[go: up one dir, main page]

JPH06137971A - Pressure sensor - Google Patents

Pressure sensor

Info

Publication number
JPH06137971A
JPH06137971A JP28802092A JP28802092A JPH06137971A JP H06137971 A JPH06137971 A JP H06137971A JP 28802092 A JP28802092 A JP 28802092A JP 28802092 A JP28802092 A JP 28802092A JP H06137971 A JPH06137971 A JP H06137971A
Authority
JP
Japan
Prior art keywords
resistor
target
glass
pressure sensor
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28802092A
Other languages
Japanese (ja)
Inventor
Haruhiko Handa
晴彦 半田
Masahiro Hiraga
将浩 平賀
Masaki Ikeda
正樹 池田
Akihiko Yoshida
昭彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP28802092A priority Critical patent/JPH06137971A/en
Publication of JPH06137971A publication Critical patent/JPH06137971A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Force In General (AREA)
  • Pressure Sensors (AREA)

Abstract

PURPOSE:To contrive improvement of quality and durability of a sensor by forming a resistor of the sensor into a specified pattern with a method for sputtering a target of a resistor material. CONSTITUTION:A sensor is formed with an insulation layer on the surface of a metal substrate and composed of a circuit for detecting resistor provided on its surface and resistant change. A sputtering method for forming the resistor shows that a resistor material target is irradiated with ions, so that resilient and non-resilient collision are conducted with atoms, a group of the atoms and molecules on the surface of the target, they are evaporated and evaporated target substances are precipitated on a board. The target preferably consists of composite targets composed of a glass component selected from among at least Si2, B2O3 and the like and a conductive crystal component selected from among at least RuO2, Ta2O5 and the like. The glass layer is selected in regard to the insulation layer, which is preferably composed of a non-alkali glass-ceramic from a view point of heat resistance and the like.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、圧力変化に対し、抵抗
体の電気抵抗の変化により圧力を検出する圧力センサに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure sensor for detecting pressure by a change in electric resistance of a resistor against a change in pressure.

【0002】[0002]

【従来の技術】近年、荷重量、圧力を検出するセンサ
は、機械、船舶、自動車などの各部に生じる応力や荷重
の大きさを検出するために広く用いられている。この種
のセンサは基材の種類、感歪材料の種類によってさまざ
まなものが提案されている。その代表的なものとして、
(a)ポリエステル、エポキシ、ポリイミドなどの樹脂
からなるフィルム上に、Cu-Ni 合金、Ni-Cr 合金などか
らなる薄膜状の抵抗体を蒸着またはスパッタリングによ
り形成した圧力センサ、(b)特公平3 −20682 号公報
に開示されているように、上記の樹脂製フィルムの代り
にガラスプレートを用いた圧力センサ、(c)特願平3-
282663号公報に開示されているように、金属基体と、そ
の表面に形成された結晶化ガラス材料からなるガラス層
と、さらにそのガラス層の表面に形成され、歪が加わる
と電気抵抗が変化する抵抗体からなる圧力センサが提案
されている。
2. Description of the Related Art In recent years, a sensor for detecting a load amount and a pressure has been widely used for detecting a stress or a load magnitude generated in each part of a machine, a ship, an automobile or the like. Various sensors of this type have been proposed depending on the type of base material and the type of strain-sensitive material. As a typical example,
(A) A pressure sensor in which a thin film resistor made of Cu-Ni alloy, Ni-Cr alloy or the like is formed by vapor deposition or sputtering on a film made of resin such as polyester, epoxy or polyimide, and (b) Japanese Patent Publication No. 3 No. 20682, a pressure sensor using a glass plate instead of the above resin film, (c) Japanese Patent Application No. 3-
As disclosed in Japanese Patent No. 282663, a metal substrate, a glass layer made of a crystallized glass material formed on the surface thereof, and further formed on the surface of the glass layer, the electric resistance changes when strain is applied. A pressure sensor composed of a resistor has been proposed.

【0003】応力、荷重、圧力の大きさは、次のように
して測定される。外部からの力や荷重により発生した部
材の圧力が、樹脂製フィルム、ガラスプレート、金属基
材を介して抵抗体に伝わる。この伝達された圧力によ
り、抵抗体の長さと断面積が変化し、抵抗体の電気抵抗
が変化する。この電気抵抗の変化の電気信号として検出
することにより、圧力の大きさを測定でき、この圧力の
大きさから部材に加わった応力、荷重、圧力の大きさを
測定できる。
The magnitudes of stress, load and pressure are measured as follows. The pressure of the member generated by an external force or load is transmitted to the resistor via the resin film, the glass plate, and the metal base material. Due to the transmitted pressure, the length and cross-sectional area of the resistor change, and the electric resistance of the resistor changes. By detecting the change in the electric resistance as an electric signal, the magnitude of the pressure can be measured, and the stress applied to the member, the load, and the magnitude of the pressure can be measured from the magnitude of the pressure.

【0004】ところで、圧力センサの市場が大きい用途
の1つとして、自動車などに使用される車両用サスペン
ションがある。以後は車両用サスペンションを例にあげ
て説明する。たとえばそのシャフトの表面に圧力センサ
を接着樹脂などで貼り付け、この圧力センサにより、車
体が車輪に加わる荷重が検出される。
By the way, one of the applications in which the pressure sensor has a large market is a suspension for a vehicle used in an automobile or the like. Hereinafter, the vehicle suspension will be described as an example. For example, a pressure sensor is attached to the surface of the shaft with an adhesive resin or the like, and the load applied to the wheel by the vehicle body is detected by this pressure sensor.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、(a)
のセンサでは、車両用サスペンションのように、温度範
囲が−50℃から150℃、最大荷重が2トンにも達すると
いった過酷な環境条件下で長期間使用したとき、接着強
度が劣下して圧力センサが部材から剥離する問題があ
る。特に、(b)の圧力センサでは、ガラスプレートを
シャフトのような曲面を有する部材に溶着した場合は、
ガラスプレートは密着性が乏しいため強固な接着が難し
くて剥離し易い。しかし、(c)の圧力センサは、金属
基体と結晶化ガラス層、結晶化ガラス層と抵抗体層間で
それぞれの成分元素が相互拡散しているため密着性が非
常に強く、過酷な環境条件で使用するセンサとしては最
適なものであるが、未だ実用化されていない。その理由
は、抵抗体の材料として酸化ルテニウム、ガラス粉末お
よびビヒクルからなる抵抗体ペーストが用いられてお
り、これら材料の粒度分布、材料分散度などがセンサ特
性に影響を与え、センサの特性ばらつきが大きく安定性
に欠けていたためである。
However, (a)
When used for a long time under harsh environmental conditions, such as a vehicle suspension, where the temperature range is -50 to 150 ° C and the maximum load reaches 2 tons, the sensor of the There is a problem that the sensor is separated from the member. Particularly, in the pressure sensor of (b), when the glass plate is welded to a member having a curved surface such as a shaft,
Since the glass plate has poor adhesion, strong adhesion is difficult and easy to peel off. However, the pressure sensor of (c) has very strong adhesion because the constituent elements of the metal substrate and the crystallized glass layer and between the crystallized glass layer and the resistor layer are mutually diffused. It is the most suitable sensor to use, but it has not been put to practical use. The reason for this is that resistor paste made of ruthenium oxide, glass powder and vehicle is used as the resistor material, and the particle size distribution and material dispersity of these materials affect the sensor characteristics, causing variations in sensor characteristics. This is because it lacked stability.

【0006】本発明は上記従来技術の問題を解決し、高
品質で耐久性に優れた圧力センサを提供することを目的
とする。
An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a pressure sensor of high quality and excellent in durability.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に本発明の圧力センサは、金属基体と、この金属基体の
表面に形成された絶縁層と、その絶縁層の表面に形成さ
れ、圧力の変化により電気抵抗が変化する抵抗体と、前
記抵抗体の抵抗変化を検出する回路とを備えた圧力セン
サであって、前記抵抗体はその抵抗体材料のターゲット
をスパッタ法により所定のパターンに形成されたことを
特徴とするものである。
In order to solve the above problems, a pressure sensor according to the present invention comprises a metal base, an insulating layer formed on the surface of the metal base, and a pressure formed on the surface of the insulating layer. Is a pressure sensor including a resistor whose electric resistance changes due to a change in the resistance of the resistor, and a circuit for detecting a resistance change of the resistor, wherein the resistor is formed into a predetermined pattern by sputtering a target of the resistor material. It is characterized by being formed.

【0008】[0008]

【作用】従来の抵抗体は(A) 合金系抵抗体を樹脂フィル
ムに蒸着、スパッタリングする方法、(B) 抵抗体ペース
トの印刷・焼成などの方法により形成されたものであ
る。(A) の方法は密着性に難があり、(B) の方法は前述
したように、抵抗体ペーストは通常、酸化ルテニウムと
ガラス粉末およびビヒクルで構成されており、その材料
の粒度によって、ゲージ率が異なる。歪検知用として用
いられる抵抗体ペーストは酸化ルテニウムの粒度が大
で、ガラス粉末の粒度が小の材料が混合されたもので、
酸化ルテニウム粉末、ガラス粉末の混合物の粒度分布、
分散性の不均一からセンサ特性のバラツキに問題があっ
た。
The conventional resistor is formed by (A) a method of depositing an alloy resistor on a resin film and sputtering, and (B) a method of printing and firing a resistor paste. The method (A) has difficulty in adhesion, and the method (B), as described above, the resistor paste is usually composed of ruthenium oxide, glass powder, and vehicle. The rates are different. The resistor paste used for strain detection is a mixture of materials with large particle size of ruthenium oxide and small particle size of glass powder.
Particle size distribution of a mixture of ruthenium oxide powder and glass powder,
Due to the non-uniform dispersibility, there was a problem in variations in sensor characteristics.

【0009】これに対し、本発明の圧力センサは、抵抗
体材料ターゲットのスパッタリングにより形成されるも
のであり、このスパッタ法は抵抗体材料ターゲットにイ
オンを照射することにより、ターゲット表面の原子、原
子団、分子と弾性、非弾性衝突させ、その結果、ターゲ
ット表面の原子、原子団、分子が蒸発し、蒸発したター
ゲット物質を基板に析出させるものである。
On the other hand, the pressure sensor of the present invention is formed by sputtering a resistor material target. In this sputtering method, by irradiating the resistor material target with ions, atoms and atoms on the target surface are irradiated. It causes elastic or inelastic collision with groups and molecules, and as a result, the atoms, atomic groups, and molecules on the target surface are evaporated, and the evaporated target material is deposited on the substrate.

【0010】本発明では、(A) の方法と異なり被測定物
となる基材に直接スパッタするため樹脂などによる接着
がいらず密着性に優れ、かつ歪に対する抵抗変化率すな
わちゲージ率も合金抵抗に対して、本発明の金属酸化物
系では5倍以上になることが期待できる。また、抵抗体
材料は(B) と異なり分散性、粒度分布の不均一性がな
く、センサ特性を安定化させ、抵抗値、ゲージ率、TC
R(抵抗の温度変化率)特性などの特性バラツキを小さ
くさせる。したがって、本発明は抵抗体の密着性が強固
となるとともに特性的にも優れた歪センサを提供するこ
とができる。
In the present invention, unlike the method (A), since the material to be measured is directly sputtered, it does not need to be adhered by a resin or the like and has excellent adhesion, and the rate of change in resistance to strain, that is, the gauge factor is also the alloy resistance. On the other hand, in the metal oxide system of the present invention, it can be expected to be 5 times or more. Also, unlike (B), the resistor material has no dispersibility and non-uniformity of particle size distribution, stabilizes the sensor characteristics, and has a resistance value, gauge ratio, TC
Characteristic variations such as R (rate of temperature change of resistance) characteristics are reduced. Therefore, the present invention can provide a strain sensor in which the adhesiveness of the resistor is strong and the characteristic is excellent.

【0011】[0011]

【実施例】以下、本発明の一実施例の圧力センサについ
て具体的に説明する。 (1)金属基体 本発明に使用される金属基体はホーロ用鋼、ステンレス
鋼、珪素鋼、ニッケル−クロム−鉄、ニッケル−鉄、コ
バール、インバーなどの各種合金材やそれらのクラッド
材などが選択される。金属基体の材質が決定されれば、
所望の形状加工、穴加工などが通常の機械加工、エッチ
ング加工、レーザ加工などでほどこされる。その形状
は、負荷荷重の大きさや用途により、円筒形や板状(箔
状も含む)などが選択される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A pressure sensor according to an embodiment of the present invention will be specifically described below. (1) Metal Substrate As the metal substrate used in the present invention, various alloy materials such as holo steel, stainless steel, silicon steel, nickel-chromium-iron, nickel-iron, kovar, invar, and clad materials thereof are selected. To be done. Once the material of the metal substrate is determined,
Desired shape processing, hole processing and the like are performed by ordinary mechanical processing, etching processing, laser processing and the like. A cylindrical shape, a plate shape (including a foil shape), or the like is selected as the shape depending on the size of the load applied and the application.

【0012】これら金属基体は次で述べる絶縁層の密着
性を向上させる目的で、表面脱脂された後、サンドブラ
スト処理したり、ニッケル、コバルトなどの各種メッキ
を施したり、熱酸化処理によって酸化被覆層を形成した
りする。
For the purpose of improving the adhesiveness of the insulating layer described below, these metal substrates are degreased on the surface, then sandblasted, plated with nickel, cobalt or the like, or thermally oxidized to form an oxide coating layer. To form.

【0013】(2)絶縁層 本発明のセンサの金属基体上に形成される絶縁層は結晶
化ガラス層が選択される。結晶化ガラス層は、電気絶縁
性、耐熱性の観点から、無アルカル結晶化ガラス(焼成
によって、たとえば、MgO系の結晶相を析出)で構成さ
れることが好ましい。そのガラス組成が、特に、MgO が
16〜50重量%,SiO2 が7〜30重量%,B2O 3 が5〜34重量
%、BaO が0〜50重量%,La2O3が0〜40重量%,CaOが0
〜20重量%,P2O5 が0〜5重量%,MO2が0〜5重量%
(ただし、M はZr,Ti,Snのうち少なくとも一種の元素)
であることが好ましい。このように、結晶化ガラス材料
が選択される理由の1つは、金属基体とガラス層との密
着性を強固にするためである。特に、上記の組成のもの
は、密着性が非常に強固である。
(2) Insulating Layer The insulating layer formed on the metal substrate of the sensor of the present invention is crystalline.
A fog glass layer is selected. Crystallized glass layer is electrically insulating
From the viewpoint of heat resistance and heat resistance
, For example, MgO-based crystal phase is deposited)
Preferably. Its glass composition, especially MgO
16-50% by weight, SiO2Is 7 to 30% by weight, B2O 3Is 5 to 34 weight
%, BaO 0-50% by weight, La2O3Is 0-40% by weight, CaO is 0
~ 20% by weight, P2OFiveIs 0-5% by weight, MO2Is 0-5% by weight
(However, M is at least one element of Zr, Ti, Sn)
Is preferred. Thus, crystallized glass material
One of the reasons for selecting is that the metal substrate and the glass layer are closely packed.
This is for strengthening the wearability. Especially of the above composition
Has very strong adhesion.

【0014】上記結晶化ガラス層を金属基体上に被覆す
る方法として、通常のスプレー法、粉末静電塗装法、電
気泳動電着法などがある。被膜のち密性、電気絶縁性な
どの観点から、電気泳動電着法が最も好ましい。この方
法は、ガラスにアルコールおよび少量の水を加えてボー
ルミル中で約20時間粉砕、混合し、ガラスの平均粒径を
1〜5μm程度にする。得られたスラリーを電解槽に入
れて、液を循環する。そして、金属基体を、このスラリ
ー中に浸漬し、100 〜400 Vで陰分極させることによ
り、金属基体表面にガラス粒子を析出させる。これを乾
燥後、850 〜900℃で10分〜1時間焼成する。これによ
って、ガラスの微粒子が溶融するとともに、ガラスの成
分と金属材料の成分が、充分に相互拡散するためガラス
層と金属基体との強固な密着が得られる。
As a method for coating the above-mentioned crystallized glass layer on a metal substrate, there are a usual spray method, a powder electrostatic coating method, an electrophoretic electrodeposition method and the like. The electrophoretic electrodeposition method is the most preferable from the viewpoints of the denseness of the coating film, the electric insulating property, and the like. In this method, alcohol and a small amount of water are added to glass, and the mixture is ground and mixed in a ball mill for about 20 hours to make the average particle size of glass about 1 to 5 μm. The obtained slurry is put in an electrolytic cell and the liquid is circulated. Then, the metal substrate is immersed in this slurry and negatively polarized at 100 to 400 V to deposit glass particles on the surface of the metal substrate. After this is dried, it is baked at 850 to 900 ° C. for 10 minutes to 1 hour. As a result, the glass fine particles are melted, and the glass component and the metal material component are sufficiently diffused into each other, so that a strong adhesion between the glass layer and the metal substrate can be obtained.

【0015】なお、焼成は常温から徐々に昇温して上記
温度に到達させる方が微細針状結晶が無数に析出するた
め、後述のアンカー効果の働きがより向上し、抵抗体と
の密着性向上に効果があり好ましい。
It should be noted that in the firing, when the temperature is gradually raised from room temperature to reach the above temperature, innumerable fine needle-shaped crystals are deposited, so that the function of the anchor effect described later is further improved, and the adhesion with the resistor is improved. This is preferable because it has an effect on improvement.

【0016】(3)抵抗体 抵抗体用の材料としては、酸化ルテニウム、酸化タンタ
ル、酸化タリウム、ルテニウム酸鉛などの種々の圧力変
化によって電気抵抗が変化する性質を含む抵抗材料が使
用される。この抵抗体の形成法としては、スパッタ法が
選択される。スパッタ法として、直流スパッタ、高周波
スパッタ、マグネトロンスパッタ、イオンビームスパッ
タなどがあるが、量産性を考慮してスパッタ速度の速い
マグネトロンスパッタが好ましい。スパッタガスは、目
的に応じて通常4Nから5Nの高純度Ar、Ar/
2 ,Ar/Nr2 などを用いる。
(3) Resistor As a material for the resistor, there is used a resistance material such as ruthenium oxide, tantalum oxide, thallium oxide, lead ruthenate, etc., which has a property that electric resistance is changed by various pressure changes. A sputtering method is selected as a method for forming the resistor. As the sputtering method, there are direct current sputtering, high frequency sputtering, magnetron sputtering, ion beam sputtering and the like, but in consideration of mass productivity, magnetron sputtering having a high sputtering speed is preferable. The sputtering gas is usually 4N to 5N of high purity Ar or Ar / Ar depending on the purpose.
O 2 , Ar / Nr 2 or the like is used.

【0017】スッパタの利用方法として、スパッタする
ことにより直接目的とする物質を析出する方法とスパッ
タした後適当な熱処理により目的とする状態にする方法
が考えられる。前者は、樹脂などの耐熱性の低い基材に
も適用可能である。また、後者は、後の熱処理条件を選
択することにより膜の状態を制御できることになる。
As a method of using the spatter, a method of directly depositing a target substance by sputtering and a method of making a target state by an appropriate heat treatment after sputtering can be considered. The former is also applicable to a base material having low heat resistance such as resin. In the latter case, the state of the film can be controlled by selecting the subsequent heat treatment conditions.

【0018】次に、具体的な実施例について説明する。 (実施例1)前述の絶縁層形成工程に従い、SUS430基体
(100mm ×100mm ×0.5mm )の表面に、厚さ100μmの
(表1)〜(表5)に示す組成の結晶化ガラス層を電気
泳動電着し、880℃で10分焼成しサンプルの表面粗度、
うねり性、耐熱性などの諸特性を調べた。その結果を組
成とともに(表1)〜(表5)に示している。
Next, a concrete example will be described. (Example 1) A crystallized glass layer having a composition shown in (Table 1) to (Table 5) having a thickness of 100 µm was electrically formed on the surface of a SUS430 substrate (100 mm × 100 mm × 0.5 mm) according to the above-mentioned insulating layer forming step. Electrophoresis electrodeposition, baking at 880 ℃ for 10 minutes, surface roughness of sample,
Various characteristics such as waviness and heat resistance were investigated. The results are shown in (Table 1) to (Table 5) together with the composition.

【0019】なお、表面粗度はタリサーフ表面粗さ計で
測定し、表面中心線平均粗さRaで示し、うねり性はタリ
サーフ表面粗さ計で得られた山と谷の差Rmaxで表わし
た。耐熱性は、サンプルを850 ℃の電気炉中に10分入
れ、炉から取り出し30分間、自然放冷するサイクルを繰
り返すスポーリングテストを行って、サンプルのクラッ
クや剥離の状態を調べた。なお、クラックは赤インク中
に浸漬し、その後、表面を拭き取って、目視観察によっ
て、その有無を調べた。表中の○、△、×は、○が10サ
イクル以上行っても、異常が認められないもの、△は5
〜9サイクルで発生したもの、×は4サイクル以下で発
生したものを示す。密着性は、基体の曲げ試験を行い、
ガラス層が剥離して金属部が露出したものを×、金属部
が一部だけ露出したものを△、金属部が露出していない
ものを○とした。
The surface roughness was measured by a Talysurf surface roughness meter and indicated by the surface center line average roughness Ra, and the waviness was expressed by the difference Rmax between the peak and the valley obtained by the Talysurf surface roughness meter. Regarding the heat resistance, the sample was put in an electric furnace at 850 ° C. for 10 minutes, taken out of the furnace, and allowed to stand for 30 minutes to carry out a spalling test in which a cycle of repeated natural cooling was repeated to examine the state of cracking and peeling of the sample. The cracks were immersed in the red ink, the surface was wiped off, and the presence or absence of the cracks was checked by visual observation. ○, △, × in the table, ○ indicates that no abnormality is observed even after 10 cycles or more, △ is 5
What occurred in ~ 9 cycles, x shows what occurred in 4 cycles or less. For adhesion, a bending test of the substrate is performed,
The case where the glass layer was peeled off to expose the metal part was rated as x, the part where the metal part was exposed was rated as Δ, and the part where the metal part was not exposed was rated as o.

【0020】以上の評価にもとずき総合評価を行い、そ
の結果を○、△、×で示した。No1〜8は他の成分を一
定として、SiO2とB2O3を変化させたもの、No9〜15は、
SiO2/B2O3 をほぼ一定にし、MgO 量を変化させたもの、
No16〜19は同じく、CaO 量を変化させたもの。No20〜24
は、同じく、BaO 量を変化させたもの。No25〜29は、同
じくLa2O3 量を変化させたもの。No30〜42はそれぞれ、
ZrO2、TiO2、SnO2、P2O5、ZnO の影響を示したものであ
る。
Based on the above evaluation, a comprehensive evaluation was carried out, and the results are shown by ◯, Δ, and ×. Nos. 1 to 8 are the ones in which SiO 2 and B 2 O 3 are changed while keeping other components constant, and Nos. 9 to 15 are
SiO 2 / B 2 O 3 is kept almost constant, the amount of MgO is changed,
Similarly, No16 to 19 have different CaO contents. No20 ~ 24
Is also the BaO amount changed. No. 25 to 29 are the ones with the same La 2 O 3 content. No30 to 42 are
It shows the effects of ZrO 2 , TiO 2 , SnO 2 , P 2 O 5 , and ZnO.

【0021】表から明らかなように、SiO2を増加してい
けば、耐熱性は向上するが、表面性および密着性が悪く
なる。逆に、B2O3量を増加していけば、たしかに表面
性、密着性は向上するが耐熱性は低下する。したがっ
て、本発明では、SiO2が7〜30重量%、B2O3が5〜34重
量%の範囲内が好ましい。
As is apparent from the table, when SiO 2 is increased, the heat resistance is improved, but the surface property and the adhesion are deteriorated. On the contrary, if the amount of B 2 O 3 is increased, the surface property and the adhesion are certainly improved, but the heat resistance is decreased. Therefore, in the present invention, it is preferable that SiO 2 is in the range of 7 to 30% by weight and B 2 O 3 is in the range of 5 to 34% by weight.

【0022】MgO量は結晶性と相関があり、16重量%以
下では結晶析出が不十分で、耐熱性に劣る。また、50重
量%以上では、結晶が析出しやすく、ガラス溶融時に簡
単に結晶化し、均質なガラスを得ることが難しく、ま
た、表面粗度が大きくなる。
The amount of MgO has a correlation with the crystallinity, and if it is 16% by weight or less, the precipitation of crystals is insufficient and the heat resistance is poor. On the other hand, if it is 50% by weight or more, crystals tend to precipitate, it is difficult to crystallize when the glass melts, it is difficult to obtain a homogeneous glass, and the surface roughness becomes large.

【0023】CaO 量は、20重量%以上入れると、表面性
が悪くなり好ましくない。BaO 量は、50重量%以上で
は、耐熱性、および密着性が劣化し好ましくない。La2O
3 は、40重量%以上では、耐熱性が劣化し好ましくな
い。
If the CaO content is 20% by weight or more, the surface properties are deteriorated, which is not preferable. If the amount of BaO is 50% by weight or more, heat resistance and adhesion are deteriorated, which is not preferable. La 2 O
When the content of 3 is 40% by weight or more, the heat resistance is deteriorated, which is not preferable.

【0024】その他の添加可能な成分はZrO2、TiO2、Sn
O2、P2O5、ZnO などが挙げられるが、5重量%以下まで
なら添加可能である。
Other components that can be added are ZrO 2 , TiO 2 and Sn.
O 2 , P 2 O 5 , ZnO and the like can be mentioned, but up to 5% by weight can be added.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】[0027]

【表3】 [Table 3]

【0028】[0028]

【表4】 [Table 4]

【0029】[0029]

【表5】 [Table 5]

【0030】前述の製造方法に基づいて抵抗体を形成し
て作製した圧力センサについて説明する。直径40φmm、
厚さ100 μm の円盤状金属基材を前処理として脱脂・水
洗・酸洗・水洗・ニッケルメッキ・水洗の各工程を行っ
た後、( 表1) でNo7で示した組成のガラス粒子から
なるスラリー中に浸漬し、対極と金属基材間に直流電圧
を印加することにより、金属基材の表面にガラス粒子を
被覆し、常温から880℃まで2時間かけて昇温し、さら
にこの温度で10分間保持する焼成を行い、70μmの結
晶化ガラス層を形成して絶縁層とした。次に、絶縁層の
表面にAuを蒸着し、電極を形成した。
A pressure sensor manufactured by forming a resistor based on the above-described manufacturing method will be described. Diameter 40φ mm,
After performing the degreasing, water washing, pickling, water washing, nickel plating, and water washing steps as a pretreatment on a 100 μm thick disk-shaped metal substrate, it consists of glass particles with the composition shown in No. 7 in (Table 1). By immersing in a slurry and applying a DC voltage between the counter electrode and the metal base material, the surface of the metal base material is coated with glass particles, and the temperature is raised from room temperature to 880 ° C over 2 hours. Baking for 10 minutes was performed to form a 70 μm crystallized glass layer to form an insulating layer. Next, Au was vapor-deposited on the surface of the insulating layer to form an electrode.

【0031】次に、SiO2ー B2O3-PbO-Al2O3系ガラスと、
導電性成分として結晶性のRuO2、Ta 2O5 、Tl2O、Pb2RuO
6 をそれぞれ含む複合ターゲットにマグネトロンスパッ
タリングすることにより、厚さ30μmの所定のパターン
の抵抗体を形成して圧力センサを構成した。
Next, SiO2ー B2O3-PbO-Al2O3System glass,
Crystalline RuO as a conductive component2, Ta 2OFive, Tl2O, Pb2RuO
6Magnetron spa
By patterning, a predetermined pattern with a thickness of 30 μm
To form a pressure sensor.

【0032】(実施例2)実施例1と同様な板状金属体
を脱脂・水洗・酸洗・水洗・ニッケルメッキ・水洗して
前処理を行った後、(表1)の組成のNo7ガラス粒子か
らなるスラリー中に浸漬し、対極と金属体間に直流電圧
を印加して、金属体上にガラス粒子を被覆し、常温から
880℃まで2時間かけて昇温し、さらにこの温度で10分
間保持する焼成を行い結晶化ガラス層を形成して絶縁層
とした。次に、絶縁層の表面にAg−Pdペーストをスクリ
ーン印刷法でパターン印刷し850 ℃で焼成して電極を形
成した。
(Example 2) The same plate-shaped metal body as in Example 1 was degreased, washed with water, pickled, washed with water, nickel-plated, washed with water, pretreated, and then No7 glass having the composition shown in (Table 1). Immersing in a slurry consisting of particles, applying a DC voltage between the counter electrode and the metal body, coat the glass particles on the metal body, from room temperature
The temperature was raised to 880 ° C. over 2 hours, and the temperature was maintained for 10 minutes, followed by firing to form a crystallized glass layer and form an insulating layer. Next, an Ag-Pd paste was pattern-printed on the surface of the insulating layer by a screen printing method and baked at 850 ° C. to form an electrode.

【0033】次に、MmOn-SiO2-B2O3-PbO-Al2O3(MmOn=R
uO2 、Ta2O5 、Tl2O)系のガラスを単一ターゲットとし
て、マグネトロンスパッタリングすることにより、厚さ
30μm の所定のパターンの抵抗前駆体を形成した。これ
を600℃で10分間熱処理し、導電性結晶を析出させ
て抵抗体とし、圧力センサを構成した。
Next, MmOn-SiO 2 -B 2 O 3 -PbO-Al 2 O 3 (MmOn = R
uO 2 , Ta 2 O 5 , Tl 2 O) glass is used as a single target and magnetron sputtering is performed to obtain a thickness
A 30 μm patterned resist precursor was formed. This was heat-treated at 600 ° C. for 10 minutes to deposit a conductive crystal to form a resistor, which constituted a pressure sensor.

【0034】(実施例3)実施例2において、RuO2-SiO
2-B2O3-PbO-Al2O3系のガラスをスパッタリングしたもの
について、熱処理温度を600〜800℃で50℃ずつ
変化させた。
(Example 3) In Example 2, RuO 2 -SiO
About 2 -B 2 O 3 obtained by sputtering -PbO-Al 2 O 3 based glass was varied by 50 ° C. The heat treatment temperature at 600 to 800 ° C..

【0035】(比較例1)比較例として、実施例1と同
様にして結晶化ガラス層を被覆し、電極を設け、電極を
設けた金属基材に銅とニッケルの2成分から構成される
ターゲットをスパッタし、コンスタンタン(45Ni・55Cu
合金)を析出させ、これを抵抗体とする圧力センサを作
製した。
(Comparative Example 1) As a comparative example, in the same manner as in Example 1, a target constituted by coating a crystallized glass layer, providing an electrode, and a metal base material provided with the electrode and comprising two components of copper and nickel Sputtered to a constantan (45Ni ・ 55Cu
Alloy) was deposited, and a pressure sensor using this as a resistor was produced.

【0036】(比較例2)比較例として、実施例1と同
様にして結晶化ガラス層を被覆し、電極を設け、電極を
設けた金属基材に従来の酸化ルテニウムとガラスフリッ
トを主成分とする昭栄化学製ペーストをスクリーン印刷
し、830℃で焼成した比較サンプルを作製した。
(Comparative Example 2) As a comparative example, a crystallized glass layer was coated in the same manner as in Example 1, electrodes were provided, and a conventional ruthenium oxide and glass frit were used as main components on a metal base material provided with the electrodes. A comparative sample was produced by screen-printing a paste manufactured by Shoei Chemical Co., Ltd. and firing at 830 ° C.

【0037】実施例1、2、3および比較例1、2のサ
ンプルについて、抵抗体の導電性結晶を薄膜X線回折線
回折により決定し、TCRを25℃と125℃の間で測
定し、0〜2000mmH2 Oの間の抵抗変化率を測定
した。結果を表6(実施例1)、表7(実施例2)、表
8(実施例3)、表9(比較例1、2)に示す。本実施
例の圧力センサは従来と比較して、抵抗変化率が大き
く、しかも、温度特性にも優れている。
For the samples of Examples 1, 2 and 3 and Comparative Examples 1 and 2, the conductive crystals of the resistors were determined by thin film X-ray diffraction diffraction, and the TCR was measured between 25 ° C and 125 ° C. The resistance change rate between 0 and 2000 mmH 2 O was measured. The results are shown in Table 6 (Example 1), Table 7 (Example 2), Table 8 (Example 3), and Table 9 (Comparative Examples 1 and 2). The pressure sensor of the present embodiment has a large rate of resistance change as compared with the conventional one and is also excellent in temperature characteristics.

【0038】[0038]

【表6】 [Table 6]

【0039】[0039]

【表7】 [Table 7]

【0040】[0040]

【表8】 [Table 8]

【0041】[0041]

【表9】 [Table 9]

【0042】[0042]

【発明の効果】以上のように本発明の圧力センサは、抵
抗体材料をスパッタリングすることによって、抵抗値、
ゲージ率、TCRなどの特性が安定で高品質のセンサを
提供することが可能となった。
As described above, according to the pressure sensor of the present invention, the resistance value is changed by sputtering the resistor material.
It has become possible to provide high-quality sensors with stable characteristics such as gauge ratio and TCR.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 昭彦 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akihiko Yoshida 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 金属基体と、この金属基体の表面に形成
された絶縁層と、前記絶縁層の表面に形成され、変形に
伴って電気抵抗が変化する抵抗体とを備えた圧力センサ
であって、前記抵抗体はその抵抗体材料のターゲットを
スパッタリングすることにより所定のパターンに形成さ
れたことを特徴とする圧力センサ。
1. A pressure sensor comprising a metal base, an insulating layer formed on the surface of the metal base, and a resistor formed on the surface of the insulating layer and having an electric resistance that changes with deformation. The resistor is formed into a predetermined pattern by sputtering a target of the resistor material.
【請求項2】 ターゲットが、少なくともSiO2、B2O3
PbO 、Al2O3 から選択されるガラス成分と、少なくとも
RuO2、Ta2O5 、Tl2O、Pb2RuO6 から選択される導電性結
晶成分の2つの成分から構成される複合ターゲットで構
成され、スパッタリングすることによりガラス中に導電
性結晶成分が分散された抵抗体であることを特徴とする
請求項1記載の圧力センサ。
2. The target is at least SiO 2 , B 2 O 3 ,
At least a glass component selected from PbO and Al 2 O 3
It is composed of a composite target composed of two components of a conductive crystal component selected from RuO 2 , Ta 2 O 5 , Tl 2 O, and Pb 2 RuO 6 , and the conductive crystal component is contained in the glass by sputtering. The pressure sensor according to claim 1, wherein the pressure sensor is a dispersed resistor.
【請求項3】 ターゲットが、少なくともRuO2、Ta
2O5 、Tl2Oから選択される材料の1種類以上を含むガラ
スから構成される単一ターゲットで構成され、スパッタ
リングした後、熱処理することによりガラスから少なく
ともRuO2、Ta2O5 、Tl2O、Pb2RuO6 から選択される1種
類以上の導電性結晶成分が析出した抵抗体であることを
特徴とする請求項1記載の圧力センサ。
3. The target is at least RuO 2 , Ta
2 O 5, it consists of a single target composed of glass containing one or more materials selected from the Tl 2 O, after sputtering, at least RuO 2 from the glass by heat treatment, Ta 2 O 5, Tl The pressure sensor according to claim 1, which is a resistor in which one or more kinds of conductive crystal components selected from 2 O and Pb 2 RuO 6 are deposited.
【請求項4】 絶縁層が結晶化ガラス層からなることを
特徴とする請求項1記載の圧力センサ。
4. The pressure sensor according to claim 1, wherein the insulating layer is a crystallized glass layer.
【請求項5】 結晶化ガラス層の組成が、MgO が16〜50
重量%、SiO2が7〜30重量%、B2O3が5〜34重量%、Ba
O が0〜50重量%、La2O3 が0〜40重量%、CaO が0〜
20重量%、P2O5が0〜5重量%、MO2 が0〜5重量%
(但し、M はZr,Ti,Snのうち少なくとも一種の元素)か
らなる請求項4記載の圧力センサ。
5. The composition of the crystallized glass layer is such that MgO is 16 to 50.
% By weight, 7-30% by weight of SiO 2 , 5-34% by weight of B 2 O 3 , Ba
O is 0 to 50% by weight, La 2 O 3 is 0 to 40% by weight, CaO is 0 to
20% by weight, P 2 O 5 0-5% by weight, MO 2 0-5% by weight
The pressure sensor according to claim 4, wherein M is at least one element of Zr, Ti, and Sn.
JP28802092A 1992-10-27 1992-10-27 Pressure sensor Pending JPH06137971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28802092A JPH06137971A (en) 1992-10-27 1992-10-27 Pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28802092A JPH06137971A (en) 1992-10-27 1992-10-27 Pressure sensor

Publications (1)

Publication Number Publication Date
JPH06137971A true JPH06137971A (en) 1994-05-20

Family

ID=17724776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28802092A Pending JPH06137971A (en) 1992-10-27 1992-10-27 Pressure sensor

Country Status (1)

Country Link
JP (1) JPH06137971A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011013210A (en) * 2009-06-01 2011-01-20 Denso Corp Physical quantity sensor device and method of manufacturing the same
JPWO2011161917A1 (en) * 2010-06-25 2013-08-19 パナソニック株式会社 Acceleration sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011013210A (en) * 2009-06-01 2011-01-20 Denso Corp Physical quantity sensor device and method of manufacturing the same
JPWO2011161917A1 (en) * 2010-06-25 2013-08-19 パナソニック株式会社 Acceleration sensor

Similar Documents

Publication Publication Date Title
EP0561397B1 (en) A pressure sensor
JPH0235793A (en) Glass ceramic substrate having conductive film
JPH0593659A (en) Distortion sensor and its manufacture
JPH08304200A (en) Distortion-sensing resistor paste and sensor for dynamical amount
US5985183A (en) Piezoresistance paste and mechanical sensor using the same
JPH06137971A (en) Pressure sensor
JPH06137806A (en) Strain sensor
JPH0696847A (en) Surface heating unit and manufacture thereof
KR900003849B1 (en) Circuit substrate and thermal printing head using the same caller identifying method
JPH0658706A (en) Strain sensor
JPH07140022A (en) Resistance element paste, resistance element and mechanical quantity sensor
JPH07307210A (en) Manufacture of metal resistor and dynamic quantity sensor
JPH098325A (en) Production of electric insulation substrate and physical quantity sensor employing it
JP3720129B2 (en) Resistive paste for strain sensitive resistor elements
US3809627A (en) Anodized cermet film components and their manufacture
JPH06137805A (en) Strain gauge and its manufacture
JP3487675B2 (en) Manufacturing method of mechanical quantity sensor
JPH07167720A (en) Pressure sensor
JPH06137979A (en) Pressure sensor and pressure detector using it
JPH06294693A (en) Resistor and pressure sensor employing the same
JPH06294692A (en) Resistor paste and pressure sensor employing the same
JPH07318441A (en) Strain sensor for measuring instrument and load cell type measuring instrument using this
JPH06174567A (en) Torque sensor and manufacture thereof
JP3030947B2 (en) Oil level sensor
JPH09273968A (en) Dynamic quantity sensor and its manufacture