[go: up one dir, main page]

JPH06138090A - Method and instrument for analyzing multiple genotypes using capillary electrophoretic method - Google Patents

Method and instrument for analyzing multiple genotypes using capillary electrophoretic method

Info

Publication number
JPH06138090A
JPH06138090A JP4291161A JP29116192A JPH06138090A JP H06138090 A JPH06138090 A JP H06138090A JP 4291161 A JP4291161 A JP 4291161A JP 29116192 A JP29116192 A JP 29116192A JP H06138090 A JPH06138090 A JP H06138090A
Authority
JP
Japan
Prior art keywords
capillary
temperature
sample
electrophoresis
dna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4291161A
Other languages
Japanese (ja)
Other versions
JP3186259B2 (en
Inventor
Takeshi Fujita
毅 藤田
Masao Kamahori
政男 釜堀
Shinichiro Umemura
晋一郎 梅村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP29116192A priority Critical patent/JP3186259B2/en
Priority to US08/111,508 priority patent/US5409586A/en
Publication of JPH06138090A publication Critical patent/JPH06138090A/en
Priority to US08/378,973 priority patent/US5458761A/en
Application granted granted Critical
Publication of JP3186259B2 publication Critical patent/JP3186259B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PURPOSE:To analyze multiple genotypes with high resolution in a short time by using a gel housed in a capillary having an inside diameter smaller than a prescribed value for electrophoretic analysis. CONSTITUTION:When a capillary electrophoretic method for on-column detection is used for an electrophoretic and detecting means, the electrophoretic pattern of a sample which should indicate multiple higher-order structures can be detected as sufficiently separated two peaks. Regarding the amount of a single- stranded DNA per one band, accurate pattern analysis can be performed, because the amount of the band separately detected from bands detected in an overlapping state due to the higher-order structures can be directly read as numerical values from the heights of peaks. In addition, the temperature controlling accuracy of an electrophoretic carrier is also improved. When, for example, the volume (V/S) corresponding to the calorific value generated per unit heat radiating area is taken into consideration, a heat radiating effect which is about 20 times as high as that of a slab gel having a 1mm thickness (V/S=0.5) is obtained when a capillary of 100mum (V/S=0.025mm) in diameter is used. The required time can be also reduced to 1/6 to 1/10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、遺伝子診断もしくは医
療上必要な遺伝子検査上有用な遺伝子多型解析方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for analyzing genetic polymorphisms which is useful for genetic diagnosis or genetic testing necessary for medical treatment.

【0002】[0002]

【従来の技術】ヒトおよびその他の生物の遺伝子中に蓄
積された多型は、遺伝病や免疫機構などと関連して医学
的情報を多く含み、その迅速かつ正確な解析方法が望ま
れている。
2. Description of the Related Art Polymorphisms accumulated in genes of humans and other organisms contain a lot of medical information in association with genetic diseases and immune mechanisms, and a rapid and accurate analysis method thereof is desired. .

【0003】例えば、免疫機構と非常に関係の深い組織
適合性抗原(HLA)遺伝子中には400種類以上の多
型が蓄積されており、これらの組み合わせにより100
00種類以上の抗原型が存在する。この抗原型の決定
は、臓器移植の場合など特に重要な問題であるほか、多
くの疾病との関係が示唆されており、HLA抗原型の決
定は今後診断や医療検査の分野で非常に重要になってく
る。
[0003] For example, more than 400 polymorphisms are accumulated in the histocompatibility complex (HLA) gene, which is very closely related to the immune system, and 100 polymorphisms are accumulated by combining them.
There are over 100 serotypes. This serotype determination is a particularly important problem such as in the case of organ transplantation, and it has been suggested that it is associated with many diseases. Therefore, HLA serotype determination will become very important in the field of diagnosis and medical examinations in the future. Is coming.

【0004】また一塩基レベルの遺伝子多型の検出は、
遺伝子配列中の突然変異の検出を意味し、癌を始めとす
る多くの疾病の診断につながる。発癌や転移のメカニズ
ムに関しては遺伝子変異の寄与が示唆されており、多数
の検体に対して迅速に遺伝子多型および変異の分類決定
が可能となれば、診断や癌種の同定に非常に役立つと考
えられる。
Further, the detection of single nucleotide level polymorphism
It means the detection of mutations in gene sequences and leads to the diagnosis of many diseases including cancer. It has been suggested that gene mutations contribute to the mechanism of carcinogenesis and metastasis, and if it is possible to quickly determine the classification of gene polymorphisms and mutations in a large number of samples, it will be very useful for diagnosis and identification of cancer types. Conceivable.

【0005】上記のような一塩基レベルの遺伝子多型を
好感度に検出する手段として、一本鎖DNAがとる高次
構造の違いを利用してDNAの塩基配列多型を解析する
方法(Single Strand Conformation Polymorphism ; 以
下S.S.C.P.法と略称する)が、プロシーディン
グ オブ ナショナル アカデミイ オブ サイエンス
オブ ユーエスエ(Proceeding of Na
tionalAcademy of Science
of U.S.A.)Vol.86,pp2766〜2
770(1989)にあるようにM.Orita等によ
って提案された。
As a means for detecting the gene polymorphism at the single nucleotide level with high sensitivity, a method for analyzing the nucleotide sequence polymorphism of DNA by utilizing the difference in the higher-order structure of single-stranded DNA (Single Strand Conformation Polymorphism; hereinafter abbreviated as S.C.P. method) is the Proceeding of National Academy of Science of USA.
regionalAcademy of Science
of U. S. A. ) Vol. 86, pp2766-2
770 (1989). Proposed by Orita et al.

【0006】この方法は、適当な方法によって抽出され
たDNA塩基配列上の標的部分を、適当な変性手段によ
って互いに相補的な一組の一本鎖DNAに解離し、それ
らを非変性ポリアクリルアミドゲル中で電気泳動する。
この時にそれぞれの一本鎖DNAの泳動速度は、該一本
鎖DNAがとる高次構造の影響を受けて変化し、しかも
この高次構造は該一本鎖DNAの配列によって特異的に
決まるので、この性質を利用して少なくとも一塩基の違
いによる配列多型を検出するものである。
In this method, a target portion on a DNA base sequence extracted by an appropriate method is dissociated into a set of single-stranded DNAs complementary to each other by an appropriate denaturing means, and they are non-denaturing polyacrylamide gel. Electrophores in.
At this time, the migration rate of each single-stranded DNA changes under the influence of the higher-order structure of the single-stranded DNA, and this higher-order structure is specifically determined by the sequence of the single-stranded DNA. By utilizing this property, a sequence polymorphism due to a difference of at least one base is detected.

【0007】この方法は非常に簡便で、しかも一塩基の
違いによる多型も感度良く検出することが可能であるの
で、以前に発明されていた制限酵素切断多型解析法や、
配列特異的DNAプローブによる多型解析法に比べて非
常に有利であると考えられ、最近は、核酸増幅法(以下
PCR法と略称する)と組み合わせて、多型解析や遺伝
子変異の同定にしばしば用いられている。
[0007] This method is very simple, and moreover, it is possible to detect polymorphisms due to the difference of one base with high sensitivity. Therefore, the restriction enzyme cleavage polymorphism analysis method previously invented,
It is considered to be very advantageous as compared with the polymorphism analysis method using a sequence-specific DNA probe, and recently, in combination with the nucleic acid amplification method (hereinafter abbreviated as PCR method), it is often used for polymorphism analysis and identification of gene mutation. It is used.

【0008】[0008]

【発明が解決しようとする課題】しかし従来のS.S.
C.P.法は、スラブゲルを用いて電気泳動を行ってい
たため、多型解析に重要な情報となる電気泳動パタンの
高分離能化・定量化が困難であった。また、泳動・検出
に時間がかかる、試料を一本鎖に変性後ゲルに充填する
間に二本鎖への再会合が起こってしまう、高次構造維持
に重要な影響を与える泳動中の温度制御が困難である、
などの問題点もあった。
However, the conventional S.M. S.
C. In the P. method, since electrophoresis was performed using a slab gel, it was difficult to achieve high resolution / quantification of the electrophoretic pattern, which is important information for polymorphism analysis. In addition, migration and detection take time, reassociation of double strands occurs while loading the gel after denaturing the sample into single strands, which has an important effect on the maintenance of higher-order structure. Difficult to control,
There were also problems such as.

【0009】そこで本発明の目的は、S.S.C.P.
法による遺伝子多型解析を、従来よりも簡便に、高分解
能で、かつ短時間に行なう方法を提供することにある。
また、S.S.C.P.法による多型解析を、自動化可
能とすることも本発明の目的である。
Therefore, the object of the present invention is to S. C. P.
It is an object of the present invention to provide a method for performing gene polymorphism analysis by the method more easily than ever before, with high resolution and in a short time.
Also, S. S. C. It is also an object of the present invention to enable automation of polymorphism analysis by the P. method.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明では電気泳動・検出手段にオンカラム検出
のキャピラリー電気泳動法を用いた。また、インジェク
ション時に試料を解離温度まで加熱可能な恒温槽を試料
台に取り付け、解離温度のまま直接ゲル内にインジェク
ションが可能となるようにした。さらに、泳動中のキャ
ピラリー温度を恒温プレートにより制御した。
In order to achieve the above object, in the present invention, the capillary electrophoresis method of on-column detection is used as the electrophoresis / detection means. Further, a constant temperature bath capable of heating the sample to the dissociation temperature at the time of injection was attached to the sample stage so that the injection could be directly performed in the gel at the dissociation temperature. Furthermore, the capillary temperature during the migration was controlled by a thermostat plate.

【0011】[0011]

【作用】電気泳動・検出手段にオンカラム検出のキャピ
ラリー電気泳動法を用いることにより、高次構造多型を
示すはずの試料の電気泳動パタンは、十分に分離した二
本のピークとして検出可能であった。1バンド当たりの
一本鎖DNA量に関しても、高次構造により重なって検
出されるバンドと分離して検出されるバンドの定量が、
ピークの高さによって数値として直接読み取ることが可
能となり、パタン解析が正確に行ない得るようになっ
た。
[Function] By using the capillary electrophoresis method of on-column detection as the electrophoresis / detection means, the electrophoresis pattern of the sample that should show higher-order structure polymorphism can be detected as two sufficiently separated peaks. It was Regarding the amount of single-stranded DNA per band, the quantification of the band detected by separating from the band detected by overlapping with the higher-order structure is
It became possible to read directly as a numerical value by the height of the peak, and it became possible to perform pattern analysis accurately.

【0012】キャピラリー電気泳動法を用いてS.S.
C.P.解析を行なうと、電気泳動担体の温度制御の精
度を容易に向上させることが可能となる。単位放熱面積
当たりの発生熱量に対応する体積/面積比(V/S比)
で比較すると、1mmの厚さのスラブゲル(V/S=
0.5mm)を用いて電気泳動を行なった場合に比べ
て、直径100μm(V/S=0.025mm)のキャ
ピラリーを用いた場合には、約20倍の放熱効率がある
ことになる。
Using capillary electrophoresis, S. S.
C. Performing P. analysis makes it possible to easily improve the accuracy of temperature control of the electrophoretic carrier. Volume / area ratio (V / S ratio) corresponding to the amount of heat generated per unit heat dissipation area
In comparison, the slab gel with a thickness of 1 mm (V / S =
When a capillary having a diameter of 100 μm (V / S = 0.025 mm) is used, the heat radiation efficiency is about 20 times higher than that in the case of performing electrophoresis using 0.5 mm).

【0013】S.S.C.P.法の多型分離原理は、配
列の違いにより所定の温度状況における安定な高次構造
が違うことを利用して多型分離を行なうというものであ
る。すなわちS.S.C.P.法では泳動中に温度に依
存した配列特異的な高次構造維持が必要なので、泳動中
に泳動担体が均一な温度であることがかなり重要な条件
なのである。この点からもキャピラリー電気泳動法によ
ってS.S.C.P.を行なえば、従来は分離できなか
った配列多型の分離検出が可能となる。
S. S. C. The polymorphism separation principle of the P. method is to carry out polymorphism separation by utilizing the fact that the stable higher-order structure in a given temperature condition is different due to the difference in arrangement. That is, S. S. C. In the P. method, since it is necessary to maintain a temperature-dependent sequence-specific higher-order structure during electrophoresis, it is a very important condition that the electrophoresis carrier has a uniform temperature during electrophoresis. From this point as well, S. S. C. If P. is carried out, it becomes possible to separate and detect sequence polymorphisms that could not be separated in the past.

【0014】キャピラリーの温度調節プレートにペルテ
ィエ素子を使用する利点も大きい。ペルティエ素子は印
加する電圧の極性を代えることにより、一つの素子で冷
却・加温の両者とも実現可能である。キャピラリーゲル
という発熱源を有しかつ室温近くの温度に正確に温度制
御を行なうことが必要となる本発明のような装置におい
ては、上記のように冷却と加温を任意の時間に選択制御
することが可能であることは重要な点である。この事に
より、5℃〜60℃の全ての領域にわたって、設定温度
±0.1℃の精度での温度制御が可能となった。
The advantage of using a Peltier element in the temperature control plate of the capillary is also great. By changing the polarity of the applied voltage, the Peltier element can realize both cooling and heating with one element. In an apparatus such as the present invention which has a heat source called a capillary gel and requires accurate temperature control to a temperature near room temperature, cooling and heating are selectively controlled at arbitrary times as described above. Being able to do is an important point. This enables temperature control with an accuracy of the set temperature ± 0.1 ° C over the entire range of 5 ° C to 60 ° C.

【0015】また電気泳動に要する時間は、従来のスラ
ブゲルによるS.S.C.P.法の場合の2時間〜5時
間以上に比べて1/6〜1/10と大幅に短縮された。
The time required for electrophoresis is the same as that of S. S. C. Compared with 2 hours to 5 hours or more in the case of P. method, it was greatly shortened to 1/6 to 1/10.

【0016】キャピラリー電気泳動は、微少量の試料で
も十分に泳動・検出が可能である。紫外線による吸光度
検出のキャピラリー電気泳動の場合、濃度ならば5×1
/108mol/L、絶対量ならば5×1/1019グラ
ムで十分検出ができる。これらの量は、従来のスラブゲ
ルによる検出感度に比べても十分に良好な感度であると
いえる。より高い感度が必要な場合は、蛍光標識により
感度を高めることも可能である。
[0016] Capillary electrophoresis is capable of sufficiently migrating and detecting even a minute amount of sample. In the case of capillary electrophoresis with absorbance detection by ultraviolet light, the concentration is 5 x 1
/ 10 8 mol / L, 5 × 1/10 19 grams in absolute amount can be sufficiently detected. It can be said that these amounts are sufficiently good sensitivities even compared with the detection sensitivities of conventional slab gels. If higher sensitivity is required, it is possible to increase the sensitivity with a fluorescent label.

【0017】さらに、試料をDNA解離温度まで加熱
し、DNAが一本鎖に解離した状態のままでゲル中に導
入することにより、すべての試料DNAが一本鎖として
電気泳動される。
Further, by heating the sample to the DNA dissociation temperature and introducing it into the gel while the DNA is dissociated into single strands, all sample DNAs are electrophoresed as single strands.

【0018】従来のスラブゲルを用いた電気泳動の場合
は、電気泳動担体であるゲルへの試料導入部は常時バッ
ファ槽内にあるのでDNA解離温度以上に加熱すること
はかなり難しく、ゲルとほぼ同一温度の泳動バッファを
介して試料をゲル中に導入するため、ゲルへの導入時に
相補鎖同士の再会合反応が起こる、もしくはゲル導入時
に適当な変性剤を必要とするなどの問題点があった。な
ぜなら、分子内で安定な高次構造をとる温度は、再会合
が十分に起こりやすい温度領域にあるからである。
In the case of electrophoresis using a conventional slab gel, since the sample introduction part to the gel which is the electrophoretic carrier is always in the buffer tank, it is quite difficult to heat it above the DNA dissociation temperature, and it is almost the same as the gel. Since the sample is introduced into the gel via the migration buffer at the temperature, there was a problem that a reassociation reaction between complementary strands occurs at the time of introduction into the gel, or an appropriate denaturant is required at the time of introduction of the gel. . This is because the temperature at which a stable higher-order structure is formed in the molecule is in a temperature region where reassociation is likely to occur sufficiently.

【0019】しかし、キャピラリー電気泳動法の場合
は、導入前に試料をあらかじめDNA解離温度にまで加
熱しておくことが可能なので、前記のような問題点は解
決される。これは、本発明で用いたキャピラリー電気泳
動装置では試料容器と泳動用バッファが別になってお
り、試料導入の時だけキャピラリー先端を試料溶液に接
触し試料を導入するので、試料をあらかじめDNA解離
温度にまで加熱しておくことが可能となるためである。
However, in the case of the capillary electrophoresis method, since the sample can be preheated to the DNA dissociation temperature before the introduction, the above problems can be solved. This is because in the capillary electrophoresis apparatus used in the present invention, the sample container and the migration buffer are separate and the tip of the capillary is brought into contact with the sample solution to introduce the sample only when the sample is introduced. This is because it is possible to heat up to.

【0020】この事により、途中再会合反応により二本
鎖となったDNAのバンドが、検出ピークの乱れとなる
事がなくなり、シャープな泳動パタンが得られるだけで
なく、導入された全てのDNAの高次構造多型が検出で
きるので、微量な試料DNAの導入でも十分に多型が検
出可能となった。
As a result, the band of the double-stranded DNA due to the halfway reassociation reaction does not disturb the detection peak, so that not only a sharp migration pattern can be obtained but also all the introduced DNAs can be obtained. Since it is possible to detect the higher-order structure polymorphism of, the polymorphism can be sufficiently detected even by introducing a small amount of sample DNA.

【0021】[0021]

【実施例】以下に本発明の実施例を一塩基レベルの突然
変異配列の検出例を用いて説明する。
EXAMPLE An example of the present invention will be described below by using an example of detecting a mutation sequence at the single base level.

【0022】検出する目標多型部位としてはヒトのfa
ctorΙΧ遺伝子中から171bpの領域を選んだ。
この遺伝子部位には12種類の点突然変異による多型が
存在することが知られている(Gobinda Sar
kar et.al;Nucleatic Acids
Research, Vol.20,No.4, p
871−878)。
The target polymorphism site to be detected is human fa
A 171 bp region was selected from the ctorΙΧ gene.
It is known that there are 12 types of polymorphisms due to point mutations at this gene site (Gobinda Sar
kar et. al; Nucleic Acids
Research, Vol. 20, No. 4, p
871-878).

【0023】解析したヒトのDNAはManiatis
の方法(MoleculerCloning p 28
0−281(1982))に従って検体細胞から抽出し
た。1μgの上記ゲノムDNAを100μlの50mM
KCl,10mMTris−HCl(pH8.3),
1.5mM MgCl2溶液中に、各200μMのdA
TP,dCTP,dGTP,dTTP、20pmol:
20pmolのモル比で調製したオリゴヌクレオチドプ
ライマとともに溶解し、その中にサーマス・アクアティ
カスからのポリメラーゼ(Taq−Polymeras
e)を2.5unit加えた。これに40μlの鉱油を
重層した後、92℃で2分、55℃で2分、72℃で2
分のサイクルを40回繰り返すことにより、目標部位の
二本鎖DNAを特異的に増幅した。この反応液から鉱油
を取り除いた後、250μlの5M CH3COONH
4 エタノールを加え0℃,14000×gで30分間
遠心分離を行い、上層部の溶液を取り除き(エタノール
沈殿)沈殿物(ペレット状)を80%エタノールで洗っ
た(エタノールリンス;脱塩)後、乾燥した沈殿物を5
0μlの10mM Tris−HCl(pH7.9),
1.0mM EDTA,20mM NaCl溶液に溶解
し、該溶液をキャピラリー電気泳動に供した。
The analyzed human DNA is Maniatis
Method (Molecular Cloning p 28
0-281 (1982)). 1 μg of the above genomic DNA was added to 100 μl of 50 mM
KCl, 10 mM Tris-HCl (pH 8.3),
200 μM dA each in 1.5 mM MgCl 2 solution
TP, dCTP, dGTP, dTTP, 20 pmol:
It was dissolved with an oligonucleotide primer prepared at a molar ratio of 20 pmol, in which a polymerase (Taq-Polymeras from Thermus aquaticus) was dissolved.
2.5 unit of e) was added. After overlaying this with 40 μl of mineral oil, 2 minutes at 92 ° C, 2 minutes at 55 ° C, 2 minutes at 72 ° C.
The double-stranded DNA at the target site was specifically amplified by repeating the 40 minute cycle. After removing the mineral oil from this reaction solution, 250 μl of 5M CH 3 COONH
4 Add ethanol and centrifuge at 0 ° C., 14,000 × g for 30 minutes, remove the upper layer solution (ethanol precipitation), wash the precipitate (pellet form) with 80% ethanol (ethanol rinse; desalting), 5 times the dried precipitate
0 μl of 10 mM Tris-HCl (pH 7.9),
It was dissolved in a 1.0 mM EDTA, 20 mM NaCl solution, and the solution was subjected to capillary electrophoresis.

【0024】図1に本実施例で用いたキャピラリー電気
泳動装置をブロック図で示す。本発明によるキャピラリ
ー電気泳動装置は、高電圧電源部1−1、キャピラリー
1−2、試料保持容器兼試料温度調節プレート1−3、
キャピラリー保持部兼キャピラリー温度調節プレート1
−4、駆動部1−5、バッファー槽1−6、1−7、光
学検出部1−8、および光学検出部1−8で検出された
データを処理するデータ処理部1−9からなる。試料温
度調節プレート1−3とキャピラリー温度調節プレート
1−4はそれぞれ独立の温度調節器1−10、1−11
に接続され、特にキャピラリー温度調節プレート1−1
1はキャピラリー軸方向に±0.1℃の精度で5℃〜6
0℃の範囲で調節できるように構成されている。
FIG. 1 is a block diagram showing the capillary electrophoresis apparatus used in this embodiment. The capillary electrophoresis apparatus according to the present invention includes a high voltage power supply section 1-1, a capillary 1-2, a sample holding container / sample temperature adjusting plate 1-3,
Capillary holding part and capillary temperature control plate 1
-4, a drive unit 1-5, buffer tanks 1-6 and 1-7, an optical detection unit 1-8, and a data processing unit 1-9 that processes data detected by the optical detection unit 1-8. The sample temperature control plate 1-3 and the capillary temperature control plate 1-4 are independent temperature controllers 1-10 and 1-11, respectively.
, Especially capillary temperature control plate 1-1
1 is 5 ℃ to 6 with an accuracy of ± 0.1 ℃ in the direction of the capillary axis.
It is configured to be adjustable in the range of 0 ° C.

【0025】また本発明におけるキャピラリー温調プレ
ートは、アルミ性のプレート1−12をペルティエ素子
1−13によって温度制御するもので、ペルティエに印
加する電圧の極性を代えることによって冷却、加温のど
ちらも可能となる。試料温度調節部1−3および1−1
0は、DNA解離温度まで試料を加熱できるように構成
されている。本実施例では行なわなかったが、氷冷温度
での試料導入もできるように構成することも、ペルティ
エ素子等を利用することで可能となる。
Further, the capillary temperature control plate in the present invention controls the temperature of the aluminum plate 1-12 by the Peltier element 1-13, and either the cooling or the heating is performed by changing the polarity of the voltage applied to the Peltier. Will also be possible. Sample temperature control unit 1-3 and 1-1
0 is configured so that the sample can be heated up to the DNA dissociation temperature. Although not performed in this embodiment, it is possible to use a Peltier element or the like so that the sample can be introduced at an ice cooling temperature.

【0026】高電圧電源部1−1は、出力電圧0〜30
kVで、極性切り替えが容易な高電圧電源を使用して、
試料容器1−3とバッファー槽1−7との間の電極1−
14、1−15、試料容器1−3に併設されたバッファ
ー槽1−6とバッファー槽1−7との間の電極1−1
6、1−15を使用して電圧を印加している。
The high voltage power supply section 1-1 has an output voltage of 0 to 30.
Using a high voltage power supply with kV and easy polarity switching,
Electrode 1 between sample container 1-3 and buffer tank 1-7
14, 1-15, electrode 1-1 between the buffer tank 1-6 and the buffer tank 1-7, which are attached to the sample container 1-3
6, 1-15 are used to apply the voltage.

【0027】キャピラリーゲル電気泳動装置への試料の
導入は、まず試料を所定の温度に加温した後、電気泳動
部のガラスキャピラリー(1−2)先端を試料容器1−
3に移動させて、電極1−14、1−15に所定の極性
の電圧を印加することにより、試料容器内の試料を電気
泳動的にガラスキャピラリー1−2内に導入した。この
場合、印加電圧と電圧印加時間を制御することにより、
ピコリットルオーダーの導入試料量を制御することがで
きる。1ピコリットルはキャピラリーの長さにしておよ
そ1ミリの見当である。
The sample is introduced into the capillary gel electrophoresis apparatus by first heating the sample to a predetermined temperature and then attaching the tip of the glass capillary (1-2) of the electrophoresis section to the sample container 1-.
Then, the sample in the sample container was electrophoretically introduced into the glass capillary 1-2 by applying a voltage of a predetermined polarity to the electrodes 1-14 and 1-15. In this case, by controlling the applied voltage and voltage application time,
It is possible to control the amount of sample introduced in the picoliter order. One picoliter is approximately one millimeter in length of the capillary.

【0028】その後、電気泳動部のガラスキャピラリー
先端をバッファー槽1−6に移動し、電極1−16、1
−15間に所定の電圧を印加して電気泳動を行なった。
Then, the tip of the glass capillary of the electrophoresis section is moved to the buffer tank 1-6, and the electrodes 1-16, 1
Electrophoresis was performed by applying a predetermined voltage between −15.

【0029】本実施例で用いた実施条件を以下の表にま
とめる。
The operating conditions used in this example are summarized in the table below.

【0030】[0030]

【表1】 [Table 1]

【0031】ただし、本実施例で用いた実施条件は単な
る一例であり、例えばゲル組成、バッファー組成、印加
電圧、設定温度などについても、特に本発明に対して制
限を与えるものではない。
However, the working conditions used in this embodiment are merely examples, and the gel composition, the buffer composition, the applied voltage, the set temperature, etc. are not particularly limited to the present invention.

【0032】次に、本実施例の泳動検出結果を図2〜図
4に示す。
Next, the results of electrophoresis detection of this example are shown in FIGS.

【0033】図2は、変異を有する検体試料にたいして
PCRによる目的領域の増幅後一本鎖への変性解離過程
無しに直接泳動を行なった場合の泳動結果であり、図
3、図4は目的領域の増幅後一本鎖に解離し電気泳動に
供したものである。データ上縦軸は吸光度(abs)で
あり、横軸は導入後の泳動時間(分)である。ここで、
図2、図3は、正常検体の泳動結果であり、図4に示し
た検体は、正常DNAと変異DNAのヘテロ接合型検体
の泳動結果である。
FIG. 2 shows the results of electrophoresis when a sample having a mutation was subjected to direct electrophoresis after amplification of the target region by PCR without denaturation and dissociation process into single strands. FIGS. 3 and 4 show the target region. After being amplified, it was dissociated into single strands and subjected to electrophoresis. The vertical axis on the data is the absorbance (abs), and the horizontal axis is the migration time (minute) after the introduction. here,
2 and 3 are the results of migration of normal samples, and the samples shown in FIG. 4 are the results of migration of heterozygous samples of normal DNA and mutant DNA.

【0034】図2ではピークは16分の位置に一つのみ
検出されており、他の分子量マーカの泳動結果との比較
から171bpの二本鎖DNAのピークである。
In FIG. 2, only one peak is detected at the position of 16 minutes, which is a peak of double-stranded DNA of 171 bp in comparison with the migration results of other molecular weight markers.

【0035】これに対して一本鎖に解離後の泳動結果で
ある図4では、ピークが16分〜19分の間に4本のピ
ークが検出された。このうち2本のピークに関しては、
図3にも検出されているものと同じ正常DNAのピーク
である。また他の2本のピークは変異を有するDNAに
よるものである。
On the other hand, in FIG. 4, which is a result of electrophoresis after dissociation into single strands, four peaks were detected in 16 to 19 minutes. Regarding two of these peaks,
The same peak of normal DNA as that detected in FIG. 3 is also obtained. The other two peaks are due to the DNA having a mutation.

【0036】以上のように、本発明によって遺伝子上の
少なくとも一塩基以上の変異の有無を短時間に非常に簡
便に、しかも明確に検出することが可能となった。
As described above, according to the present invention, it becomes possible to detect the presence or absence of a mutation of at least one base on a gene very easily and clearly in a short time.

【0037】また、本実施例では行なわなかったが、上
記のようなキャピラリー電気泳動装置を使用することに
より、同時に異なる温度でのS.S.C.P.解析を行
なうことも可能となる。S.S.C.P.法での多型の
分離は温度条件に影響されやすく、新たな多型を分離す
る場合には最適温度の条件決定にかなりの時間を費やす
ことがある。スラブゲルでは同時にいろいろな温度で泳
動を行なうことは、装置の大型化等の問題から困難であ
るが、キャピラリー電気泳動装置ならば、同時に異なっ
た条件の泳動を行い、最適条件を短時間に見つけること
が可能となると考えられる。
Although not carried out in this embodiment, by using the capillary electrophoresis apparatus as described above, the S. S. C. It is also possible to perform P. analysis. S. S. C. Separation of polymorphisms in the P. method is sensitive to temperature conditions, and when a new polymorphism is separated, it may take considerable time to determine optimal temperature conditions. In slab gel, it is difficult to perform electrophoresis at various temperatures at the same time because of problems such as enlargement of the equipment, but in the case of capillary electrophoresis equipment, it is necessary to perform electrophoresis under different conditions at the same time and find the optimum conditions in a short time. Will be possible.

【0038】[0038]

【発明の効果】本発明によれば、少なくとも一塩基以上
の配列の違いによる遺伝子多型を、従来用いられてきた
スラブゲルによるS.S.C.P.法に比べて、かなり
短時間により正確により簡便に検出することが可能とな
る。また、遺伝子変異診断や多型解析の高スループット
な手段として有用であるが、従来は繁雑な作業ゆえに自
動化が困難であったS.S.C.P.法を本発明のよう
に実現することにより、自動化へ可能性が大きく広がる
と考えられる。
INDUSTRIAL APPLICABILITY According to the present invention, a gene polymorphism due to a difference in sequence of at least one base or more is used for the S. S. C. Compared with the P. method, the detection can be performed more accurately and more easily in a considerably shorter time. In addition, although it is useful as a high-throughput means for gene mutation diagnosis and polymorphism analysis, it has been difficult to automate S. S. C. By implementing the P. method as in the present invention, it is considered that the possibility of automation greatly expands.

【0039】この事により、癌などにたいする遺伝子診
断の分野や、臓器移植時等に行なう遺伝子多型の検査の
分野などの発展に寄与できる。
As a result, it is possible to contribute to the development of the field of gene diagnosis for cancer and the field of genetic polymorphism test performed at the time of organ transplantation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例で用いたキャピラリー電気泳動装置の
ブロック図
FIG. 1 is a block diagram of a capillary electrophoresis apparatus used in this example.

【図2】本実施例における正常検体(二本鎖)の泳動結
果の例を示す図
FIG. 2 is a diagram showing an example of a migration result of a normal sample (double-stranded) in this example.

【図3】本実施例における正常検体のS.S.C.P.解析
結果の例を示す図
FIG. 3 is a diagram showing an example of the S.C.P. analysis result of a normal sample in this example.

【図4】本実施例における変異を有する検体のS.S.
C.P.解析結果の例を示す図
FIG. 4 shows the S.S. of specimens having a mutation in this example.
Figure showing an example of CP analysis results

【符号の説明】[Explanation of symbols]

1-1…高電圧電源、1-2…ガラスキャピラリー、1-3…試
料容器および試料温度調節プレート、1-4…キャピラリ
ー温度調節プレート、1-5…キャピラリー駆動装置、1-6
…バッファー槽、1-7…バッファー槽、1-8…光学検出
器、1-9…データ処理装置、1-10…試料容器温度調節
器、1-11…キャピラリー温度調節器、1-12…アルミプレ
ート、1-13…ペルティエ素子、1-14…電極、1-15…電
極、1-16…電極。
1-1 ... High-voltage power supply, 1-2 ... Glass capillary, 1-3 ... Sample container and sample temperature control plate, 1-4 ... Capillary temperature control plate, 1-5 ... Capillary drive device, 1-6
… Buffer tank, 1-7… Buffer tank, 1-8… Optical detector, 1-9… Data processing device, 1-10… Sample container temperature controller, 1-11… Capillary temperature controller, 1-12… Aluminum plate, 1-13 ... Peltier element, 1-14 ... electrode, 1-15 ... electrode, 1-16 ... electrode.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 7235−2J G01N 27/26 315 Z ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location 7235-2J G01N 27/26 315 Z

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】生物又はウイルスの核酸を含む二本鎖DN
Aの所定の領域について、該DNA領域を互いに相補的
な一本鎖DNAに解離後ゲル電気泳動によって泳動し、
一本鎖DNAが配列多型に特異的に取る高次構造多型を
利用して該DNAの配列多型を解析する方法において、
電気泳動分析を内径100μm以下のキャピラリーに収
納されたゲルを用いた電気泳動法によって行うことを特
徴とする核酸の分析方法。
1. A double-stranded DN containing a biological or viral nucleic acid.
For a predetermined region of A, the DNA region is dissociated into single-stranded DNAs complementary to each other, and the DNA is electrophoresed by gel electrophoresis,
A method for analyzing a sequence polymorphism of a DNA by utilizing a higher-order structure polymorphism that single-stranded DNA specifically takes in the sequence polymorphism,
A method for analyzing nucleic acids, characterized in that the electrophoresis analysis is performed by an electrophoresis method using a gel housed in a capillary having an inner diameter of 100 μm or less.
【請求項2】該キャピラリーを一定温度に制御しながら
電気泳動、検出を行うことを特徴とする請求項1記載の
核酸の分析方法。
2. The method for analyzing a nucleic acid according to claim 1, wherein electrophoresis and detection are performed while controlling the capillary at a constant temperature.
【請求項3】DNA試料をDNAの解離温度以上に加温
した状態で直接キャピラリーゲル内に充填することを特
徴とする請求項1記載の核酸の分析方法。
3. The method for analyzing nucleic acid according to claim 1, wherein the DNA sample is directly loaded into the capillary gel in a state of being heated to a temperature higher than the dissociation temperature of DNA.
【請求項4】試料を収容しかつ該試料を所定の温度に加
温する温度調製装置と、電気泳動を行なうキャピラリー
と、該キャピラリーを所定の温度に制御する温度調節器
と、キャピラリー両端に高電圧を印加できる電源装置
と、キャピラリー先端部を所定の範囲内で移動する駆動
装置と、キャピラリー内を泳動してくる試料を検出する
光学的検出器と、該検出器から出力される信号を処理す
る処理装置とからなることを特徴とする核酸の分析装
置。
4. A temperature adjusting device for accommodating a sample and heating the sample to a predetermined temperature, a capillary for performing electrophoresis, a temperature controller for controlling the capillary to a predetermined temperature, and a high temperature device at both ends of the capillary. A power supply device that can apply a voltage, a drive device that moves the capillary tip within a predetermined range, an optical detector that detects a sample that migrates in the capillary, and a signal that is output from the detector. And a processing device for the nucleic acid analysis device.
JP29116192A 1992-08-26 1992-10-29 Gene polymorphism analysis method and analyzer using capillary electrophoresis Expired - Fee Related JP3186259B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP29116192A JP3186259B2 (en) 1992-10-29 1992-10-29 Gene polymorphism analysis method and analyzer using capillary electrophoresis
US08/111,508 US5409586A (en) 1992-08-26 1993-08-24 Method for analyzing nucleic acid or protein and apparatus therefor
US08/378,973 US5458761A (en) 1992-08-26 1995-01-27 Method for analyzing nucleic acid or protein and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29116192A JP3186259B2 (en) 1992-10-29 1992-10-29 Gene polymorphism analysis method and analyzer using capillary electrophoresis

Publications (2)

Publication Number Publication Date
JPH06138090A true JPH06138090A (en) 1994-05-20
JP3186259B2 JP3186259B2 (en) 2001-07-11

Family

ID=17765239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29116192A Expired - Fee Related JP3186259B2 (en) 1992-08-26 1992-10-29 Gene polymorphism analysis method and analyzer using capillary electrophoresis

Country Status (1)

Country Link
JP (1) JP3186259B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002350400A (en) * 2001-05-29 2002-12-04 Aloka Co Ltd Electrophoresis apparatus
WO2005083414A1 (en) * 2004-02-27 2005-09-09 Hitachi High-Technologies Corporation Method of analyzing sample, analyzer and method of introducing sample
JP2009521924A (en) * 2005-12-29 2009-06-11 アイ−スタット コーポレイション Amplification system and method for molecular diagnostics

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002350400A (en) * 2001-05-29 2002-12-04 Aloka Co Ltd Electrophoresis apparatus
JP4598989B2 (en) * 2001-05-29 2010-12-15 アロカ株式会社 Electrophoresis device
WO2005083414A1 (en) * 2004-02-27 2005-09-09 Hitachi High-Technologies Corporation Method of analyzing sample, analyzer and method of introducing sample
JP2009521924A (en) * 2005-12-29 2009-06-11 アイ−スタット コーポレイション Amplification system and method for molecular diagnostics

Also Published As

Publication number Publication date
JP3186259B2 (en) 2001-07-11

Similar Documents

Publication Publication Date Title
US6596487B2 (en) Mutation detection using denaturing gradients
Tian et al. Single-strand conformation polymorphism analysis by capillary and microchip electrophoresis: a fast, simple method for detection of common mutations in BRCA1 and BRCA2
US6365400B1 (en) Electrochemical denaturation of double-stranded nucleic acid
JP3710142B2 (en) High electric field detection of melting temperature polymorphism
US5795720A (en) Process and device for the separation and detection of components of a mixture of materials by temperature gradient gel electrophoresis
JP3124969B2 (en) Method and apparatus for separating and detecting mixture components by temperature gradient gel electrophoresis
JP2003504619A (en) Increased throughput analysis of small compounds using multiple injections spaced in time
Vijg et al. Two‐dimensional gene scanning: Exploring human genetic variability
JP3186259B2 (en) Gene polymorphism analysis method and analyzer using capillary electrophoresis
Gelfi et al. Single‐strand conformation polymorphism for p53 mutation by a combination of neutral pH buffer and temperature gradient in capillary electrophoresis
Lyons The polymerase chain reaction and cancer diagnostics
US20070117096A1 (en) Oscillating temperature capillary electrophoresis and uses therefor
Dhanda et al. Critical factors in the performance and cost of two-dimensional gene scanning: RB1 as a model
US20040157236A1 (en) Multitemperature single strand conformation polymorphism (MSSCP)
Bjørheim et al. Melting gel techniques in single nucleotide polymorphism and mutation detection: From theory to automation
CN101225387A (en) A New 11 X Chromosome STR Loci and Its Typing Method
Klepárník et al. Fast detection of a (CA) 18 microsatellite repeat in the IgE receptor gene by capillary electrophoresis with laser‐induced flurescence detection
WO2020225564A1 (en) Combined solution phase and solid phase dna amplification
Murphy et al. Mutation and single nucleotide polymorphism detection using temperature gradient capillary electrophoresis
JP4445611B2 (en) Equipment for polymorphism analysis of repetitive sequences
JP4580104B2 (en) A method for in vitro detection of a target substance in a specimen, comprising labeling of the target substance with a reporter gene and a sequence necessary for its expression in vitro
Highsmith Jr Electrophoretic methods for mutation detection and DNA sequencing
JPH0630797A (en) Method for analysis of genetic polymorphism
JPH03243858A (en) Detection of dna
Vorechovsky Single-strand conformation polymorphism (SSCP) analysis

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080511

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees