[go: up one dir, main page]

JPH0613432B2 - Fiber reinforced Si ▼ Lower 3 ▲ N ▼ Lower 4 ▲ Sintered body and its manufacturing method - Google Patents

Fiber reinforced Si ▼ Lower 3 ▲ N ▼ Lower 4 ▲ Sintered body and its manufacturing method

Info

Publication number
JPH0613432B2
JPH0613432B2 JP61057059A JP5705986A JPH0613432B2 JP H0613432 B2 JPH0613432 B2 JP H0613432B2 JP 61057059 A JP61057059 A JP 61057059A JP 5705986 A JP5705986 A JP 5705986A JP H0613432 B2 JPH0613432 B2 JP H0613432B2
Authority
JP
Japan
Prior art keywords
sintered body
mold
fiber
whiskers
peripheral portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61057059A
Other languages
Japanese (ja)
Other versions
JPS62216969A (en
Inventor
晃 山川
良彦 土井
雅也 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61057059A priority Critical patent/JPH0613432B2/en
Priority to DE3751385T priority patent/DE3751385T2/en
Priority to DE8787301911T priority patent/DE3786105T2/en
Priority to EP87301911A priority patent/EP0240177B1/en
Priority to EP92106058A priority patent/EP0494706B1/en
Priority to KR1019870002333A priority patent/KR890002247B1/en
Publication of JPS62216969A publication Critical patent/JPS62216969A/en
Priority to US07/453,158 priority patent/US4994418A/en
Priority to US07/602,851 priority patent/US5262366A/en
Publication of JPH0613432B2 publication Critical patent/JPH0613432B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はセラミック繊維を含有した強度及び靭性に秀れ
たSi3N4セラミックス及びその製造方法に関する。
The present invention relates to a Si 3 N 4 ceramic containing a ceramic fiber and having excellent strength and toughness, and a method for producing the same.

[従来の技術] セラミックスはその秀れた特性を利用し、電気的機能材
料、機械的構造材料として使用されている。ところが、
機械的特性を利用する場合、セラミックスのもつぜい性
のゆえに、突発的な破壊あるいは強度バラツキが大きい
といった問題があり、広く実用化されるには至っていな
い。
[Prior Art] Ceramics are used as electrical functional materials and mechanical structural materials because of their excellent properties. However,
In the case of utilizing mechanical properties, there is a problem of sudden breakage or large strength variation due to the brittleness of ceramics, and it has not been widely put into practical use.

そのため、セラミックスの信頼性向上あるいは強度向上
のために種々の試みがなされてきた。特にAl2O3,ZrO2,S
iC,Si3N4を対象して、成分をはじめ製造条件が詳細に検
討されている。
Therefore, various attempts have been made to improve the reliability or strength of ceramics. Especially Al 2 O 3 , ZrO 2 , S
For iC and Si 3 N 4 , the manufacturing conditions including components have been studied in detail.

さらに、繊維を含有させることで、強度向上を達成する
ことか試みられ、金属繊維、セラミックス繊維が検討さ
れた。さらにまた、繊維の種としては、セラミックウイ
スカーを含有したセラミックスも検討されている。
Furthermore, it has been attempted to achieve strength improvement by incorporating fibers, and metal fibers and ceramic fibers have been studied. Furthermore, ceramics containing ceramic whiskers are also being investigated as a fiber seed.

例えば、特開昭58-104069号公報には、繊維状炭化ケイ
素を分散させた窒化ケイ素焼結体が提案されている。
For example, JP-A-58-104069 proposes a silicon nitride sintered body in which fibrous silicon carbide is dispersed.

[発明が解決しようとする問題点] しかしながら、これらの試みも、成分、製造条件の検討
では未だ十分な成果が得られておらず、また、繊維の複
合化についても、コストが高いあるいは均一分散が難し
いといった問題が指摘されている。
[Problems to be Solved by the Invention] However, even in these attempts, sufficient results have not yet been obtained by examining the components and manufacturing conditions, and also in the case of fiber compounding, the cost is high or the dispersion is uniform. It has been pointed out that it is difficult.

本発明はこのような従来法の問題点を解決した、新規な
繊維強化Si3N4焼結体及びその製造方法を提供すること
を目的とするものである。
An object of the present invention is to provide a novel fiber-reinforced Si 3 N 4 sintered body and a method for producing the same, which solves the problems of the conventional method.

[問題点を解決するための手段] 本発明者らは上記の状況に鑑みて、高温強度、靭性、信
頼性に秀れた焼結体を得るために種々検討した結果、本
発明のAl2O3,AlN,ZrO2,Y2O3,MgO,CeO2及びLa2O3からな
る群より選ばれた1種又は2種以上0.5〜40重量パー
セントとSiCウイスカーとを含有してなり、上記SiCウイ
スカーは遠心力の作用により上記型内面に平行に、かつ
上記型の内周部から外周部にかけて均等密度で分布配向
した繊維強化Si3N4焼結体およびAl2O3,AlN,ZrO2,Y2O3,M
gO,CeO2及びLa2O3からなる群より選ばれた1種又は2種
以上0.5〜40重量パーセントを含有したSi粉とSiCウ
イスカーとを溶媒中に分散させることにより得たスラリ
ーを、該溶媒のみを透過する型に入れ、遠心力を作用さ
せることによってSiCウイスカーを上記型内面に平行に
かつ上記型の内周部から外周部にかけて均等密度で分布
配向したSiの成形体を成形し、該成形体を窒素雰囲気中
で加熱窒化した後、さらにより高温にて窒素雰囲気中で
焼結緻密化することを特徴とする繊維強化Si3N4焼結体
の製造方法に到達した。
[Means for Solving Problems] In view of the above situation, the present inventors have conducted various studies to obtain a sintered body excellent in high temperature strength, toughness, and reliability, and as a result, Al 2 of the present invention has been obtained. One or more selected from the group consisting of O 3 , AlN, ZrO 2 , Y 2 O 3 , MgO, CeO 2 and La 2 O 3 and containing 0.5 to 40 weight percent of SiC whiskers , The SiC whiskers are parallel to the inner surface of the mold by the action of centrifugal force, and the fiber-reinforced Si 3 N 4 sintered body and Al 2 O 3 , which are distributed and evenly distributed from the inner peripheral portion to the outer peripheral portion of the mold. AlN, ZrO 2 , Y 2 O 3 , M
A slurry obtained by dispersing Si powder containing 0.5 to 40% by weight of one or more selected from the group consisting of gO, CeO 2 and La 2 O 3 and a SiC whisker in a solvent. , Mold the SiC whiskers parallel to the inner surface of the mold and distribute and distribute at a uniform density from the inner peripheral portion to the outer peripheral portion of the mold by placing the solvent in a mold that permeates only the solvent and applying a centrifugal force. Then, a method for producing a fiber-reinforced Si 3 N 4 sintered body is reached, which is characterized in that the molded body is heated and nitrided in a nitrogen atmosphere, and then sintered and densified in a nitrogen atmosphere at a higher temperature.

本発明のセラミックス焼結体は実質上Si3N4マトリック
スとマトリックス中に一定方向性をもって、均一に分散
分布したSiCウイスカーからなる。
The ceramic sintered body of the present invention is substantially composed of a Si 3 N 4 matrix and SiC whiskers uniformly distributed in the matrix with a certain directionality.

Si3N4はAl2O3,AlN,ZrO2,Y2O3,MgO,CeO2及びLa2O3からな
る群より選ばれた1種又は2種以上の焼結助剤によって
緻密な焼結体をなしている。
Si 3 N 4 is dense due to one or more sintering aids selected from the group consisting of Al 2 O 3 , AlN, ZrO 2 , Y 2 O 3 , MgO, CeO 2 and La 2 O 3. It is a sintered body.

焼結助剤量は窒化ケイ素の0.5〜40重量パーセントで
あることが好ましい。0.5パーセント未満では焼結体
の緻密化が困難であり、添加量が不足である。40重量パ
ーセントを越えると、高温強度、耐酸化性等高温特性が
著しく劣化するため、好ましくない。これらの焼結助剤
は単味ではなく2種以上を添加することで、より好まし
い結果を得る。
The amount of sintering aid is preferably 0.5 to 40 weight percent of silicon nitride. If it is less than 0.5%, it is difficult to densify the sintered body, and the addition amount is insufficient. When it exceeds 40% by weight, high temperature characteristics such as high temperature strength and oxidation resistance are significantly deteriorated, which is not preferable. More preferable results can be obtained by adding two or more kinds of these sintering aids, not just a single one.

ウイスカーについてはSiCの他にSi3N4,Al2O3,ZrO2,Cお
よびチタン酸カリウム等も使用しうるが、特にSiCが秀
れた性能が得られ、さらに配向した場合のSiCウイスカ
ーの繊維長はせいぜい60μm程度までが好ましい。これ
は長繊維による緻密化への悪影響がなくなることによ
る。
For whiskers, in addition to SiC, Si 3 N 4 , Al 2 O 3 , ZrO 2 , C, potassium titanate, etc. can also be used, but especially SiC has excellent performance, and SiC whiskers when oriented further The fiber length is preferably at most about 60 μm. This is because the long fibers do not adversely affect the densification.

またSiCウイスカーが分散等が容易が実用性が高い。繊
維成分量としては、焼結体の0.1〜45容量パーセント
までを占めることができる。これは、0.1容量パーセ
ント未満では添加効果がなく、45容量パーセントを越え
ては緻密な焼結体が得られないからである。さらに、繊
維は一定方向に配向していることが必要である。配向が
不十分な場合、成形体を緻密化することが難しい、焼結
体強度が低く、そのバラツキ信頼性が低下するといった
問題が発生する。
In addition, SiC whiskers are easy to disperse and are highly practical. The amount of fiber components can occupy 0.1 to 45 volume percent of the sintered body. This is because if it is less than 0.1 volume percent, there is no effect of addition, and if it exceeds 45 volume percent, a dense sintered body cannot be obtained. Furthermore, the fibers must be oriented in one direction. If the orientation is insufficient, problems occur such that it is difficult to densify the molded body, the strength of the sintered body is low, and the variation reliability is reduced.

Si3N4マトリックスについては、成形体ではSiからなる
が、温度1300℃〜1450℃にて窒素中での反応焼結によっ
て、Si3N4とする。
The Si 3 N 4 matrix, which is made of Si in the compact, is converted to Si 3 N 4 by reactive sintering in nitrogen at a temperature of 1300 ° C to 1450 ° C.

反応焼結のみでは緻密な焼結体とし難いため、さらに、
1700℃〜1900℃の窒素中で焼結をすすめる。窒素ガスは
加圧してSi3N4の分解を抑えることが好ましいが不可欠
ではない。場合によっては、高圧窒素ガスを用いる熱間
静水圧プレスが好ましい結果を得る。
Since it is difficult to make a dense sintered body only by reactive sintering,
Sintering is recommended in nitrogen at 1700 ℃ to 1900 ℃. It is preferable but not essential to pressurize the nitrogen gas to suppress decomposition of Si 3 N 4 . In some cases, hot isostatic pressing with high pressure nitrogen gas gives desirable results.

次に上記のような本発明のセラミックス焼結体の製造方
法について説明する。
Next, a method for manufacturing the ceramic sintered body of the present invention as described above will be described.

まず第1に、Si粒子とセラミックス粒子とSiCウイスカ
ーから成り、SiCウイスカーがセラミックス成形体の外
形に沿った方向に配向させたセラミックス成形体を得
る。このような本発明の成形体は、セラミックスの製造
方法において通常用いられる成形方法であるスリップキ
ヤスト法を改良した、新規な成形法によって得られる。
すなわち、繊維成分の配向を達成するために、遠心力を
利用する。単に鋳型内にスラリーを注入成形しても、繊
維分の配向が不十分なばかりでなく、繊維分が均一に分
布できなくなる。これに対し遠心力を作用させる遠心鋳
込み成形を採用すると繊維分等の均一な配向と均一な分
布を得ることができる。
First, there is obtained a ceramic molded body composed of Si particles, ceramic particles, and SiC whiskers, in which the SiC whiskers are oriented in a direction along the outer shape of the ceramic molded body. Such a molded article of the present invention is obtained by a novel molding method which is an improvement of the slip cast method, which is a molding method usually used in the method for producing ceramics.
That is, centrifugal force is used to achieve the orientation of the fiber components. Even if the slurry is simply injected into the mold, not only the orientation of the fiber component is insufficient, but also the fiber component cannot be uniformly distributed. On the other hand, if centrifugal casting that applies a centrifugal force is adopted, it is possible to obtain a uniform orientation and a uniform distribution of fiber components and the like.

第1図は遠心鋳込み成形装置の1例の概略図であり、密
閉容器1の内部に、回転駆動装置2にて回転可能な鋳型
3が設けられており、上記容器1内部は、配管4を通し
て、図示されていない真空ポンプにより、真空吸引する
ことができる。上記鋳型3としては、後述する焼結体材
料5を含有するスラリー6の溶媒のみが透過可能な素
材、例えば、石こう、ろ紙等により構成され、特にこれ
ら石こうやろ紙については、鋳型製造が容易であり、し
かも価格も安価であることから好適である。鋳込みに際
し、減圧雰囲気を利用することも好ましい結果を得るこ
とができる。なお第1図は遠心力により、スラリー6か
ら焼結体材料5が鋳型3内壁に成形されつつある状態を
示している。したがって本発明においては、Si粉と、Al
2O3,ZrO2,Y2O3,MgO,CeO2及びLa2O3からなる群より選ば
れた1種又は2種以上および繊維成分としてSiCウイス
カーを、例えば水、アルコール、アセトン、ヘキサン等
の溶媒と混和してスラリーとし、これを遠心鋳込み成形
とする。
FIG. 1 is a schematic view of an example of a centrifugal casting molding apparatus. Inside a closed container 1, a mold 3 rotatable by a rotation drive device 2 is provided. Vacuum suction can be performed by a vacuum pump (not shown). The mold 3 is made of a material that can pass only the solvent of the slurry 6 containing the sintered material 5 described later, for example, gypsum, filter paper, etc. Especially, for these gypsum and filter paper, the mold production is easy. It is suitable because it is available and inexpensive. It is also possible to obtain a preferable result by using a reduced pressure atmosphere during casting. Note that FIG. 1 shows a state where the sintered body material 5 is being formed from the slurry 6 on the inner wall of the mold 3 by centrifugal force. Therefore, in the present invention, Si powder and Al
2 O 3 , ZrO 2 , Y 2 O 3 , one or more selected from the group consisting of MgO, CeO 2 and La 2 O 3 and SiC whiskers as a fiber component, for example, water, alcohol, acetone, hexane It is mixed with a solvent such as the above to obtain a slurry, which is subjected to centrifugal casting.

これにより繊維分が成形体外形に沿い配向し、かつ均一
に分散した成形体を得ることができる。
This makes it possible to obtain a molded product in which the fiber components are oriented along the outer shape of the molded product and are uniformly dispersed.

次に前記したように、該成形体を1300℃〜1500℃にて窒
素中で反応焼結して成形体のマトリックスのSiをSi3N4
とする。次にさらに1700℃〜1900℃にて窒素中で焼結し
て繊維強化Si3N4焼結体を得る。窒素ガスはSi3N4の分解
を抑えるため加圧することが好ましく、また高圧窒素ガ
スを用いた熱間静水圧プレスを用いることも好ましい。
Then, as described above, the compact is reacted and sintered in nitrogen at 1300 ° C to 1500 ° C to convert Si of the matrix of the compact into Si 3 N 4
And Then, it is further sintered in nitrogen at 1700 ° C to 1900 ° C to obtain a fiber-reinforced Si 3 N 4 sintered body. It is preferable to pressurize the nitrogen gas in order to suppress decomposition of Si 3 N 4 , and it is also preferable to use a hot isostatic press using high-pressure nitrogen gas.

[実施例] 実施例1 平均粒径0.7μのSi粉75重量%、Al2O5重量%、Y2O3
5重量%、径0.3μ長さ60μのSiCウイスカー15容量
%をエタノール中で混合分散したスラリーを得た。スラ
リーは遠心鋳込み成形によってウイスカーを型内面に平
行に配向させて、成形体を得た。得られた成形体は外径
30mm、内径20mm、長さ60mmであった。またこの成形体の
断面を観察したところ、SiCウイスカーは成形型内面
に平行に配向しその配向間隔は該成形体内周側から同外
周部にかけて均等であった。該成形体は窒素気流中1380
℃で窒化させ、反応焼結体とし、さらに1750℃、5気圧
窒素中で2時間焼結した。
[Example] Si powder 75 wt% of Example 1 the average particle diameter of 0.7μ, Al 2O 5 wt%, Y 2 O 3
A slurry was obtained by mixing and dispersing 5% by weight and 15% by volume of SiC whiskers having a diameter of 0.3 μ and a length of 60 μ in ethanol. The slurry was subjected to centrifugal casting to orient the whiskers parallel to the inner surface of the mold to obtain a molded body. The obtained molded body has an outer diameter
The length was 30 mm, the inner diameter was 20 mm, and the length was 60 mm. When the cross section of this molded body was observed, the SiC whiskers were oriented parallel to the inner surface of the molding die, and the orientation intervals were uniform from the inner peripheral side of the molded body to the outer peripheral portion thereof. The molded body was 1380 in a nitrogen stream.
Nitriding was carried out at 0 ° C. to obtain a reaction sintered body, which was further sintered at 1750 ° C. and 5 atmospheric pressure nitrogen for 2 hours.

得られた焼結体は相対密度95%、室温曲げ強度70Kg/mm
2、1200℃曲げ強度70Kg/mm2、KIC9.5MN/mm3/2の秀れ
た特性を有していた。
The resulting sintered body has a relative density of 95% and room temperature bending strength of 70 kg / mm.
2 ) It had excellent properties of 1200 ° C bending strength of 70Kg / mm 2 and K IC of 9.5MN / mm 3/2 .

実施例2 第1表に示す使用焼結助剤と実施例1と同じSiCウイス
カー15容量%をSi粉末とともに混合し、実施例1と同様
にセラミックス焼結体を製造した。
Example 2 A ceramic sintered body was manufactured in the same manner as in Example 1 by mixing the sintering aid used shown in Table 1 and 15% by volume of the same SiC whiskers as in Example 1 together with Si powder.

得られた焼結の特性も第1表に合せて示した。この結果
から、焼結助剤の量が0.5重量%未満もしくは40重量
%を越えると、焼結体特性は大巾に劣化することがわか
り、本発明の0.5〜40重量%という範囲が焼結助剤量
の最適域であることが明らかである。
The characteristics of the obtained sintering are also shown in Table 1. From these results, it was found that when the amount of the sintering aid was less than 0.5% by weight or more than 40% by weight, the characteristics of the sintered body were significantly deteriorated, which was 0.5-40% by weight of the present invention. It is clear that the range is the optimum range of the amount of sintering aid.

また各試料の室温曲げ強度のワイブル係数は第1表の通
りであり、いずれも20以上であり信頼性の高いことがわ
かる。
The Weibull coefficient of room-temperature bending strength of each sample is as shown in Table 1, and it is clear that each sample has a Weibull coefficient of 20 or more and high reliability.

実施例3 5重量パーセントAl2O3、5重量パーセントY2O3を焼結
助剤として含むSi粉末と径0.3μ、長さ50μのSiCウイス
カーを第2表記載の量添加したスラリーを作製し、実施
例1と同様の製法にて焼結体を得た。
Example 3 A slurry was prepared by adding Si powder containing 5 weight percent Al 2 O 3 and 5 weight percent Y 2 O 3 as a sintering aid and SiC whiskers having a diameter of 0.3 μ and a length of 50 μ as shown in Table 2. Then, a sintered body was obtained by the same manufacturing method as in Example 1.

得られた焼結体の特性について確認した結果を第2表に
示す。
Table 2 shows the results of confirming the characteristics of the obtained sintered body.

この結果より上記焼結助剤と併用添加した場合のSiCウ
イスカーの添加量は0.1〜45容量%が適切であること
がわかり、又この表より室温曲げ強度のワイブル係数は
いずれも20以上であり、高い信頼性のものがえられるこ
とがわかる。
From these results, it was found that the appropriate addition amount of SiC whiskers when added together with the above-mentioned sintering aid is 0.1 to 45% by volume, and from this table, the Weibull coefficient of room temperature bending strength is 20 or more for all. It can be seen that high reliability is obtained.

[発明の効果] 本発明は以上説明したようにセラミックスマトリックス
とSiCウイスカーを繊維として有するセラミックス成形
体におて、同上ウイスカーである繊維が配向してなるこ
とを特徴とし、秀れた強度と靭性を兼ね備えた繊維強化
Si3N4セラミックスを提供するものである。特に高温強
度が高く靭性の大きい点で、高温構造材料として極めて
有効なものである。たとえばガスタービン構造材料等に
用いることが考えられる。これは、従来のセラミックス
では高温強度、靭性が不足し実用は至っておらないもの
であり、大きな効果が期待される。
[Effects of the Invention] The present invention is characterized in that the above-mentioned whisker fibers are oriented in a ceramic molded body having a ceramic matrix and SiC whiskers as fibers as described above, and has excellent strength and toughness. Fiber reinforcement that combines
It provides Si 3 N 4 ceramics. In particular, it is extremely effective as a high temperature structural material in that it has high strength at high temperature and high toughness. For example, it can be used for a gas turbine structural material. This is because conventional ceramics lack high temperature strength and toughness and have not been put into practical use, and a great effect is expected.

さらに本発明の方法は上記繊維強化Si3N4焼結体を実現
するに加え、遠心鋳込み成形が採用できるので、製造コ
ストを低減し経済的に該焼結体を供給できる利点を有す
る。
Furthermore, the method of the present invention has the advantage that, in addition to realizing the fiber-reinforced Si 3 N 4 sintered body, centrifugal casting can be adopted, so that the manufacturing cost can be reduced and the sintered body can be economically supplied.

【図面の簡単な説明】[Brief description of drawings]

第1図は遠心鋳込成形装置の1例を概略説明する断面図
である。
FIG. 1 is a cross-sectional view schematically explaining an example of a centrifugal cast molding apparatus.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三宅 雅也 兵庫県伊丹市昆陽北1丁目1番1号 住友 電気工業株式会社伊丹製作所内 (56)参考文献 特開 昭58−91073(JP,A) 特開 昭56−169166(JP,A) 特開 昭56−22678(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masaya Miyake 1-1-1 Kunyokita, Itami City, Hyogo Prefecture, Sumitomo Electric Industries, Ltd. Itami Works (56) Reference JP-A-58-91073 (JP, A) JP-A-56-169166 (JP, A) JP-A-56-22678 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】Al,AlN,ZrO,Y
,MgO,CeO及びLaからなる群よ
り選ばれた1種又は2種以上0.5〜40重量パーセントを
含有したSi粉と焼結体中で0.1〜45容量パーセントに
相当する繊維長60μm以下のSiCウイスカーとを溶媒
中に分散させることにより得たスラリーを、該溶媒のみ
を透過する型に入れ、遠心力を作用させることによって
上記型内面に平行にかつ上記型の内周部から外周部にか
けて均等密度で当該ウイスカーを分布配向したSiの成
形体を形成し、該成形体を窒素雰囲気中で加熱窒化した
後、さらにより高温にて窒素雰囲気中で焼結緻密化する
ことを特徴とする繊維強化Si焼結体の製造方
法。
1. Al 2 O 3 , AlN, ZrO 2 , Y
1 powder selected from the group consisting of 2 O 3 , MgO, CeO 2 and La 2 O 3 or a mixture of Si powder containing 0.5 to 40 weight percent of two or more and 0.1 to 45 volume percent in the sintered body. A slurry obtained by dispersing SiC whiskers having a fiber length of 60 μm or less in a solvent is placed in a mold that allows only the solvent to permeate, and a centrifugal force is applied to make the slurry parallel to the inner surface of the mold and the inner circumference of the mold. Forming a molded body of Si in which the whiskers are distributed and oriented at a uniform density from the portion to the outer peripheral portion, heat-nitriding the molded body in a nitrogen atmosphere, and then sintering and densifying in a nitrogen atmosphere at a higher temperature. A method for producing a fiber-reinforced Si 3 N 4 sintered body, comprising:
【請求項2】Al,AlN,ZrO,Y
,MgO,CeO及びLaからなる群よ
り選ばれた1種又は2種以上0.5〜40重量パーセント並
びに0.1〜45容量パーセント相当の繊維長60μm以下の
SiCウイスカーを含有してなる焼結体であって、当該
ウイスカーは成形時の遠心力の作用により当該成形回転
軸方向に平行にかつ該焼結体の内周部から外周部にかけ
て均等密度で分布配向しており、室温から1200℃までの
曲げ強度が55Kg/mm2以上、そのワイブル係数が20以
上であることを特徴とする繊維強化Si焼結体。
2. Al 2 O 3 , AlN, ZrO 2 , Y
1 or 2 or more selected from the group consisting of 2 O 3 , MgO, CeO 2 and La 2 O 3 and containing 0.5 to 40 weight percent and SiC whiskers having a fiber length of 60 μm or less corresponding to 0.1 to 45 volume percent. In the sintered body, the whiskers are distributed and oriented parallel to the molding rotation axis direction by the action of centrifugal force at the time of molding and at a uniform density from the inner peripheral portion to the outer peripheral portion of the sintered body at room temperature. A fiber reinforced Si 3 N 4 sintered body, which has a bending strength of 55 kg / mm 2 or more from 1 to 1200 ° C. and a Weibull coefficient of 20 or more.
JP61057059A 1986-03-17 1986-03-17 Fiber reinforced Si ▼ Lower 3 ▲ N ▼ Lower 4 ▲ Sintered body and its manufacturing method Expired - Lifetime JPH0613432B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP61057059A JPH0613432B2 (en) 1986-03-17 1986-03-17 Fiber reinforced Si ▼ Lower 3 ▲ N ▼ Lower 4 ▲ Sintered body and its manufacturing method
DE3751385T DE3751385T2 (en) 1986-03-17 1987-03-05 Process for producing a ceramic body reinforced with fibers or whiskers.
DE8787301911T DE3786105T2 (en) 1986-03-17 1987-03-05 COMPACT CERAMIC BODY, ESPECIALLY BASED ON SILICON NITRIDE AND CERAMIC FIBERS, AND ITS PRODUCTION PROCESS.
EP87301911A EP0240177B1 (en) 1986-03-17 1987-03-05 Ceramic compact, in particular based on silicon nitride and ceramic fibres and process for its production
EP92106058A EP0494706B1 (en) 1986-03-17 1987-03-05 A process for the production of a fibre or whisker reinforced ceramic compact
KR1019870002333A KR890002247B1 (en) 1986-03-17 1987-03-16 Ceramic Sintered Body and Manufacturing Method Thereof
US07/453,158 US4994418A (en) 1986-03-17 1989-12-18 Ceramic compact and a process for the production of the same
US07/602,851 US5262366A (en) 1986-03-17 1990-10-26 Formation of a ceramic composite by centrifugal casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61057059A JPH0613432B2 (en) 1986-03-17 1986-03-17 Fiber reinforced Si ▼ Lower 3 ▲ N ▼ Lower 4 ▲ Sintered body and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS62216969A JPS62216969A (en) 1987-09-24
JPH0613432B2 true JPH0613432B2 (en) 1994-02-23

Family

ID=13044869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61057059A Expired - Lifetime JPH0613432B2 (en) 1986-03-17 1986-03-17 Fiber reinforced Si ▼ Lower 3 ▲ N ▼ Lower 4 ▲ Sintered body and its manufacturing method

Country Status (1)

Country Link
JP (1) JPH0613432B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH029777A (en) * 1988-03-02 1990-01-12 Honda Motor Co Ltd Fiber reinforced ceramic molded body and production thereof
EP0444426B1 (en) * 1990-01-31 1997-10-01 Sumitomo Electric Industries, Ltd. Process for producing a silicon carbide whisker-reinforced silicon nitride composite material
JP4715278B2 (en) 2005-04-11 2011-07-06 ソニー株式会社 Information processing apparatus and information processing method, program storage medium, program, and providing apparatus
FR3036982B1 (en) * 2015-06-04 2017-06-23 Snecma METHOD FOR IMPREGNATING FIBROUS TEXTURE OF HOLLOW FORM

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5622678A (en) * 1979-07-28 1981-03-03 Ngk Spark Plug Co Manufacture of high tenacity silicon nitride sintered body
JPS56169166A (en) * 1980-05-26 1981-12-25 Toshiba Ceramics Co Manufacture of porous refractories for gas blowing in
JPS5891073A (en) * 1981-11-26 1983-05-30 旭硝子株式会社 Silicon nitride ceramics

Also Published As

Publication number Publication date
JPS62216969A (en) 1987-09-24

Similar Documents

Publication Publication Date Title
KR890002247B1 (en) Ceramic Sintered Body and Manufacturing Method Thereof
US4837230A (en) Structural ceramic materials having refractory interface layers
US6040008A (en) Silicon carbide fibers with boron nitride coatings
JP4106086B2 (en) Ceramic matrix fiber composite material
JPH0521873B2 (en)
JPH0613432B2 (en) Fiber reinforced Si ▼ Lower 3 ▲ N ▼ Lower 4 ▲ Sintered body and its manufacturing method
US5077242A (en) Fiber-reinforced ceramic green body and method of producing same
JPS63288974A (en) Manufacturing method of fiber reinforced ceramics
US5262366A (en) Formation of a ceramic composite by centrifugal casting
EP0351113B1 (en) Fiber-reinforced and particle-dispersion reinforced mullite composite material and method of producing the same
JP3141512B2 (en) Silicon carbide based inorganic fiber reinforced ceramic composite
JPH0443876B2 (en)
JP3604438B2 (en) Silicon carbide based fiber composite material and method for producing the same
JP3001130B2 (en) Alumina-based inorganic fiber reinforced ceramic composite
JPH0617269B2 (en) Fiber reinforced Si ▼ Lower 3 ▲ N ▼ Lower 4 ▲ Sintered body manufacturing method
JP2651935B2 (en) Method for producing composite material and raw material composition
JPH06199578A (en) Ceramic-base composite material, its production and ceramic fiber for composite material
JP3001128B2 (en) Carbon-based composite fiber reinforced ceramic composite
US6022820A (en) Silicon carbide fibers with low boron content
JP3001126B2 (en) Silicon nitride based inorganic fiber reinforced ceramic composite
JPH07115927B2 (en) SiC-based ceramics and method for producing the same
JP3001127B2 (en) Carbon-based composite fiber reinforced ceramic composite
JPS63252966A (en) Method for manufacturing silicon nitride ceramic composite
JP2631109B2 (en) Method for producing silicon nitride composite sintered body
JPH0867574A (en) Part prepared from fiber-reinforced ceramic-based composite material and its production