[go: up one dir, main page]

JPH06132292A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH06132292A
JPH06132292A JP27863192A JP27863192A JPH06132292A JP H06132292 A JPH06132292 A JP H06132292A JP 27863192 A JP27863192 A JP 27863192A JP 27863192 A JP27863192 A JP 27863192A JP H06132292 A JPH06132292 A JP H06132292A
Authority
JP
Japan
Prior art keywords
film
single crystal
gettering
silicon single
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27863192A
Other languages
Japanese (ja)
Other versions
JP3297937B2 (en
Inventor
Toshiya Hashiguchi
俊哉 橋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP27863192A priority Critical patent/JP3297937B2/en
Publication of JPH06132292A publication Critical patent/JPH06132292A/en
Application granted granted Critical
Publication of JP3297937B2 publication Critical patent/JP3297937B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3221Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering
    • H01L21/3226Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering of silicon on insulator

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To provide a semiconductor device of an SOI structure which has a high gettering effect and can be manufactured easily. CONSTITUTION:A polycrystalline silicon film (for gettering) 13 is formed on the surface of each of a source region 12A and a drain region 12B of a silicon single crystalline film 12 formed on an insulating film 11. On the polycrystalline silicon films 13, a source electrode 17A and a drain electrode 17B are formed respectively. Since the polycrystalline silicon film 13 is a part of the source.drain electrode, an effective gettering effect can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、半導体装置及びその
製造方法に関し、更に詳しくは、SOI(Silicon O
n Insulator)素子のゲッタリング構造及びその形成方
法に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and a method of manufacturing the same, more specifically, an SOI (Silicon O
n Insulator) element gettering structure and method for forming the gettering structure.

【0002】[0002]

【従来の技術】一般に、単結晶シリコン上に素子を作成
する場合には、素子製造工程中に混入するFe,Cr,
Ni等の重金属原子による汚染が生じる。このような重
金属汚染を捕獲するゲッタリング技術としては、エクス
トリンシックゲッタリング法(EG法)とイントリンシ
ックゲッタリング法が知られている。
2. Description of the Related Art Generally, when an element is formed on single crystal silicon, Fe, Cr, and
Contamination by heavy metal atoms such as Ni occurs. As a gettering technique for capturing such heavy metal contamination, an extrinsic gettering method (EG method) and an intrinsic gettering method are known.

【0003】EG法は、基板裏面に、サンドブラスト,
レーザ照射を施したり、多結晶シリコン等を裏面に形成
することにより、歪領域を形成し、ゲッタリング源とす
る手法である。
The EG method involves sandblasting,
This is a method in which a strained region is formed by applying laser irradiation or by forming polycrystalline silicon or the like on the back surface and using it as a gettering source.

【0004】また、IG法は、基板内部に、過飽和格子
間酸素を析出させ、形成された酸素析出物と二次欠陥を
ゲッタリング源とする手法である。
The IG method is a method in which supersaturated interstitial oxygen is precipitated inside the substrate and the formed oxygen precipitates and secondary defects are used as gettering sources.

【0005】しかし、シリコンウエハ上に絶縁膜を形成
し、この絶縁膜上に、多結晶シリコンを堆積させレーザ
照射等の熱線により溶融再結晶化させてシリコン単結晶
膜を形成及びSOI構造においては、上記したEG法及
びIG法は適用することができない。即ち、上記シリコ
ン単結晶膜は、溶融再結晶化させる前の多結晶シリコン
をCVD法等で形成するため、酸素含有量は少なく、I
G法を用いることができない。また、このように絶縁膜
上に薄いシリコン単結晶膜を形成したSOI基板におい
ては、裏面や基板内部にゲッタリング源を形成しても、
絶縁膜が障壁となってゲッタリング作用を得ることがで
きない。
However, an insulating film is formed on a silicon wafer, and polycrystalline silicon is deposited on the insulating film and melted and recrystallized by a heat ray such as laser irradiation to form a silicon single crystal film. The above-mentioned EG method and IG method cannot be applied. That is, since the above-mentioned silicon single crystal film is formed of polycrystalline silicon before being melted and recrystallized by a CVD method or the like, it has a low oxygen content and I
The G method cannot be used. Further, in the SOI substrate in which the thin silicon single crystal film is formed on the insulating film as described above, even if the gettering source is formed on the back surface or inside the substrate,
The gettering effect cannot be obtained because the insulating film serves as a barrier.

【0006】そこで、このような問題の対策として、特
開平1−181473号公報記載に係るSOI素子の形
成技術が提案されている。この従来技術は、図16に示
すように、絶縁膜1上にシリコン単結晶膜2を形成し、
このシリコン単結晶膜2内にソース・ドレイン領域3,
4及びチャネル領域5を形成すると共に、ゲッタリング
源の酸素析出物である欠陥層6,7を形成している。こ
の欠陥層6,7は、窒素(N)を、シリコン単結晶膜2
の絶縁膜1との界面付近で、ソース・ドレイン領域3,
4の下の領域にイオン注入し、熱処理によってNを核と
する析出物の核形成を行った後、更に高温の熱処理で酸
素析出を行って形成されている。
Therefore, as a countermeasure against such a problem, a technique for forming an SOI element, which is disclosed in Japanese Patent Application Laid-Open No. 1-181473, has been proposed. In this conventional technique, as shown in FIG. 16, a silicon single crystal film 2 is formed on an insulating film 1,
In the silicon single crystal film 2, the source / drain regions 3,
4 and the channel region 5, the defect layers 6 and 7 which are oxygen precipitates of the gettering source are formed. The defect layers 6 and 7 contain nitrogen (N) for the silicon single crystal film 2
Near the interface with the insulating film 1 of the source / drain region 3,
4 is ion-implanted in the region under 4 and nucleation of precipitates having N as a nucleus is performed by heat treatment, and then oxygen precipitation is performed by further heat treatment at high temperature.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記従
来技術にあっては、ゲッタリング源が酸素析出物で成る
欠陥層6,7がソース・ドレイン領域3,4の下にある
ため、ソース・ドレイン領域3,4と欠陥6,7を両方
形成するとなると、シリコン単結晶膜2を厚く形成しな
ければならないという問題が生じる。特に、欠陥層6,
7をシリコン単結晶膜2の下部のみに形成するには、イ
オン注入の打込み深さの制御及び温度制御が困難である
ため、歩留りを低下させる問題点を有している。
However, in the above-mentioned prior art, the defect layers 6 and 7 whose gettering sources are oxygen precipitates are located under the source / drain regions 3 and 4, and therefore the source / drain regions are not formed. If both the regions 3 and 4 and the defects 6 and 7 are formed, there arises a problem that the silicon single crystal film 2 must be formed thick. In particular, the defect layer 6,
When 7 is formed only in the lower part of the silicon single crystal film 2, it is difficult to control the implantation depth of ion implantation and the temperature, and thus there is a problem that the yield is reduced.

【0008】また、酸素析出物で成る欠陥層をソース・
ドレイン領域の下でなくて、外側に位置させて形成した
場合、今度はシリコン単結晶膜の幅寸法を長くする必要
が有り、素子の微細化傾向に逆行するものとなる。
In addition, a defect layer composed of oxygen precipitates is
If it is formed not outside the drain region but outside the drain region, it is necessary to increase the width dimension of the silicon single crystal film, which goes against the trend toward miniaturization of the device.

【0009】本発明は、このような従来の問題点に着目
して創案されたものであって、有効なゲッタリング構造
を有するSOI構造の半導体装置及び歩留りを向上する
その半導体装置の製造方法を得んとするものである。
The present invention was devised in view of the above conventional problems, and provides a semiconductor device having an SOI structure having an effective gettering structure and a method of manufacturing the semiconductor device for improving the yield. It is what you get.

【0010】[0010]

【課題を解決するための手段】請求項1記載の発明は、
絶縁基板上のシリコン単結晶膜に形成した半導体装置に
おいて、前記シリコン単結晶膜外側面にゲッタリング用
欠陥膜を設けたことを、その解決手段としている。
The invention according to claim 1 is
In a semiconductor device formed on a silicon single crystal film on an insulating substrate, a gettering defect film is provided on the outer surface of the silicon single crystal film as a solution.

【0011】請求項2記載の発明は、上記ゲッタリング
用欠陥膜をソース・ドレイン電極の一部としたことを特
徴としている。
The invention according to claim 2 is characterized in that the gettering defect film is part of a source / drain electrode.

【0012】請求項3記載の発明は、上記ゲッタリング
用欠陥膜を、シリコン単結晶膜側面に形成した平坦化用
サイドウォ−ルとしたことを特徴とする。
According to a third aspect of the present invention, the gettering defect film is a flattening side wall formed on the side surface of the silicon single crystal film.

【0013】請求項4記載の発明は、絶縁基板上にシリ
コン単結晶でなる素子形成領域層を形成する工程と、全
面に多結晶シリコン膜を堆積させた後、パターニングを
行い前記素子形成領域層のソース・ドレイン領域表面に
多結晶シリコン膜を残す工程と、前記ソース・ドレイン
領域上の夫々の多結晶シリコン膜に電極配線を接続させ
る工程を備えることを、その解決方法としている。
According to a fourth aspect of the present invention, there is provided a step of forming an element formation region layer made of a silicon single crystal on an insulating substrate, and after depositing a polycrystalline silicon film on the entire surface, patterning is performed. The solution is to include the step of leaving the polycrystalline silicon film on the surface of the source / drain region and the step of connecting the electrode wiring to each polycrystalline silicon film on the source / drain region.

【0014】[0014]

【作用】請求項1記載の発明においては、SOI構造を
構成するシリコン単結晶膜の外側面にゲッタリング用欠
陥膜を設けるため、シリコン単結晶膜の膜厚及び幅寸法
を拡大することがなく、また、シリコン単結晶膜内に損
傷を得えることが回避できる。
According to the first aspect of the invention, since the gettering defect film is provided on the outer surface of the silicon single crystal film forming the SOI structure, the thickness and width of the silicon single crystal film are not increased. Moreover, it is possible to avoid obtaining damage in the silicon single crystal film.

【0015】請求項2記載の発明は、ソース・ドレイン
電極の一部がゲッタリング用欠陥膜であるため、ソース
・ドレイン領域への確実な接合を有し、ゲッタリング作
用を確実とする。
According to the second aspect of the present invention, since a part of the source / drain electrode is a gettering defect film, the source / drain region has a reliable junction to ensure the gettering action.

【0016】請求項3記載の発明は、絶縁膜表面から突
出しているシリコン単結晶膜の周側壁の平坦化用サイド
ウォールをゲッタリング用欠陥とすることにより、工程
を増やすことなく、ゲッタリング層を形成できる作用が
ある。
According to a third aspect of the present invention, the gettering layer is formed without increasing the number of steps by using the flattening side wall of the silicon single crystal film protruding from the surface of the insulating film as a gettering defect. Can be formed.

【0017】請求項4記載の発明は、多結晶シリコン膜
の堆積及びエッチングでゲッタリング欠陥膜が形成で
き、シリコン単結晶膜を損傷を与えずに半導体装置が製
造できる。このため、工程数の増加を抑制することが可
能となる。
In a fourth aspect of the present invention, a gettering defect film can be formed by depositing and etching a polycrystalline silicon film, and a semiconductor device can be manufactured without damaging the silicon single crystal film. Therefore, it is possible to suppress an increase in the number of steps.

【0018】[0018]

【実施例】以下、本発明に係る半導体装置及びその製造
方法の詳細を図面に示す実施例に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of a semiconductor device and a method of manufacturing the same according to the present invention will be described below with reference to the embodiments shown in the drawings.

【0019】(実施例1)本実施例は、SOI構造を構
成するシリコン単結晶膜に電界効果トランジスタを製造
する場合に、本発明を適用したものである。
(Embodiment 1) In this embodiment, the present invention is applied in the case of manufacturing a field effect transistor in a silicon single crystal film forming an SOI structure.

【0020】先ず、SiO2で成る絶縁膜11上に、周
知の技術を用いて、図1に示すように、シリコン単結晶
膜12を素子形成領域分だけパターニングして島状に形
成する。そして、全面に多結晶シリコン膜13をCVD
法にて堆積させる。
[0020] First, on the insulating film 11 made of SiO 2, using known techniques, as shown in FIG. 1, by patterning the silicon single crystal film 12 only element formation region component is formed in an island shape. Then, a polycrystalline silicon film 13 is formed on the entire surface by CVD.
It is deposited by the method.

【0021】次に、多結晶シリコン膜13をシリコン単
結晶膜12上及び側壁を覆う範囲を残すように、リソグ
ラフィー技術及びエッチング技術を用いてパターニング
した後、全面にシリコンナイトライド(Si34)膜1
4を堆積させる。そして、図2に示すように、レジスト
層15をパターニングした後、シリコンナイトライド膜
14及び多結晶シリコン膜13をドライエッチングす
る。
Next, the polycrystalline silicon film 13 is patterned by a lithography technique and an etching technique so as to leave a region covering the silicon single crystal film 12 and the side wall, and then silicon nitride (Si 3 N 4) is formed on the entire surface. ) Membrane 1
4 is deposited. Then, as shown in FIG. 2, after patterning the resist layer 15, the silicon nitride film 14 and the polycrystalline silicon film 13 are dry-etched.

【0022】この後、レジスト層15を除去し、熱酸化
(950℃程度)を行いゲート酸化膜18を形成する。
次に、図3に示すように、全面に多結晶シリコンで成る
ゲート材料膜15をCVD法にて堆積する。さらに、リ
ソグラフィー技術及びエッチング技術により、図4に示
すように、ゲート材料膜15を加工してゲート電極15
Aを形成する。
After that, the resist layer 15 is removed, and thermal oxidation (about 950 ° C.) is performed to form a gate oxide film 18.
Next, as shown in FIG. 3, a gate material film 15 made of polycrystalline silicon is deposited on the entire surface by a CVD method. Further, as shown in FIG. 4, the gate material film 15 is processed by the lithography technique and the etching technique to form the gate electrode 15.
Form A.

【0023】次に、図5に示すように、全面にSiO2
膜16を堆積させた後、ソース・ドレインへの接続孔を
多結晶シリコン膜13の表面まで開口した後、周知の技
術を用いて、図6に示すように、ソース電極17A及び
ドレイン電極17Bを形成して完成する。
Next, as shown in FIG. 5, SiO 2 is formed on the entire surface.
After depositing the film 16, a source / drain connection hole is opened up to the surface of the polycrystalline silicon film 13, and then a source electrode 17A and a drain electrode 17B are formed using a well-known technique as shown in FIG. Form and complete.

【0024】本実施例では、多結晶シリコン膜13が、
シリコン単結晶膜12に形成したソース領域12A及び
ドレイン領域12Bを夫々覆うため、両領域の汚染源等
をゲッタリングする効果を奏する。
In this embodiment, the polycrystalline silicon film 13 is
Since the source region 12A and the drain region 12B formed in the silicon single crystal film 12 are covered respectively, the effect of gettering the contamination source and the like in both regions is exerted.

【0025】なお、上記実施例においては、ソース・ド
レイン領域の形成工程を省略して説明した。
In the above embodiments, the process of forming the source / drain regions is omitted.

【0026】(実施例2)図7〜図11は、本発明の実
施例2の工程を示す断面図である。
(Embodiment 2) FIGS. 7 to 11 are sectional views showing steps of Embodiment 2 of the present invention.

【0027】本実施例は、図7に示すように、シリコン
基板21上に、SiO2で成る絶縁膜22を形成し、周
知の技術(例えば多結晶シリコン膜のレーザ照射による
溶融再結晶化)を用いてシリコン単結晶膜23を形成す
る。
In this embodiment, as shown in FIG. 7, an insulating film 22 made of SiO 2 is formed on a silicon substrate 21, and a well-known technique (for example, melting and recrystallization of a polycrystalline silicon film by laser irradiation). Is used to form a silicon single crystal film 23.

【0028】次に、図8に示すように、シリコン単結晶
膜23の表面にシリコン酸化膜24を熱酸化により形成
した後、レジストパターン25を形成する。そして、こ
のレジストパターン25をマスクとして、シリコン酸化
膜24及びシリコン単結晶膜23を異方性エッチング
(RIE)した後、図7に示すように、全面に多結晶シ
リコン膜26をCVD法にて堆積させる。
Next, as shown in FIG. 8, a silicon oxide film 24 is formed on the surface of the silicon single crystal film 23 by thermal oxidation, and then a resist pattern 25 is formed. Then, using the resist pattern 25 as a mask, the silicon oxide film 24 and the silicon single crystal film 23 are anisotropically etched (RIE), and then a polycrystalline silicon film 26 is formed on the entire surface by a CVD method as shown in FIG. Deposit.

【0029】次に、反応性イオンエッチング(RIE)
により全面エッチバックを行いシリコン単結晶膜23の
周側壁に、多結晶シリコン膜26で成るサイドウォール
26Aを残す。なお、このサイドウォール26Aの高さ
は、後続の素子形成の加工性を考慮すると、シリコン単
結晶膜23の膜厚と同じか、又は若干低い方が望まし
い。
Next, reactive ion etching (RIE)
Then, the entire surface is etched back by means of which the side wall 26A made of the polycrystalline silicon film 26 is left on the peripheral side wall of the silicon single crystal film 23. The height of the side wall 26A is preferably equal to or slightly lower than the film thickness of the silicon single crystal film 23 in consideration of the workability of subsequent element formation.

【0030】次に、シリコン酸化膜24を除去した後、
通常の電界効果トランジスタ製造技術を用いれば、図1
1に示すようなトランジスタとなる。なお、図中27は
ゲート酸化膜、28はゲート電極、29Aはソース領
域、29Bはドレイン領域を示している。
Next, after removing the silicon oxide film 24,
Using conventional field effect transistor manufacturing technology,
The transistor shown in FIG. In the figure, 27 is a gate oxide film, 28 is a gate electrode, 29A is a source region, and 29B is a drain region.

【0031】本実施例は、ゲッタリング用欠陥膜として
サイドウォール26Aを形成したことにより、ソース・
ドレイン領域を形成したシリコン単結晶膜23のゲッタ
リングを側壁部で行うことができ、このサイドウォール
26Aはシリコン単結晶膜23の絶縁膜22に対する段
差を緩和し平坦化に寄与する。
In this embodiment, since the sidewall 26A is formed as a gettering defect film, the source / source
Gettering of the silicon single crystal film 23 in which the drain region is formed can be performed on the side wall portion, and the side wall 26A contributes to flattening by reducing the step difference between the silicon single crystal film 23 and the insulating film 22.

【0032】なお、本実施例では、MOS型トランジス
タであるため、ソースとドレインが異電位となりサイド
ウォール26Aに漏れ電流が流れる可能性がある。この
ため、図13に示すように形成したサイドウォール26
Aを、図14に示すように、ソース・ドレイン領域29
A,29Bの両脇のサイドウォール26Aを除去するこ
とが必要である。
Since the MOS transistor is used in this embodiment, there is a possibility that the source and drain have different potentials and a leak current flows through the sidewall 26A. Therefore, the sidewall 26 formed as shown in FIG.
A is a source / drain region 29 as shown in FIG.
It is necessary to remove the sidewalls 26A on both sides of A and 29B.

【0033】(実施例3)図12は、実施例3を示す断
面図である。本実施例は、電界効果トランジスタではな
くバイポーラトランジスタを作成した例である。シリコ
ン単結晶膜の周縁部では、バイポーラトランジスタであ
るため、同電位となり、全周に亘ってサイドウォールを
設けることができる。
(Third Embodiment) FIG. 12 is a sectional view showing a third embodiment. This embodiment is an example in which a bipolar transistor is formed instead of a field effect transistor. Since the periphery of the silicon single crystal film is a bipolar transistor, it has the same potential, and the sidewall can be provided over the entire circumference.

【0034】(実施例4)図15は、本発明の実施例4
を示す断面である。
(Fourth Embodiment) FIG. 15 shows a fourth embodiment of the present invention.
Is a cross section showing.

【0035】本実施例は、シリコン単結晶膜23の側壁
及び上面を覆うゲッタリング用欠陥膜26Bとゲート電
極26Cを多結晶シリコン膜で同時に形成した例であ
り、製造工程が簡便となる。
The present embodiment is an example in which the gettering defect film 26B covering the side wall and the upper surface of the silicon single crystal film 23 and the gate electrode 26C are simultaneously formed of a polycrystalline silicon film, and the manufacturing process is simplified.

【0036】以上、各実施例について説明したが、本発
明はこれらに限定されるものではなく、構成の要旨に不
随する各種の材料変更及び構造変更等の設計変更が可能
である。
Although the respective embodiments have been described above, the present invention is not limited to these, and various design changes such as a material change and a structure change can be made according to the gist of the configuration.

【0037】[0037]

【発明の効果】以上の説明から明らかなように、本発明
によれば、SOI素子の安定したゲッタリングを確実に
する効果を奏する。
As is apparent from the above description, according to the present invention, the effect of ensuring stable gettering of the SOI element is exhibited.

【0038】また、シリコン単結晶膜に負担をかけない
構造であるため、素子特性の劣化を抑制する効果があ
る。
Further, since the structure is such that the silicon single crystal film is not burdened, it is effective in suppressing deterioration of device characteristics.

【0039】さらに、請求項3記載の発明にあっては、
通常の平坦化工程と、ゲッタリング用欠陥膜の形成工程
が同一であるため、製造工程を簡便にする効果がある。
Further, in the invention according to claim 3,
Since the normal planarization process and the gettering defect film formation process are the same, there is an effect that the manufacturing process is simplified.

【0040】請求項2及び4記載の発明においては、ゲ
ッタリング欠陥膜がソース・ドレインの表面と確実に接
合するため、ゲッタリング効果を高めることができる。
According to the second and fourth aspects of the invention, the gettering defect film is surely bonded to the surface of the source / drain, so that the gettering effect can be enhanced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の製造工程を示す断面図。FIG. 1 is a cross-sectional view showing a manufacturing process of a first embodiment of the present invention.

【図2】本発明の実施例1の製造工程を示す断面図。FIG. 2 is a cross-sectional view showing the manufacturing process of the first embodiment of the present invention.

【図3】本発明の実施例1の製造工程を示す断面図。FIG. 3 is a cross-sectional view showing the manufacturing process of the first embodiment of the present invention.

【図4】本発明の実施例1の製造工程を示す断面図。FIG. 4 is a cross-sectional view showing the manufacturing process of the first embodiment of the present invention.

【図5】本発明の実施例1の製造工程を示す断面図。FIG. 5 is a cross-sectional view showing the manufacturing process of the first embodiment of the present invention.

【図6】本発明の実施例1製造工程を示す断面図。FIG. 6 is a sectional view showing a manufacturing process according to the first embodiment of the present invention.

【図7】本発明の実施例2の製造工程を示す断面図。FIG. 7 is a cross-sectional view showing a manufacturing process of a second embodiment of the present invention.

【図8】本発明の実施例2の製造工程を示す断面図。FIG. 8 is a cross-sectional view showing the manufacturing process of the second embodiment of the present invention.

【図9】本発明の実施例2の製造工程を示す断面図。FIG. 9 is a cross-sectional view showing the manufacturing process of the second embodiment of the present invention.

【図10】本発明の実施例2の製造工程を示す断面図。FIG. 10 is a cross-sectional view showing the manufacturing process of the second embodiment of the present invention.

【図11】本発明の実施例2の製造工程を示す断面図。FIG. 11 is a cross-sectional view showing the manufacturing process of the second embodiment of the present invention.

【図12】本発明の実施例3の断面図。FIG. 12 is a sectional view of a third embodiment of the present invention.

【図13】ゲッタリング用欠陥膜のパターニング工程の
平面図。
FIG. 13 is a plan view of a patterning process of a gettering defect film.

【図14】ゲッタリング用欠陥膜のパターニング工程の
平面図。
FIG. 14 is a plan view of a step of patterning a gettering defect film.

【図15】本発明の実施例4の断面図。FIG. 15 is a sectional view of Embodiment 4 of the present invention.

【図16】従来例の断面図。FIG. 16 is a sectional view of a conventional example.

【符号の説明】[Explanation of symbols]

11…絶縁膜 12…シリコン単結晶膜 13…多結晶シリコン膜 17A…ソース電極 17B…ドレイン電極 26A…サイドウォール 26B…ゲッタリング用欠陥膜 11 ... Insulating film 12 ... Silicon single crystal film 13 ... Polycrystalline silicon film 17A ... Source electrode 17B ... Drain electrode 26A ... Sidewall 26B ... Gettering defect film

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 絶縁基板上のシリコン単結晶膜に形成し
た半導体装置において、 前記シリコン単結晶膜外側面にゲッタリング用欠陥膜を
設けたことを特徴とする半導体装置。
1. A semiconductor device formed on a silicon single crystal film on an insulating substrate, wherein a gettering defect film is provided on an outer surface of the silicon single crystal film.
【請求項2】 前記ゲッタリング用欠陥膜は、ソース・
ドレイン電極の一部を構成する請求項1記載の半導体装
置。
2. The gettering defect film is a source film.
The semiconductor device according to claim 1, which constitutes a part of the drain electrode.
【請求項3】 前記ゲッタリング用欠陥膜は、前記シリ
コン単結晶膜側面に形成された平坦化用サイドウォール
である請求項1記載の半導体装置。
3. The semiconductor device according to claim 1, wherein the gettering defect film is a planarization sidewall formed on a side surface of the silicon single crystal film.
【請求項4】 絶縁基板上にシリコン単結晶でなる素子
形成領域層を形成する工程と、 全面に多結晶シリコン膜を堆積させた後、パターニング
を行い前記素子形成領域層のソース・ドレイン領域表面
に多結晶シリコン膜を残す工程と、 前記ソース・ドレイン領域上の夫々の多結晶シリコン膜
に電極配線を接続させる工程を備えることを特徴とする
半導体装置の製造方法。
4. A step of forming an element formation region layer made of silicon single crystal on an insulating substrate, and a step of depositing a polycrystalline silicon film over the entire surface and then patterning the source / drain region surface of the element formation region layer. 2. A method of manufacturing a semiconductor device, comprising: a step of leaving a polycrystalline silicon film on the substrate; and a step of connecting an electrode wiring to each of the polycrystalline silicon films on the source / drain regions.
JP27863192A 1992-10-16 1992-10-16 Semiconductor device and manufacturing method thereof Expired - Fee Related JP3297937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27863192A JP3297937B2 (en) 1992-10-16 1992-10-16 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27863192A JP3297937B2 (en) 1992-10-16 1992-10-16 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH06132292A true JPH06132292A (en) 1994-05-13
JP3297937B2 JP3297937B2 (en) 2002-07-02

Family

ID=17599971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27863192A Expired - Fee Related JP3297937B2 (en) 1992-10-16 1992-10-16 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3297937B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001326364A (en) * 2000-03-10 2001-11-22 Semiconductor Energy Lab Co Ltd Semiconductor device and method of manufacturing the same
US6551866B1 (en) 1998-11-27 2003-04-22 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing a semiconductor memory device
JP2006324688A (en) * 1994-06-03 2006-11-30 At & T Corp Getter for multi-layer wafer and method for making the same
CN106165071A (en) * 2014-04-18 2016-11-23 索尼公司 Semiconductor devices for high-frequency switches, high-frequency switches, and high-frequency modules

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006324688A (en) * 1994-06-03 2006-11-30 At & T Corp Getter for multi-layer wafer and method for making the same
US6551866B1 (en) 1998-11-27 2003-04-22 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing a semiconductor memory device
JP2001326364A (en) * 2000-03-10 2001-11-22 Semiconductor Energy Lab Co Ltd Semiconductor device and method of manufacturing the same
CN106165071A (en) * 2014-04-18 2016-11-23 索尼公司 Semiconductor devices for high-frequency switches, high-frequency switches, and high-frequency modules

Also Published As

Publication number Publication date
JP3297937B2 (en) 2002-07-02

Similar Documents

Publication Publication Date Title
JPH03154383A (en) Semiconductor device
JP3297937B2 (en) Semiconductor device and manufacturing method thereof
JPS59165434A (en) Manufacture of semiconductor device
US5348906A (en) Method for manufacturing semiconductor device
JP2793141B2 (en) Method of manufacturing semiconductor device having trench element isolation film
JP2689710B2 (en) Method for manufacturing semiconductor device
JPH05129335A (en) Manufacture of vertical-type transistor
JPH0684939A (en) Method for manufacturing MIS field effect semiconductor device
JPH0257701B2 (en)
JP3445929B2 (en) Method for manufacturing semiconductor device
KR0172041B1 (en) Method of manufacturing transistor of semiconductor device
JPH0290569A (en) Manufacture of semiconductor device
JPH11354650A (en) Semiconductor device and its manufacture
JPH0936379A (en) Manufacture of thin film transistor
JPS59177940A (en) Manufacture of element isolation region
JPH11289092A (en) Semiconductor device and its manufacture
JPH03155166A (en) Thin film semiconductor element
JPH04225531A (en) Manufacture of semiconductor device
JPH04302435A (en) Manufacture of thin-film transistor
JPH05335407A (en) Manufacture of semiconductor device
KR20030000662A (en) Method for manufacturing a transistor in a semiconductor device
JPH0475349A (en) Manufacture of semiconductor device
JP2000188325A (en) Manufacture of semiconductor device
JPS60189266A (en) Semiconductor integrated circuit device
JPH02228074A (en) Manufacturing method of MOS type transistor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees