式会社 | lens holder |
JPS59119423U (en) * | 1983-01-31 | 1984-08-11 | 株式会社リコー | Laser writing optical system |
-
1986
- 1986-12-18 JP JP1986194794U patent/JPH0614186Y2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54126051A (en) * | 1978-03-23 | 1979-09-29 | Ricoh Co Ltd | Anamorphic f lens system |
JPS57144517A (en) * | 1981-03-03 | 1982-09-07 | Canon Inc | Scan optical system having fall compensating function |
Also Published As
Publication number | Publication date |
---|---|
JPS63174316U (en) | 1988-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2969407B2 (en) | Post-objective scanning optical system and image forming apparatus | |
JP3164232B2 (en) | Flat field, telecentric optical system for scanning a light beam | |
JPS61185716A (en) | Optical beam scanner | |
JP2734154B2 (en) | Post objective type scanning optical system and image forming apparatus using the same | |
JPH0782157B2 (en) | Scanning optical system with surface tilt correction function | |
JP2563260B2 (en) | Optical beam scanning device | |
US6512623B1 (en) | Scanning optical device | |
JPH0535406B2 (en) | ||
JPH0727123B2 (en) | Surface tilt correction scanning optical system | |
JPH0614186Y2 (en) | Beam scanning device | |
JPH0618335Y2 (en) | Beam scanning device | |
JP2643224B2 (en) | Light beam scanning optical system | |
JPH08122635A (en) | Optical scanning optical system | |
JP2773593B2 (en) | Light beam scanning optical system | |
JP2626708B2 (en) | Scanning optical system | |
JP2553882B2 (en) | Scanning optical system | |
JP2775434B2 (en) | Scanning optical system | |
JP2635604B2 (en) | Optical scanning device | |
JPS6226733Y2 (en) | ||
JPS6230007Y2 (en) | ||
JPH0543090B2 (en) | ||
JP2749850B2 (en) | Optical deflection device | |
JPS62127818A (en) | Optical light beam scanner | |
JPS628016Y2 (en) | ||
JP2834802B2 (en) | Optical scanning device |