JPH06138045A - Defect inspecting device for glass substrate - Google Patents
Defect inspecting device for glass substrateInfo
- Publication number
- JPH06138045A JPH06138045A JP31286692A JP31286692A JPH06138045A JP H06138045 A JPH06138045 A JP H06138045A JP 31286692 A JP31286692 A JP 31286692A JP 31286692 A JP31286692 A JP 31286692A JP H06138045 A JPH06138045 A JP H06138045A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- optical system
- light
- glass substrate
- detection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、ガラス基板の表裏に存
在する微粒子(塵)やキズ、ガラス基板を貫通するピン
ホール、基板内部の気泡等(以下、これらをまとめて異
物という)による欠陥を検出するためのガラス基板用欠
陥検査装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to defects caused by fine particles (dust) and scratches existing on the front and back surfaces of a glass substrate, pinholes penetrating the glass substrate, bubbles inside the substrate (hereinafter collectively referred to as foreign matter). The present invention relates to a glass substrate defect inspection apparatus for detecting a defect.
【0002】[0002]
【従来の技術】発明者は、先に特願平4−100596
号として、表面欠陥検査装置を提案した。この表面欠陥
検査装置は、ガラス基板のごとくパネル形ディスプレイ
に用いられる透明平板材料の表面に検出光を照射し、前
記表面に存在する異物による散乱光を検出用光学系によ
り検出して前記異物を欠陥として検出する表面欠陥検査
装置において、前記表面上で検出光が照射される検出位
置よりも前方であって、この検出位置に異物が存在した
場合にその散乱光を検出可能な位置であり、かつ、表面
に対し前記透明平板材料の全反射の臨界角近傍以内の範
囲に検出用光学系を配置するものである。2. Description of the Related Art The inventor has previously proposed Japanese Patent Application No. 4-100596.
As the issue, we proposed a surface defect inspection system. This surface defect inspection apparatus irradiates the surface of a transparent flat plate material used for a panel type display such as a glass substrate with detection light, detects scattered light due to foreign matter existing on the surface by a detection optical system, and detects the foreign matter. In the surface defect inspection device to detect as a defect, in front of the detection position irradiated with the detection light on the surface, the scattered light can be detected when foreign matter is present at this detection position, In addition, the detection optical system is arranged within the vicinity of the critical angle of total reflection of the transparent flat plate material with respect to the surface.
【0003】[0003]
【発明が解決しようとする課題】上記従来技術によれ
ば、検出用光学系を特定の位置に配置して検出光を斜め
上方から透明平板材料の表面に照射した場合、透明平板
材料の表面のみに存在する異物を検出することができ
る。しかるに、この種のガラス基板においては、その表
裏に存在する異物を一度に検出できれば都合が良い場合
も多く、また、基板内部のピンホールや気泡も同時に検
出できることが望まれている。本発明はこれらの点に鑑
みてなされたもので、その目的とするところは、ガラス
基板の表裏面に存在する微粒子やキズ、基板を貫通する
ピンホール、表裏面付近の気泡等の異物による欠陥を確
実に検出することができる構成簡単な欠陥検査装置を提
供することにある。According to the above prior art, when the detection optical system is arranged at a specific position and the detection light is applied obliquely from above to the surface of the transparent flat plate material, only the surface of the transparent flat plate material is exposed. It is possible to detect foreign matter existing in the. However, in this type of glass substrate, it is often convenient to be able to detect foreign substances existing on the front and back surfaces at once, and it is also desired that pinholes and bubbles inside the substrate can be detected at the same time. The present invention has been made in view of these points, and its object is to detect defects due to foreign particles such as fine particles and scratches present on the front and back surfaces of a glass substrate, pinholes penetrating the substrate, and bubbles near the front and back surfaces. It is an object of the present invention to provide a defect inspection device having a simple configuration capable of surely detecting a defect.
【0004】[0004]
【課題を解決するための手段及び作用】上記目的を達成
するため、第1の発明は、第1の光源からガラス基板の
表面に検出光を照射し、前記基板の表裏面に存在する微
粒子による散乱光を、前記基板の表面側において前記基
板の全反射の臨界角近傍以内の範囲に配置された第1の
検出用光学系により検出して前記微粒子を欠陥として検
出するものである。この発明では、基板の表面及び裏面
に存在する微粒子による散乱光が第1の検出用光学系に
より検出され、基板内部の気泡や裏面近くのキズによる
散乱光は検出されない。In order to achieve the above object, the first aspect of the present invention is that the first light source irradiates the surface of a glass substrate with detection light, and fine particles existing on the front and back surfaces of the substrate are used. The scattered light is detected by a first detection optical system arranged within the vicinity of the critical angle of total reflection of the substrate on the front surface side of the substrate to detect the fine particles as a defect. In the present invention, the scattered light due to the fine particles existing on the front surface and the rear surface of the substrate is detected by the first detection optical system, and the scattered light due to the bubbles inside the substrate and the scratches near the rear surface is not detected.
【0005】第2の発明は、第2の光源から、ガラス基
板の表面に前記基板を透過しない波長の短波長検出光を
照射し、前記基板の表面に存在する微粒子による散乱光
を、前記基板の表面側に配置された第2の検出用光学系
により検出して前記微粒子を欠陥として検出するもので
ある。この発明では、基板内部を短波長検出光が透過し
ないため、裏面に存在する微粒子には検出光が照射され
ず、第2の検出用光学系により検出されるのは表面の微
粒子によるもののみとなる。According to a second aspect of the present invention, the surface of the glass substrate is irradiated with short-wavelength detection light having a wavelength that does not pass through the substrate from the second light source, and light scattered by the fine particles existing on the surface of the substrate is emitted from the substrate. Is detected by the second detection optical system arranged on the surface side of, and the fine particles are detected as a defect. In this invention, since the short-wavelength detection light does not pass through the inside of the substrate, the detection light is not irradiated to the fine particles present on the back surface, and only the fine particles on the surface detect the second detection optical system. Become.
【0006】従って、第1及び第2の発明を組み合わせ
ることにより、第1の検出用光学系からは基板の表面及
び裏面に存在する微粒子の数を、また、第2の検出用光
学系からは表面のみに存在する微粒子の数を直接的に検
出できるので、これらのデータから裏面のみに存在する
微粒子の数をも知ることができる。Therefore, by combining the first and second inventions, the number of fine particles present on the front surface and the back surface of the substrate can be measured from the first detection optical system, and from the second detection optical system. Since the number of fine particles existing only on the front surface can be directly detected, the number of fine particles existing only on the back surface can be known from these data.
【0007】第3の発明は、ガラス基板の端面から第3
の光源による検出光を前記基板の表面に平行に入射さ
せ、前記基板の表面または裏面に存在するキズまたは表
面または裏面近傍に存在する気泡による散乱光を、前記
の表面側または裏面側において前記基板の全反射の臨界
角近傍以内の範囲に配置された第1の検出用光学系によ
り検出して前記キズまたは気泡を欠陥として検出するも
のである。A third aspect of the present invention is the third aspect from the end face of the glass substrate.
The detection light from the light source is incident on the front surface of the substrate in parallel, and the scratches present on the front surface or the back surface of the substrate or the scattered light due to the bubbles present near the front surface or the back surface of the substrate on the front surface side or the back surface side. Is detected by the first detection optical system arranged within the vicinity of the critical angle of the total reflection, and the flaw or bubble is detected as a defect.
【0008】第4の発明は、ガラス基板の裏面から、第
4の面状光源により前記基板を透過しない波長の短波長
検出光を照射し、前記基板の表裏を貫通するピンホール
を介した透過光を、前記基板の表面側に配置された第2
の検出用光学系により検出して前記ピンホールを欠陥と
して検出するものである。すなわち、ピンホール以外の
部分では前記短波長検出光が表面側に透過せず、S/N
比の高い欠陥検出が可能になる。According to a fourth aspect of the present invention, a short-wavelength detection light having a wavelength that does not pass through the substrate is emitted from the back surface of the glass substrate by a fourth planar light source, and transmitted through pinholes penetrating the front and back of the substrate. A second light disposed on the front side of the substrate
The optical system for detection is used to detect the pinhole as a defect. That is, in the portion other than the pinhole, the short wavelength detection light is not transmitted to the front surface side, and the S / N
It is possible to detect defects with a high ratio.
【0009】第5の発明は、上記すべての発明を組み合
わせたもので、第1ないし第4の光源と、第1及び第2
の検出用光学系とを備えたものであり、これにより、微
粒子やキズ、気泡、ピンホール等、検査する欠陥の種類
に応じて各光源や検出用光学系を使い分けることがで
き、多目的の欠陥検査装置を実現することができる。A fifth aspect of the invention is a combination of all the aspects of the invention described above, and includes first to fourth light sources, first and second light sources.
With the detection optical system, it is possible to use each light source and detection optical system properly according to the type of defect to be inspected such as fine particles, scratches, bubbles, pinholes, etc. An inspection device can be realized.
【0010】[0010]
【実施例】以下、図に沿って各発明の実施例を説明す
る。図1は第1の発明の実施例を示している。図におい
て、Gは欠陥を検査するべきガラス基板であり、このガ
ラス基板Gにはその表面に直交するように、第1の光源
からのレーザ検出光L1が照射される。このレーザ検出
光L1は、例えば波長780〔nm〕の半導体レーザ光
であるが、レーザ光源の種類や波長はこれに限定される
ものではない。なお、図では、理解を容易にするために
ガラス基板Gの厚さを誇張して示してある。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of the first invention. In the figure, G is a glass substrate to be inspected for defects, and the glass substrate G is irradiated with laser detection light L 1 from a first light source so as to be orthogonal to the surface thereof. The laser detection light L 1 is, for example, a semiconductor laser light having a wavelength of 780 [nm], but the type and wavelength of the laser light source are not limited to this. In the figure, the thickness of the glass substrate G is exaggerated for easy understanding.
【0011】一方、11,12はレンズ、13はホトデ
テクタであり、これらによって第1の検出用光学系14
が構成されている。ここで、検出用光学系14は、ガラ
ス基板Gの表面Sに対し、ガラス基板Gの全反射の臨界
角θc近傍以内の範囲に配置されている。これは、仮り
にガラス基板Gの裏面にキズD3が存在したりガラス基
板Gの内部に気泡D4が存在する場合、検出用光学系1
4が臨界角θcの外にあると、キズD3や気泡D4による
散乱光が基板内部を通過した後、検出用光学系14によ
って検出されてしまうため、これを防止するためであ
る。On the other hand, reference numerals 11 and 12 are lenses, and 13 is a photodetector.
Is configured. Here, the detection optical system 14 is arranged within the vicinity of the critical angle θc of the total reflection of the glass substrate G with respect to the surface S of the glass substrate G. This is because if the scratch D 3 is present on the back surface of the glass substrate G or the bubble D 4 is present inside the glass substrate G, the detection optical system 1 is used.
If 4 is outside the critical angle θc, the scattered light due to the scratch D 3 or the bubble D 4 will be detected by the detection optical system 14 after passing through the inside of the substrate, and this is to prevent this.
【0012】このように構成すると、レーザ検出光L1
を表面Sの検出位置P1に照射した場合、この位置P1に
微粒子D1が存在すると、この微粒子D1による散乱光L
2が検出用光学系14によって検出される。また、仮り
に、検出位置P1の反対側にあたるガラス基板Gの裏面
の位置P2にも微粒子D2が存在した場合、この微粒子D
2による散乱光はガラス基板Gを透過し、かつ、空気の
屈折率(n=1、ガラス基板Gの屈折率はn=1.55
とする)の影響を受け、臨界角θcの外部には出射しな
いので、やはり検出用光学系14によって検出されるこ
とになる。周知のように、検出用光学系14による検出
信号(パルス)の個数は微粒子の個数を示し、振幅は微
粒子の大きさ(粒径)を示す。With this configuration, the laser detection light L 1
When a particle D 1 is present at this position P 1 when the detection position P 1 on the surface S is irradiated with, the scattered light L due to this particle D 1
2 is detected by the detection optical system 14. Further, if the fine particles D 2 are also present at the position P 2 on the back surface of the glass substrate G, which is the opposite side of the detection position P 1 , the fine particles D 2
Light scattered by 2 is transmitted through the glass substrate G, and the refractive index of air (n = 1, the refractive index of the glass substrate G is n = 1.55).
Since the light is not emitted outside the critical angle θc, it is also detected by the detection optical system 14. As is well known, the number of detection signals (pulses) by the detection optical system 14 indicates the number of fine particles, and the amplitude indicates the size (particle diameter) of the fine particles.
【0013】ここで、ガラス基板Gが薄くなるほど裏面
の微粒子D2による散乱光強度は表面の微粒子D1による
散乱光強度に近くなる。例えば、表面及び裏面における
反射ロス等を考慮しても、表面の微粒子D1による散乱
光強度を100〔%〕とした場合、裏面の微粒子D2に
よる散乱光強度は約95〔%〕となって検出用光学系1
4によって検出される。Here, as the glass substrate G becomes thinner, the intensity of scattered light by the fine particles D 2 on the back surface becomes closer to the intensity of scattered light by the fine particles D 1 on the front surface. For example, even considering the reflection loss on the front surface and the back surface, when the scattered light intensity by the fine particles D 1 on the front surface is 100%, the scattered light intensity by the fine particles D 2 on the back surface is about 95%. Detection optical system 1
Detected by 4.
【0014】なお、図1のごとく平面から見て表裏の同
一位置P1,P2に微粒子D1,D2が存在する場合には、
検出用光学系14の出力信号のみではそれが表裏面のど
ちらに存在する微粒子によるものかを判別することがで
きない。しかし、このように表裏面のまったく同一位置
に微粒子D1,D2が存在することは極めてまれであるか
ら、レーザ検出光L1をガラス基板Gの表面Sに対し相
対的に移動させてガラス基板Gの全面をスキャンするこ
とにより、ガラス基板Gの表裏に存在する微粒子の総数
を検出することができる。ここで、レーザ検出光L1の
レーザ光源と検出用光学系14とは同一のフレームに固
定して移動させると良い。When fine particles D 1 and D 2 are present at the same positions P 1 and P 2 on the front and back sides as viewed from the plane as shown in FIG.
The output signal of the detection optical system 14 alone cannot determine whether it is due to the particles present on the front surface or the back surface. However, since it is extremely rare that the fine particles D 1 and D 2 are present at exactly the same positions on the front and back surfaces as described above, the laser detection light L 1 is moved relative to the surface S of the glass substrate G and the glass is moved. By scanning the entire surface of the substrate G, the total number of fine particles existing on the front and back of the glass substrate G can be detected. Here, the laser light source of the laser detection light L 1 and the detection optical system 14 may be fixed and moved in the same frame.
【0015】次に、図2は第2の発明の実施例を示して
いる。この実施例は、ガラス基板Gの表面Sに存在する
微粒子D1のみを検出するものである。図2において、
L3は重水素ランプ等の第2の光源から照射される短波
長検出光であり、その波長は例えば200〜300〔n
m〕である。一般に、ガラス基板Gは無アルカリガラス
や低アルカリガラス、ゼロ膨張結晶化ガラスからなって
いるが、これらは通常、波長が250〔nm〕以下の光
に対して透過率が零に近いことが従来より知られてい
る。Next, FIG. 2 shows an embodiment of the second invention. In this embodiment, only the fine particles D 1 existing on the surface S of the glass substrate G are detected. In FIG.
L 3 is short-wavelength detection light emitted from a second light source such as a deuterium lamp, and its wavelength is, for example, 200 to 300 [n
m]. Generally, the glass substrate G is made of non-alkali glass, low-alkali glass, or zero-expansion crystallized glass, but these materials usually have a transmittance close to zero for light having a wavelength of 250 nm or less. Better known.
【0016】従って、短波長検出光L3を表面Sの検出
位置P1に照射した場合、微粒子D1による散乱光L4は
レンズ15,16、ホトデテクタ17からなる第2の検
出用光学系18によって検出されるが、仮りに裏面に微
粒子D2が存在していたとしても、短波長検出光L3がガ
ラス基板Gを殆ど透過しないため、散乱光を生じること
もない。従って、表面Sに存在する微粒子のみが検出用
光学系18により検出される。なお、検出用光学系18
のレンズ15,16はサファイアや石英等の材質とす
る。Therefore, when the detection position P 1 on the surface S is irradiated with the short-wavelength detection light L 3 , the scattered light L 4 by the fine particles D 1 is the second detection optical system 18 including the lenses 15 and 16 and the photodetector 17. However, even if the fine particles D 2 are present on the back surface, the short-wavelength detection light L 3 hardly passes through the glass substrate G, so that scattered light is not generated. Therefore, only the fine particles existing on the surface S are detected by the detection optical system 18. The detection optical system 18
The lenses 15 and 16 are made of a material such as sapphire or quartz.
【0017】上述した図1の実施例及び図2の実施例を
組み合わせれば、第1の検出用光学系14では表裏面の
微粒子数を検出し、第2の検出用光学系18では表面の
みの微粒子数を検出することができるので、各光学系の
出力信号を処理するマイクロコンピュータ等によって両
者の差を求めることにより、裏面のみの微粒子数を検出
することができる。つまり、結果的に、ガラス基板Gの
表裏面各々の微粒子数をほぼ同時に測定可能となる。By combining the embodiment of FIG. 1 and the embodiment of FIG. 2 described above, the first detection optical system 14 detects the number of fine particles on the front and back surfaces, and the second detection optical system 18 detects only the front surface. Since it is possible to detect the number of the fine particles, the number of the fine particles only on the back surface can be detected by obtaining the difference between the two using a microcomputer or the like that processes the output signal of each optical system. That is, as a result, the number of fine particles on each of the front and back surfaces of the glass substrate G can be measured almost simultaneously.
【0018】従来、このように表裏面各々の微粒子数を
ほぼ同時に測定するためには、ガラス基板Gの表面側及
び裏面側にそれぞれ別個に光源と検出用光学系とを配置
する必要があるが、本発明によれば、光源及び検出用光
学系は表面側のみで足りるため、装置構成を全体的に薄
形化することができる。同時に、電気配線や放熱等のた
めにも便利である。Conventionally, in order to measure the numbers of fine particles on each of the front and back surfaces almost at the same time, it is necessary to separately arrange a light source and a detection optical system on the front surface side and the back surface side of the glass substrate G, respectively. According to the present invention, since the light source and the detection optical system are sufficient only on the front surface side, it is possible to make the apparatus configuration thin as a whole. At the same time, it is convenient for electrical wiring and heat dissipation.
【0019】図3は、第3の発明の実施例であり、この
実施例はガラス基板Gの表面のキズD5や表面付近の気
泡D4を検出するようにしたものである。図において、
L5は第3の光源としての半導体レーザやHe−Neレ
ーザからのレーザ検出光であり、この検出光L5はガラ
ス基板Gの端面から表面に平行に入射されている。ま
た、ガラス基板Gの表面側には第1の検出用光学系14
が配置される。FIG. 3 shows an embodiment of the third invention, in which a flaw D 5 on the surface of the glass substrate G and a bubble D 4 near the surface are detected. In the figure,
L 5 is laser detection light from a semiconductor laser or a He—Ne laser as a third light source, and the detection light L 5 is incident from the end face of the glass substrate G parallel to the surface. Further, the first detection optical system 14 is provided on the front surface side of the glass substrate G.
Are placed.
【0020】このような構成において、レーザ検出光L
5はガラス基板Gの内部をほぼ全反射しながら進むが、
表面SにキズD5が存在したり表面付近に気泡D4が存在
する場合、それによる散乱光L6が検出用光学系14に
より検出される。一方、裏面のキズD3による散乱光
は、検出用光学系14を臨界角θc近傍以内の範囲に配
置すれば検出されない。また、表裏面に存在する微粒子
D1,D2についても、ガラス基板Gの内部をほぼ全反射
しながら進むレーザ検出光L5がこれらに照射されない
ので、光散乱が起こらず、検出用光学系14によって検
出されることはない。なお、もう1組の検出用光学系1
4を基板Gの裏面側に設ければ、裏面のキズD3や裏面
近くの気泡も同時に検出可能である。In such a structure, the laser detection light L
5 advances while almost totally reflecting inside the glass substrate G,
When the surface S has scratches D 5 or bubbles D 4 exist near the surface, the detection optical system 14 detects scattered light L 6 due to the bubbles D 4 . On the other hand, the scattered light due to the scratch D 3 on the back surface cannot be detected if the detection optical system 14 is arranged within a range near the critical angle θc. Further, the fine particles D 1 and D 2 existing on the front and back surfaces are not irradiated with the laser detection light L 5 that travels while substantially totally reflecting inside the glass substrate G, so that light scattering does not occur and the detection optical system is used. Not detected by 14. In addition, another set of detection optical system 1
If 4 is provided on the back surface side of the substrate G, it is possible to simultaneously detect the scratch D 3 on the back surface and the bubbles near the back surface.
【0021】この実施例においても、例えば、図1に示
した第1の光源によるレーザ検出光L1、図2に示した
第2の光源による短波長検出光L3及び第2の検出用光
学系18を追加することにより、表裏面の微粒子D1,
D2、表面のみの微粒子D1、裏面のみの微粒子D2も検
出可能な欠陥検査装置を実現することができる。Also in this embodiment, for example, the laser detection light L 1 by the first light source shown in FIG. 1, the short wavelength detection light L 3 by the second light source shown in FIG. 2, and the second detection optical system are used. By adding the system 18, fine particles D 1 ,
D 2, fine particles D 1 of the surface only, it is possible to fine particles D 2 of the back surface but also to achieve a detectable defect inspection apparatus.
【0022】図4は第4の発明の実施例を示している。
この実施例は、ガラス基板Gの表裏を貫通するピンホー
ルD6を検出するようにしたもので、ガラス基板Gの裏
面側には、波長が300〔nm〕以下の短波長検出光L
7を発する面状光源19が配置され、ガラス基板Gの表
面側には、第2の検出用光学系18が配置されている。FIG. 4 shows an embodiment of the fourth invention.
In this embodiment, a pinhole D 6 penetrating the front and back of the glass substrate G is detected. On the back side of the glass substrate G, a short wavelength detection light L having a wavelength of 300 [nm] or less is detected.
A planar light source 19 that emits light 7 is arranged, and a second detection optical system 18 is arranged on the front surface side of the glass substrate G.
【0023】前述の如く、波長が300〔nm〕以下の
光はガラス基板Gの透過率が極めて小さくなることか
ら、短波長検出光L7は通常、ガラス基板Gを透過せ
ず、あるいは若干透過しても検出用光学系18による検
出にはかからない。しかるに、ガラス基板Gの表裏を貫
通するピンホールD6が存在する場合、検出光L7はこれ
を通過して透過光L8として検出用光学系18により検
出されるため、高いS/N比によってピンホールD6を
検出することができる。As described above, since the transmittance of the glass substrate G for light having a wavelength of 300 nm or less is extremely small, the short-wavelength detection light L 7 usually does not pass through the glass substrate G or slightly passes through it. However, the detection by the detection optical system 18 does not affect the detection. However, when there is a pinhole D 6 penetrating the front and back of the glass substrate G, the detection light L 7 passes through this and is detected as the transmitted light L 8 by the detection optical system 18, so that a high S / N ratio is obtained. The pinhole D 6 can be detected by.
【0024】なお、この実施例では、面状光源19がガ
ラス基板Gの面積と同等以上の面積を有していれば、面
状光源19の1回の点灯によりガラス基板Gの全面に検
出光L7を照射することができる。従って、スキャンの
ために面状光源19とガラス基板Gとを相対的、平面的
に移動する必要がない。検出用光学系18に関しては、
その光軸と基板表面との交差角が直角に近くなるように
配置すればするほど、ピンホールD6の検出面積が増大
し、検査効率を高めることができる。更に、必要に応じ
て検出光L7の波長を紫外線領域にまで可変とすれば、
UV光による有機物の光洗浄を行うことができ、ガラス
基板Gの表面(裏面)洗浄効果が得られる。In this embodiment, if the area light source 19 has an area equal to or larger than the area of the glass substrate G, the surface light source 19 is turned on once to detect light on the entire surface of the glass substrate G. L 7 can be irradiated. Therefore, it is not necessary to move the surface light source 19 and the glass substrate G relatively and two-dimensionally for scanning. Regarding the detection optical system 18,
The closer the crossing angle between the optical axis and the surface of the substrate is to a right angle, the larger the detection area of the pinhole D 6 and the higher the inspection efficiency. Furthermore, if the wavelength of the detection light L 7 is made variable in the ultraviolet region as needed,
The organic substance can be optically cleaned with UV light, and the effect of cleaning the front surface (back surface) of the glass substrate G can be obtained.
【0025】次いで、図5は、図1ないし図4の実施例
を組み合わせて構成した欠陥検査装置の主要部を示して
おり、第5の発明の実施例に相当する。なお、各構成部
材の番号は前述したものと同一である。このように構成
しておけば、微粒子やキズ、気泡、ピンホール等、検査
する欠陥の種類に応じて各光源や検出用光学系を使い分
けることができ、多目的の欠陥検査装置を実現すること
が可能になる。Next, FIG. 5 shows a main part of a defect inspection apparatus constructed by combining the embodiments of FIGS. 1 to 4, and corresponds to an embodiment of the fifth invention. The numbers of the constituent members are the same as those described above. With this configuration, it is possible to properly use each light source and detection optical system according to the type of defect to be inspected such as fine particles, scratches, bubbles, pinholes, etc., and it is possible to realize a multipurpose defect inspection apparatus. It will be possible.
【0026】[0026]
【発明の効果】以上のように第1の発明によれば、第1
の光源及び第1の検出用光学系により、基板の表面及び
裏面に存在する微粒子による散乱光を検出することがで
き、これらの微粒子の数や大きさを正確に検出すること
が可能である。第2の発明によれば、第2の光源及び第
2の検出用光学系により、基板の表面に存在する微粒子
のみによる散乱光から、これらの微粒子の数や大きさを
正確に検出することができる。As described above, according to the first invention, the first
The light source and the first detection optical system can detect scattered light due to fine particles present on the front surface and the back surface of the substrate, and can accurately detect the number and size of these fine particles. According to the second aspect of the present invention, the second light source and the second detection optical system can accurately detect the number and size of these fine particles from the scattered light due to only the fine particles present on the surface of the substrate. it can.
【0027】従って、第1及び第2の発明を組み合わせ
ることにより、第1の検出用光学系からは基板の表面及
び裏面に存在する微粒子の数を、また、第2の検出用光
学系からは表面のみに存在する微粒子の数を直接的に検
出できるので、これらのデータから裏面のみに存在する
微粒子の数をも知ることができる。このような演算処理
はマイクロコンピュータ等により即座に実現可能である
から、基板表裏面の個別の微粒子個数、合計の微粒子個
数をほぼ同時に測定可能な欠陥検査装置を提供すること
ができる。Therefore, by combining the first and second inventions, the number of fine particles existing on the front surface and the back surface of the substrate can be determined from the first detection optical system, and from the second detection optical system. Since the number of fine particles existing only on the front surface can be directly detected, the number of fine particles existing only on the back surface can be known from these data. Since such arithmetic processing can be immediately realized by a microcomputer or the like, it is possible to provide a defect inspection apparatus capable of measuring the number of individual fine particles on the front and back surfaces of the substrate and the total number of fine particles almost simultaneously.
【0028】第3の発明によれば、第3の光源及び第1
の検出用光学系により、基板の表面または裏面のキズ、
あるいは表面または裏面近傍の気泡を欠陥として正確に
検出することができる。第4の発明によれば、第4の面
状光源及び第2の検出用光学系により、基板の表裏を貫
通するピンホールを欠陥として高S/N比にて検出する
ことができ、必要に応じて第4の面状光源により基板の
表面(裏面)洗浄効果を得ることができる。According to the third invention, the third light source and the first
Scratches on the front or back of the substrate
Alternatively, bubbles near the front surface or the back surface can be accurately detected as defects. According to the fourth invention, the fourth planar light source and the second detection optical system can detect a pinhole penetrating the front and back of the substrate as a defect at a high S / N ratio. Accordingly, the front surface (back surface) cleaning effect of the substrate can be obtained by the fourth planar light source.
【0029】第5の発明によれば、微粒子やキズ、気
泡、ピンホール等、検査する欠陥の種類に応じて各光源
や検出用光学系を使い分けることができ、多目的の欠陥
検査装置を簡単な構成によって実現することができる。
特に、各光源や検出用光学系をユニット化し、増設や取
外しが容易な構造にしておけば、ユーザの用途に応じた
実用性の高い検査装置を提供することが可能である。According to the fifth invention, each light source and detection optical system can be selectively used according to the type of defect to be inspected such as fine particles, scratches, bubbles, pinholes, etc. It can be realized by the configuration.
In particular, if each light source and the optical system for detection are unitized and have a structure that can be easily added or removed, it is possible to provide a highly practical inspection device according to the application of the user.
【図1】第1の発明の実施例を示す図である。FIG. 1 is a diagram showing an embodiment of the first invention.
【図2】第2の発明の実施例を示す図である。FIG. 2 is a diagram showing an embodiment of the second invention.
【図3】第3の発明の実施例を示す図である。FIG. 3 is a diagram showing an embodiment of the third invention.
【図4】第4の発明の実施例を示す図である。FIG. 4 is a diagram showing an embodiment of the fourth invention.
【図5】図1〜図4の実施例を組合わせて構成した欠陥
検査装置を示す図である。FIG. 5 is a diagram showing a defect inspection apparatus configured by combining the embodiments of FIGS. 1 to 4;
11,12,15,16 レンズ 13,17 ホトデテクタ 14,18 検出用光学系 19 面状光源 L1,L5 レーザ検出光 L2,L4,L6 散乱光 L3,L7 短波長検出光 L8 透過光 G ガラス基板 S 表面 P1,P2 検出位置 D1,D2 微粒子 D3,D5 キズ D4 気泡 D6 ピンホール11, 12, 15, 16 Lens 13, 17 Photodetector 14, 18 Detection optical system 19 Planar light source L 1 , L 5 Laser detection light L 2 , L 4 , L 6 Scattered light L 3 , L 7 Short wavelength detection light L 8 Transmitted light G Glass substrate S Surface P 1 , P 2 Detection position D 1 , D 2 Fine particles D 3 , D 5 Scratch D 4 Bubble D 6 Pinhole
Claims (6)
光を照射し、前記基板の表裏面に存在する微粒子による
散乱光を、前記基板の表面側において前記基板の全反射
の臨界角近傍以内の範囲に配置された第1の検出用光学
系により検出して前記微粒子を欠陥として検出すること
を特徴とするガラス基板用欠陥検査装置。1. The surface of a glass substrate is irradiated with detection light from a first light source, and scattered light due to fine particles existing on the front and back surfaces of the substrate is near the critical angle of total reflection of the substrate on the front surface side of the substrate. A defect inspection apparatus for a glass substrate, characterized in that the fine particles are detected as a defect by detecting with a first detection optical system arranged within a range within.
記基板を透過しない波長の短波長検出光を照射し、前記
基板の表面に存在する微粒子による散乱光を、前記基板
の表面側に配置された第2の検出用光学系により検出し
て前記微粒子を欠陥として検出することを特徴とするガ
ラス基板用欠陥検査装置。2. The second light source irradiates the surface of the glass substrate with short-wavelength detection light having a wavelength that does not pass through the substrate, and scatters the light scattered by the fine particles present on the surface of the substrate to the surface side of the substrate. A defect inspection apparatus for a glass substrate, characterized in that the fine particles are detected as a defect by detecting with a second detection optical system arranged.
出用光学系と、請求項2記載の第2の光源及び第2の検
出用光学系とを備えたことを特徴とするガラス基板用欠
陥検査装置。3. A first light source and a first detection optical system according to claim 1, and a second light source and a second detection optical system according to claim 2. Defect inspection system for glass substrates.
検出光を前記基板の表面に平行に入射させ、前記基板の
表面または裏面に存在するキズまたは前記基板の表面ま
たは裏面近傍に存在する気泡による散乱光を、前記の表
面側または裏面側において前記基板の全反射の臨界角近
傍以内の範囲に配置された第1の検出用光学系により検
出して前記キズまたは気泡を欠陥として検出することを
特徴とするガラス基板用欠陥検査装置。4. A flaw existing on the front surface or the back surface of the substrate or a bubble existing near the front surface or the back surface of the substrate when light detected by a third light source is made incident on the front surface of the substrate in parallel from the end surface of the glass substrate. Detecting the scattered light by the first detection optical system arranged within the vicinity of the critical angle of the total reflection of the substrate on the front surface side or the back surface side to detect the flaw or bubble as a defect. A defect inspection device for a glass substrate.
により前記基板を透過しない波長の短波長検出光を照射
し、前記基板の表裏を貫通するピンホールを介した透過
光を、前記基板の表面側に配置された第2の検出用光学
系により検出して前記ピンホールを欠陥として検出する
ことを特徴とするガラス基板用欠陥検査装置。5. The back surface of a glass substrate is irradiated with short-wavelength detection light of a wavelength that does not pass through the substrate by a fourth planar light source, and transmitted light passing through pinholes penetrating the front and back of the substrate is transmitted. A defect inspection device for a glass substrate, characterized in that the pinhole is detected as a defect by detecting with a second optical system for detection arranged on the front surface side of the substrate.
置において、請求項4記載の第3の光源と、請求項5記
載の第4の面状光源とを備えたことを特徴とするガラス
基板用欠陥検査装置。6. A defect inspection apparatus for glass substrates according to claim 3, comprising the third light source according to claim 4 and the fourth planar light source according to claim 5. Defect inspection system for substrates.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31286692A JPH06138045A (en) | 1992-10-28 | 1992-10-28 | Defect inspecting device for glass substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31286692A JPH06138045A (en) | 1992-10-28 | 1992-10-28 | Defect inspecting device for glass substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06138045A true JPH06138045A (en) | 1994-05-20 |
Family
ID=18034383
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31286692A Withdrawn JPH06138045A (en) | 1992-10-28 | 1992-10-28 | Defect inspecting device for glass substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06138045A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100381134B1 (en) * | 2000-09-14 | 2003-04-23 | 주식회사 에이스월드 | a checking machine for glass and control method thereof |
KR100485029B1 (en) * | 1997-12-26 | 2005-06-16 | 호야 가부시키가이샤 | Glass substrate for an electron device, photomask blank and photomask using the same |
WO2024090109A1 (en) * | 2022-10-25 | 2024-05-02 | 株式会社堀場製作所 | Inspection device, inspection method, and inspection program |
-
1992
- 1992-10-28 JP JP31286692A patent/JPH06138045A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100485029B1 (en) * | 1997-12-26 | 2005-06-16 | 호야 가부시키가이샤 | Glass substrate for an electron device, photomask blank and photomask using the same |
KR100381134B1 (en) * | 2000-09-14 | 2003-04-23 | 주식회사 에이스월드 | a checking machine for glass and control method thereof |
WO2024090109A1 (en) * | 2022-10-25 | 2024-05-02 | 株式会社堀場製作所 | Inspection device, inspection method, and inspection program |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW396274B (en) | Method and apparatus for the nonuniformity inspection of the transparent material and method of selecting the transparent substrate | |
JP3436326B2 (en) | Defect inspection method and apparatus for transparent plate | |
TWI480539B (en) | Defect inspection apparatus and method for light transmittance material | |
TW571079B (en) | Method and apparatus for inspecting display panel | |
JPH10160683A (en) | Foreign object inspection method and device | |
JPH11242001A (en) | Method and device for inspecting an unevenness of light-transmission material, and method for selecting light-transmission substrate | |
JP3673649B2 (en) | Non-uniformity inspection method and inspection apparatus for translucent material | |
JP2008076113A (en) | Surface flaw detection method and surface flaw inspection device | |
JP4104924B2 (en) | Optical measuring method and apparatus | |
JP3673626B2 (en) | Non-uniformity inspection method and apparatus for translucent material | |
JPH01213552A (en) | Improved reflection photometer | |
JP2002267418A (en) | Film thickness measuring instrument | |
CN212207144U (en) | Equipment for detecting surface defects on glass sheets | |
JP2005009919A (en) | Inspection device and inspecting method for polarization plate with protective film | |
JP2000028546A (en) | Defect inspecting method and device for optically compensating film | |
JPH06138045A (en) | Defect inspecting device for glass substrate | |
JP3417494B2 (en) | Method and apparatus for inspecting surface undulation of glass substrate | |
JPH10282007A (en) | Method and apparatus for inspecting defects such as foreign matter | |
JPH05273137A (en) | Surface flaw inspecting device | |
JP2007278784A (en) | Defect detection method and device of transparent body | |
JP4358955B2 (en) | Foreign matter inspection device | |
JP3102493B2 (en) | Foreign matter inspection method and apparatus | |
JP3673631B2 (en) | Non-uniformity inspection method and apparatus for translucent material | |
KR20030027709A (en) | Appearance examining apparatus | |
JP2004170102A (en) | Foreign matter inspection device for liquid crystal display panel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20000104 |