JPH0613215A - Rare earth compound magnet having magnetic anisotropy - Google Patents
Rare earth compound magnet having magnetic anisotropyInfo
- Publication number
- JPH0613215A JPH0613215A JP4191729A JP19172992A JPH0613215A JP H0613215 A JPH0613215 A JP H0613215A JP 4191729 A JP4191729 A JP 4191729A JP 19172992 A JP19172992 A JP 19172992A JP H0613215 A JPH0613215 A JP H0613215A
- Authority
- JP
- Japan
- Prior art keywords
- atomic
- compound
- rare earth
- flux density
- alloy powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 68
- 229910052761 rare earth metal Inorganic materials 0.000 title claims abstract description 22
- -1 Rare earth compound Chemical class 0.000 title 1
- 239000000956 alloy Substances 0.000 claims abstract description 43
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 43
- 150000001875 compounds Chemical class 0.000 claims abstract description 32
- 239000011230 binding agent Substances 0.000 claims abstract description 28
- 230000005415 magnetization Effects 0.000 claims abstract description 28
- 230000004907 flux Effects 0.000 claims abstract description 27
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000000203 mixture Substances 0.000 claims abstract description 13
- 239000002245 particle Substances 0.000 claims abstract description 12
- 229910052777 Praseodymium Inorganic materials 0.000 claims abstract description 10
- 229910052779 Neodymium Inorganic materials 0.000 claims abstract description 8
- 239000000843 powder Substances 0.000 claims description 56
- 239000013078 crystal Substances 0.000 claims description 29
- 239000002131 composite material Substances 0.000 claims description 21
- 150000002910 rare earth metals Chemical class 0.000 claims description 12
- 229910052738 indium Inorganic materials 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 229910052735 hafnium Inorganic materials 0.000 claims description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims description 6
- 229910052715 tantalum Inorganic materials 0.000 claims description 6
- 229910052721 tungsten Inorganic materials 0.000 claims description 6
- 229910052720 vanadium Inorganic materials 0.000 claims description 6
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 229910052758 niobium Inorganic materials 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 229910052726 zirconium Inorganic materials 0.000 claims description 5
- 229910052717 sulfur Inorganic materials 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 4
- 230000008878 coupling Effects 0.000 abstract description 3
- 238000010168 coupling process Methods 0.000 abstract description 3
- 238000005859 coupling reaction Methods 0.000 abstract description 3
- 229910001172 neodymium magnet Inorganic materials 0.000 abstract 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 35
- 238000000034 method Methods 0.000 description 22
- 239000007789 gas Substances 0.000 description 20
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 18
- 229910052739 hydrogen Inorganic materials 0.000 description 18
- 239000001257 hydrogen Substances 0.000 description 18
- 239000002994 raw material Substances 0.000 description 14
- 238000010438 heat treatment Methods 0.000 description 10
- 238000000465 moulding Methods 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 238000001746 injection moulding Methods 0.000 description 5
- 229910052718 tin Inorganic materials 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 238000000748 compression moulding Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 238000010298 pulverizing process Methods 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000006356 dehydrogenation reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229910000521 B alloy Inorganic materials 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000006355 external stress Effects 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 238000009689 gas atomisation Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 229910001004 magnetic alloy Inorganic materials 0.000 description 1
- 239000006247 magnetic powder Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical compound [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
- H01F1/0578—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、各種モーター、アク
チュエーター等に用いることが可能な高保磁力を有する
R(希土類元素)−T(鉄属元素)−M(添加元素)−
B−C系希土類系複合磁石に係り、特に本系粗粉砕粉を
H2ガス中で加熱処理、並びに所定雰囲気で加熱保持す
る脱H2処理を行い、結晶粒を1μm以下の極微細結晶
とした、磁気的に高い異方性を有し高保磁力を有するR
−T−M−B−C系永久磁石用合金粉末を用いて複合磁
石化した磁気異方性を有する希土類系複合磁石に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to R (rare earth element) -T (iron group element) -M (additive element) -which has a high coercive force and can be used in various motors and actuators.
Relates to B-C rare earth-based composite magnet, in particular heat treatment of the present system coarsely pulverized powder with H 2 gas, and resulted in the removal of H 2 treatment for heating and maintaining at a predetermined atmosphere, and very fine crystals of the crystalline grains 1μm or less R having high magnetic anisotropy and high coercive force
The present invention relates to a rare earth-based composite magnet having magnetic anisotropy, which is made into a composite magnet by using an alloy powder for a T-M-B-C based permanent magnet.
【0002】[0002]
【従来の技術】永久磁石用希土類合金粉末の、水素処理
法による製造方法は、例えば特開平1−132106号
公報に開示されている。前記水素処理法とは、R−T−
M−B系原料合金インゴットまたは粉末を、H2ガス雰
囲気またはH2ガスと不活性ガスの混合雰囲気中で温度
500℃〜1000℃に保持して上記合金のインゴット
または粉末にH2を吸蔵させた後、H2ガス圧力13Pa
(1×10-1Torr)以下の真空雰囲気またはH2ガ
ス分圧13Pa(1×10-1Torr)以下の不活性ガ
ス雰囲気になるまで、温度500℃〜1000℃で脱H
2処理し、ついで冷却することを特徴とする、R−T−
M−B系合金粉末の製造方法である。2. Description of the Related Art A method for producing a rare earth alloy powder for permanent magnets by a hydrogen treatment method is disclosed in, for example, Japanese Patent Laid-Open No. 1-132106. The hydrogen treatment method is RT-
The MB raw material alloy ingot or powder is kept at a temperature of 500 ° C. to 1000 ° C. in a H 2 gas atmosphere or a mixed atmosphere of H 2 gas and an inert gas so that H 2 is absorbed in the alloy ingot or powder. And then H 2 gas pressure 13 Pa
(1 × 10 -1 Torr) until the following vacuum atmosphere or H 2 gas partial pressure 13 Pa (1 × 10 -1 Torr) or less inert gas atmosphere, de-H at a temperature 500 ° C. to 1000 ° C.
2 treatment, followed by cooling, RT-
It is a method for producing an M-B alloy powder.
【0003】[0003]
【発明が解決しようとする課題】上記方法で製造された
R−T−M−B系合金粉末は、大きな保磁力と磁気異方
性を有する。これは、上記処理によって、非常に微細な
再結晶粒径、実質的には0.1〜1μmの平均再結晶粒
径を持つ組織となり、磁気的には正方晶Nd2Fe14B
系化合物の単磁区臨界粒径に近い結晶粒径となってお
り、なおかつこれらの極微細結晶が、ある程度結晶方位
を揃えて再結晶しているためである。また、上記の製造
方法で得られたR−T−M−B系合金粉末は、粉砕や加
圧等の外部からの応力によって特性が変化することがな
く、また、25μm以下の微粉末領域でも保磁力が低下
することがなく、この特性はバインダーと混合して成形
体となす複合磁石用原料として適している。The R-T-M-B type alloy powder produced by the above method has large coercive force and magnetic anisotropy. This treatment results in a structure having a very fine recrystallized grain size, that is, an average recrystallized grain size of substantially 0.1 to 1 μm, which is magnetically tetragonal Nd 2 Fe 14 B.
This is because the crystal grain size is close to the single domain critical grain size of the system compound, and these ultrafine crystals are recrystallized to some extent with their crystal orientations aligned. Further, the R-T-M-B based alloy powder obtained by the above-mentioned manufacturing method does not change its characteristics due to external stress such as crushing and pressurization, and also in a fine powder region of 25 μm or less. The coercive force does not decrease, and this property is suitable as a raw material for a composite magnet that is mixed with a binder to form a compact.
【0004】ところが、上記方法で製造されたR−T−
M−B系磁石用合金粉末の磁気的性質は、特に磁気異方
性については不充分であり、原料合金そのものが本質的
に有する磁気異方性に達しておらず、磁気特性的には残
留磁束密度Brが小さいという欠点があった。However, the RT- manufactured by the above method
The magnetic properties of the alloy powder for MB magnets are insufficient particularly in terms of magnetic anisotropy, do not reach the magnetic anisotropy inherent in the raw material alloy itself, and remain in terms of magnetic properties. There is a drawback that the magnetic flux density Br is small.
【0005】この発明は、R−T−M−B系合金粉末の
磁気異方性を向上させて、複合磁石化した際の残留磁束
密度Brが高くすぐれた磁気特性を有するR−T−M−
B系複合磁石の提供を目的としている。The present invention improves the magnetic anisotropy of the R-T-M-B type alloy powder to have a high residual magnetic flux density Br in the case of forming a composite magnet and has excellent magnetic properties. −
The purpose is to provide a B-based composite magnet.
【0006】[0006]
【課題を解決するための手段】この発明は上記残留磁束
密度Brを大きくするため、原料組成の検討を行った結
果、大きな磁気異方性を得ることができる置換元素及び
添加元素を見い出したものである。すなわち、Bの一部
をCで置換することによって、安定して大きな磁気異方
性を得ることを知見したものである。さらに、Al,C
r,Ni,Ga,Zr,In,Sn.Hf,Ti,V,
Nb,Mo,Ta,Wの1種または2種以上を添加する
ことにより磁気特性を改善向上することを見い出した。
さらに、かかる成分系の組成範囲を限定し、水素処理法
における水素圧力を10kPa以上とし、脱水素工程の
水素圧力を10Pa以下とすることにより、安定して磁
気的異方性を有する粉末を製造することができ、この異
方性粉末をバインダーと結合した複合磁石用の原料とし
て用いることができることを知見し、この発明を完成し
た。In order to increase the residual magnetic flux density Br in the present invention, the raw material composition was examined, and as a result, a substitution element and an addition element capable of obtaining a large magnetic anisotropy were found. Is. That is, it was found that a large magnetic anisotropy can be stably obtained by substituting a part of B with C. Furthermore, Al, C
r, Ni, Ga, Zr, In, Sn. Hf, Ti, V,
It has been found that the addition of one or more of Nb, Mo, Ta and W improves and improves the magnetic characteristics.
Further, by limiting the composition range of such a component system, setting the hydrogen pressure in the hydrogen treatment method to 10 kPa or more and the hydrogen pressure in the dehydrogenation step to 10 Pa or less, a powder having stable magnetic anisotropy can be produced. It was found that this anisotropic powder can be used as a raw material for a composite magnet combined with a binder, and the present invention was completed.
【0007】すなわち、この発明は、R:10〜20原
子%(R;希土類元素の少なくとも1種でかつPrまた
はNdの1種または2種をRのうち50原子%以上含
有)、T:67〜85原子%(T:FeまたはFeの1
部を50原子%以下のCoにて置換)、B,Cの量が
B+C=4〜10原子% C/(B+C)=0.01〜
0.8を満足する値を有する組成の合金粉末からなり、
合金粉末の70vol%以上が正方晶Nd2Fe14B型
結晶構造を有する化合物で、かつ該化合物のうち体積比
で少なくとも50%以上の結晶粒径が0.05〜1μm
で、平均粒径が10〜1000μmからなり、その磁化
容易方向の残留磁束密度が0.9〜1.6Tを有する合
金粉末を、バインダーと結合したことを特徴とする磁気
異方性を有する希土類系複合磁石である。That is, according to the present invention, R: 10 to 20 atomic% (R: at least one rare earth element and one or two Pr or Nd contained in 50 or more atomic% of R), T: 67 ~ 85 atomic% (T: Fe or 1 of Fe
Part is replaced by 50 atomic% or less of Co), and the amounts of B and C are
B + C = 4 to 10 atom% C / (B + C) = 0.01 to
Consisting of an alloy powder having a value satisfying 0.8,
70 vol% or more of the alloy powder is a compound having a tetragonal Nd 2 Fe 14 B type crystal structure, and at least 50% or more by volume of the compound has a crystal grain size of 0.05 to 1 μm.
And a rare earth element having magnetic anisotropy, characterized in that an alloy powder having an average particle diameter of 10 to 1000 μm and a residual magnetic flux density in the easy magnetization direction of 0.9 to 1.6 T is combined with a binder. System composite magnet.
【0008】また、この発明は、R:10〜20原子%
(R;希土類元素の少なくとも1種でかつPrまたはN
dの1種または2種をRのうち50原子%以上含有)、
T:67〜85原子%(T:FeまたはFeの1部を5
0原子%以下のCoにて置換)、M;10原子%以下
(M;Al、Ti、V、Cr、Ni、Ga、Zr、N
b、Mo、In、Sn、Hf、Ta、Wのうち1種また
は2種以上)、B,Cの量が B+C=4〜10原子%
C/(B+C)=0.01〜0.8を満足する値を有
する組成の合金粉末からなり、合金粉末の70vol%
以上が正方晶Nd2Fe14B型結晶構造を有する化合物
で、かつ該化合物のうち体積比で少なくとも50%以上
の結晶粒径が0.05〜1μmで、平均粒径が10〜1
000μmからなり、その磁化容易方向の残留磁束密度
が0.9〜1.6Tを有する合金粉末を、バインダーと
結合したことを特徴とする磁気異方性を有する希土類系
複合磁石である。Further, according to the present invention, R: 10 to 20 atomic%
(R: at least one rare earth element and Pr or N
1 or 2 kinds of d are contained in R of 50 atom% or more),
T: 67 to 85 atomic% (T: Fe or 1 part of Fe is 5
Substituted with 0 atomic% or less of Co), M; 10 atomic% or less (M; Al, Ti, V, Cr, Ni, Ga, Zr, N
b, Mo, In, Sn, Hf, Ta, W, one or more, and the amounts of B and C are B + C = 4 to 10 atom%.
C / (B + C) = consisting of an alloy powder having a composition satisfying a value of 0.01 to 0.8, 70 vol% of the alloy powder
The above is a compound having a tetragonal Nd 2 Fe 14 B type crystal structure, and at least 50% by volume of the compound has a crystal grain size of 0.05 to 1 μm and an average grain size of 10 to 1.
A rare earth-based composite magnet having magnetic anisotropy, characterized in that an alloy powder having a residual magnetic flux density of 000 μm and having a residual magnetic flux density in the easy magnetization direction of 0.9 to 1.6 T is bonded to a binder.
【0009】組成の限定理由 この発明に使用する原料合金に用いるR、すなわち希土
類元素は、Y、La、Ce、Pr、Nd、Sm、Gd、
Tb、Dy、Ho、Er、Tm、Luが包括され、この
うち少なくとも1種以上でかつPr、Ndのうち少なく
とも1種または2種をRのうち50原子%以上含有し、
さらにRの全てがPr、Ndのうち1種または2種の場
合がある。Rの50原子%以上をPr、Ndのうち少な
くとも1種以上とするのは50原子%未満では充分な磁
化が得られないためである。Reasons for limiting the composition R used in the raw material alloy used in the present invention, that is, the rare earth elements are Y, La, Ce, Pr, Nd, Sm, Gd,
Tb, Dy, Ho, Er, Tm, Lu are included, and at least one of them is contained and at least one or two of Pr and Nd are contained in 50 at% or more of R.
Further, all of R may be one or two of Pr and Nd. The reason why 50 atomic% or more of R is at least one of Pr and Nd is that sufficient magnetization cannot be obtained if the atomic ratio is less than 50 atomic%.
【0010】Rは、10原子%未満ではαFe相の析出
により保磁力が低下し、また20原子%を超えると、目
的とする正方晶Nd2Fe14B型化合物以外に、Rリッ
チの第2相が多く析出し、この第2相が多すぎると合金
の磁化を低下させる。従って、Rの範囲は10〜20原
子%とする。When R is less than 10 atomic%, the coercive force is lowered due to precipitation of αFe phase, and when it exceeds 20 atomic%, in addition to the intended tetragonal Nd 2 Fe 14 B type compound, R-rich second If a large amount of phases are precipitated and the amount of the second phase is too large, the magnetization of the alloy is reduced. Therefore, the range of R is 10 to 20 atomic%.
【0011】Tは鉄族元素であって、FeまたはFeの
1部を50%以下のCoにて置換できる。Tは、67原
子%未満では低保磁力、低磁化の第2相が析出して磁気
的特性が低下し、85原子%を超えるとαFe相の析出
により保磁力、角型性が低下するため、67〜85原子
%とする。また、Coの50%以下の添加はキュリー温
度の向上に有効であるが、FeとCoの原子比において
Feが50%未満となるとNd2Fe14B型化合物の飽
和磁化そのものの減少量が大きくなってしまうため、T
のうち原子比でFeを50%以上とした。T is an iron group element, and Fe or a part of Fe can be replaced by 50% or less of Co. If T is less than 67 atomic%, the second coercive force and low magnetization precipitates and the magnetic properties are deteriorated. If it exceeds 85 atomic%, the coercive force and squareness are deteriorated due to the precipitation of αFe phase. , 67 to 85 atomic%. Further, addition of 50% or less of Co is effective for improving the Curie temperature, but when Fe is less than 50% in the atomic ratio of Fe and Co, the amount of decrease in the saturation magnetization of the Nd 2 Fe 14 B type compound itself is large. Because it will be T
Of these, Fe was 50% or more in terms of atomic ratio.
【0012】Mのうち、Al、Cr、Ni、Ga、Z
r、In、Sn、Hfは、脱H2処理時の再結晶粒を
0.05〜1μmのサイズにまで成長させ、粉末に磁気
異方性を付与するのに有効な元素であり、C添加時にも
磁気異方性を安定して得るために必要である。Ti、
V、Nb、Mo、Ta、Wは、脱H2処理時の再結晶粒
が、1μm以上に粗大化するのを防止し、結果として保
磁力が低下するのを抑制する効果を有する。従って、M
としては全く加えない場合もあるが、上記の元素を目的
に応じて組み合せて用いることが得策である。添加量は
10原子%を越えると強磁性でない第2相が析出して磁
化を低下させることから、Mは10原子%以下が望まし
い。Of M, Al, Cr, Ni, Ga, Z
r, In, Sn, and Hf are effective elements for growing the recrystallized grains at the time of the H 2 removal treatment to a size of 0.05 to 1 μm and imparting magnetic anisotropy to the powder, and C addition. At times, it is necessary to obtain stable magnetic anisotropy. Ti,
V, Nb, Mo, Ta, and W have an effect of preventing the recrystallized grains from being coarsened to 1 μm or more during the H 2 removal treatment, and as a result, suppressing a decrease in coercive force. Therefore, M
However, it is a good idea to use the above elements in combination depending on the purpose. When the addition amount exceeds 10 atomic%, the second phase which is not ferromagnetic precipitates and the magnetization is lowered, so M is preferably 10 atomic% or less.
【0013】Bについては、正方晶Nd2Fe14B型結
晶構造を安定して析出させるためには必須であるが、一
部を後述のCで置換することが可能である。添加量は、
BとCの和が4原子%以下ではR2T17相が析出して保
磁力を低下させ、また減磁曲線の角型性が著しく損なわ
れる。また、10原子%を越えて添加した場合は、磁化
の小さい第2相が析出して粉末の磁化を低下させるの
で、BとCの和は4〜10原子%とした。また、C/
(B+C)=0.01〜0.8に限定した理由は、0.
01未満では、水素処理後の合金粉末の磁気的異方性の
改善効果がなく、0.8を越えるとR炭化物が生成しや
すく、かつ高温域でTh2Zn17型構造が安定化するの
恐れがあり、αFeの析出量が多くなって、鋳塊中の正
方晶比率が低下し、残留磁束密度が減少するだけでな
く、水素処理後の合金粉末の保磁力が大きく低下するの
で好ましくなく、C/(B+C)のさらに好ましい範囲
は0.1〜0.5である。Regarding B, it is essential for stable precipitation of a tetragonal Nd 2 Fe 14 B type crystal structure, but it is possible to partly replace it with C described later. The addition amount is
When the sum of B and C is 4 atomic% or less, the R 2 T 17 phase precipitates to lower the coercive force, and the squareness of the demagnetization curve is significantly impaired. Further, when added in excess of 10 atomic%, the second phase having a small magnetization precipitates and reduces the magnetization of the powder, so the sum of B and C was set to 4 to 10 atomic%. Also, C /
The reason for limiting (B + C) = 0.01 to 0.8 is 0.
When it is less than 01, there is no effect of improving the magnetic anisotropy of the alloy powder after hydrogen treatment, and when it exceeds 0.8, R carbide is easily generated and the Th 2 Zn 17 type structure is stabilized in a high temperature range. There is a risk that the amount of αFe precipitation will increase, the tetragonal ratio in the ingot will decrease, and not only the residual magnetic flux density will decrease, but also the coercive force of the alloy powder after hydrogen treatment will decrease significantly, which is not desirable. , C / (B + C) is more preferably 0.1 to 0.5.
【0014】合金粉末組織の限定理由 この発明において、正方晶Nd2Fe14B型化合物の存
在比率は、70vol%未満であると、磁気特性、特に
残留磁束密度が低下する。より具体的には、混在する第
2相がαFe相の場合は保磁力を低下させ、Rリッチ相
やBリッチ相の場合には磁化が低下する。従って、正方
晶Nd2Fe14B型化合物の存在比を70vol%以上
とした。体積比で70%以上の正方晶Nd2Fe14B型
化合物を有する粗粉砕粉を得るためには、望ましくは合
金鋳塊の段階で800℃〜1200℃の温度で1時間以
上焼鈍するか、造塊工程で鋳型の冷却速度を制御するな
どの手段を適宜選定すれば良い。この鋳塊における正方
晶の存在比率は、水素処理後にもほぼそのまま維持され
る。Reason for Limitation of Alloy Powder Structure In the present invention, if the abundance ratio of the tetragonal Nd 2 Fe 14 B type compound is less than 70 vol%, the magnetic properties, especially the residual magnetic flux density are lowered. More specifically, the coercive force is reduced when the mixed second phase is the αFe phase, and the magnetization is reduced when the mixed second phase is the R-rich phase or the B-rich phase. Therefore, the abundance ratio of the tetragonal Nd 2 Fe 14 B type compound is set to 70 vol% or more. In order to obtain a coarsely pulverized powder having a tetragonal Nd 2 Fe 14 B type compound in a volume ratio of 70% or more, it is preferable to anneal at a temperature of 800 ° C. to 1200 ° C. for 1 hour or more at the alloy ingot stage, Means such as controlling the cooling rate of the mold in the ingot making process may be appropriately selected. The abundance ratio of tetragonal crystals in this ingot is maintained almost as it is even after the hydrogen treatment.
【0015】この発明において、正方晶Nd2Fe14B
型化合物は、結晶粒径1μm以下で高保磁力が得られる
が、1μmを越える結晶粒径を有するものがあったとし
ても、1μm以下の結晶が体積比で50%以上存在すれ
ば、全体としては高保磁力を維持できる。また、0.0
5μm以下の結晶は、事実上作製困難であり、たとえ得
られたとしても、磁気特性的に特に優れたところはな
い。従って、主相であるNd2Fe14B型化合物の結晶
粒径は、体積比で50%以上の部分を0.05〜1μm
の結晶が占めていることが好ましい。さらに好ましく
は、0.1〜0.5μmの結晶が体積比で80%以上を
占めていればよい。In the present invention, tetragonal Nd 2 Fe 14 B
High coercive force can be obtained when the type compound has a crystal grain size of 1 μm or less. However, even if there is a crystal grain size of 1 μm or less, if crystals of 1 μm or less are present in a volume ratio of 50% or more, the compound as a whole is High coercive force can be maintained. Also, 0.0
Crystals having a size of 5 μm or less are practically difficult to manufacture, and even if they are obtained, there are no particularly excellent magnetic properties. Therefore, the crystal grain size of the Nd 2 Fe 14 B-type compound, which is the main phase, is 0.05 to 1 μm when the volume ratio is 50% or more.
It is preferable that the crystals are occupied. More preferably, crystals of 0.1 to 0.5 μm occupy 80% or more by volume.
【0016】残留磁束密度の限定理由 この発明による永久磁石用合金粉末は、磁気的に高い異
方性を有することが特徴である。この合金粉末の主相で
あるNd2Fe14B型化合物の飽和磁化は1.6Tであ
り、合金粉末の残留磁束密度が1.6Tを越えることは
不可能である。一方、残留磁束密度が0.9T未満であ
ると、理論的には0.8Tの残留磁束密度が得られる等
方性永久磁石用希土類合金粉末に対して、磁気特性的に
優位性がなく、実用的な意味がない。そこで、残留磁束
密度の値は、0.9〜1.6Tとした。Reason for Limitation of Residual Magnetic Flux Density The alloy powder for permanent magnets according to the present invention is characterized by having a magnetically high anisotropy. The saturation magnetization of the Nd 2 Fe 14 B type compound, which is the main phase of this alloy powder, is 1.6 T, and the residual magnetic flux density of the alloy powder cannot exceed 1.6 T. On the other hand, when the residual magnetic flux density is less than 0.9T, theoretically, there is no superior magnetic property to the rare earth alloy powder for isotropic permanent magnets that can obtain a residual magnetic flux density of 0.8T, It has no practical meaning. Therefore, the value of the residual magnetic flux density is set to 0.9 to 1.6T.
【0017】製造条件 また、この発明の磁気異方性を有する希土類系複合磁石
の製造方法を説明すると、1) R:10〜20原子%
(R;希土類元素の少なくとも1種でかつPrまたはN
dの1種または2種をRのうち50原子%以上含有)、
T:67〜85原子%(T:FeまたはFeの1部を5
0原子%以下のCoにて置換)、あるいはさらに、M;
10原子%以下(M;Al、Ti、V、Cr、Ni、G
a、Zr、Nb、Mo、In、Sn、Hf、Ta、Wの
うち1種または2種以上)を含有し、B,Cの量が B
+C=4〜10原子% C/(B+C)=0.01〜
0.8を満足する値を有する組成の合金鋳塊を粗粉砕
後、2) 前記粗粉砕粉を原料粉末として、10kPa
〜1000kPaのH2ガス中で500℃〜900℃に
15分〜8時間加熱保持し、3) 更にH2分圧10P
a以下にて500℃〜900℃に15分〜8時間保持の
脱H2処理を行なったのち冷却して、4) 合金粉末の
70vol%以上が正方晶Nd2Fe14B型結晶構造を
有する化合物で、かつ該化合物のうち体積比で少なくと
も50%以上の結晶粒径が0.05〜1μmで、平均粒
径が10〜1000μmからなり、その磁化容易方向の
残留磁束密度が0.9〜1.6Tを有する合金粉末を得
たのち、5)該合金粉末をバインダーと結合して複合磁
石化する。Manufacturing Conditions The manufacturing method of the rare earth-based composite magnet having magnetic anisotropy of the present invention will be described below. 1) R: 10 to 20 atomic%
(R: at least one rare earth element and Pr or N
1 or 2 kinds of d are contained in R of 50 atom% or more),
T: 67 to 85 atomic% (T: Fe or 1 part of Fe is 5
Substituted with 0 atomic% or less of Co), or further M;
10 atomic% or less (M; Al, Ti, V, Cr, Ni, G
a, Zr, Nb, Mo, In, Sn, Hf, Ta, and W), and contains B and C in an amount of B.
+ C = 4 to 10 atom% C / (B + C) = 0.01 to
After roughly crushing an alloy ingot having a composition having a value satisfying 0.8, 2) 10 kPa as the raw powder.
Heated and held at 500 ° C to 900 ° C for 15 minutes to 8 hours in H 2 gas of up to 1000 kPa, and 3) further H 2 partial pressure of 10P.
After de-H 2 treatment of holding at 500 ° C. to 900 ° C. for 15 minutes to 8 hours at a or less and then cooling, 4) 70 vol% or more of the alloy powder has a tetragonal Nd 2 Fe 14 B type crystal structure. A compound, and at least 50% or more by volume of the compound has a crystal grain size of 0.05 to 1 μm, an average grain size of 10 to 1000 μm, and a residual magnetic flux density in the easy magnetization direction of 0.9 to After obtaining an alloy powder having 1.6T, 5) the alloy powder is combined with a binder to form a composite magnet.
【0018】水素処理法は、所要粒度の粗粉砕粉が外観
上その大きさを変化させることなく、極微細結晶組織の
集合体が得られることを特徴とする。すなわち、正方晶
Nd2Fe14B型化合物に対し、高温でH2ガスと反応さ
せると、RH2■3、αFe、Fe2Bなどに相分離し、
さらにH2ガスを脱H2処理により除去すると、再度正方
晶Nd2Fe14B型化合物の再結晶組織が得られる。The hydrogen treatment method is characterized in that a coarsely pulverized powder having a required particle size does not change its size in appearance and an aggregate having an extremely fine crystal structure can be obtained. That is, when a tetragonal Nd 2 Fe 14 B type compound is reacted with H 2 gas at a high temperature, phase separation occurs into RH 2 ■ 3 , αFe, Fe 2 B, etc.
Further, when the H 2 gas is removed by the H 2 removal treatment, a recrystallized structure of the tetragonal Nd 2 Fe 14 B type compound is obtained again.
【0019】出発原料の粗粉砕法は、従来の機械的粉砕
法やガスアトマイズ法の他、H2吸蔵による、いわゆる
水素粉砕法を用いてもよく、工程の簡略化のためにこの
水素粉砕による粗粉砕工程と、極微細結晶を得るための
水素処理法を同一装置内で連続して行なっても良い。ま
た、得られた粗粉砕粉の平均粒度は50〜1000μm
が好ましい。The starting material may be coarsely pulverized by a conventional mechanical pulverization method or a gas atomizing method, or a so-called hydrogen pulverization method by occluding H 2 may be used. The crushing step and the hydrogen treatment method for obtaining ultrafine crystals may be continuously performed in the same apparatus. The average particle size of the obtained coarsely pulverized powder is 50 to 1000 μm.
Is preferred.
【0020】この発明において、H2ガス中での加熱に
際し、H2ガス圧力が10kPa未満では、前述の分解
反応が充分に進行せず、また1000kPaを超えると
処理設備が大きくなりすぎ、工業的にコスト面、また安
全面で好ましくないため、圧力範囲を10kPa〜10
00kPaとした。さらに好ましくは50kPa〜15
0kPaである。[0020] In this invention, when heating with H 2 gas, H in 2 gas pressure is less than 10 kPa, it does not proceed sufficiently that the above decomposition reaction, also processing facility becomes too large and exceeds 1000 kPa, industrial Since it is not preferable in terms of cost and safety, the pressure range is 10 kPa-10
It was set to 00 kPa. More preferably 50 kPa to 15
It is 0 kPa.
【0021】H2ガス中での加熱処理温度は、500℃
未満ではRH2■3、αFe、Fe2Bなどへの分解反応
が起こらず、また900℃を超えるとRH2■3が不安定
となり、かつ生成物が粒成長して正方晶Nd2Fe14B
型化合物の極微細結晶組織を得ることが困難になるた
め、温度範囲を500℃〜900℃とする。また、加熱
処理保持時間については、上記の分解反応を充分に行わ
せるため、15分〜8時間の加熱保持が必要である。The heat treatment temperature in H 2 gas is 500 ° C.
If the temperature is less than 1, the decomposition reaction into RH 2 ■ 3 , αFe, Fe 2 B, etc. does not occur, and if it exceeds 900 ° C., the RH 2 ■ 3 becomes unstable, and the product grows to form tetragonal Nd 2 Fe 14. B
Since it becomes difficult to obtain an ultrafine crystal structure of the type compound, the temperature range is set to 500 ° C to 900 ° C. Regarding the heat treatment holding time, it is necessary to hold the heat treatment for 15 minutes to 8 hours in order to sufficiently carry out the above decomposition reaction.
【0022】この発明の脱H2処理時のH2分圧は、10
Paを超えると下記の温度範囲、すなわち900℃以下
ではRH2■3相の分解条件に至らないか、平衡論的には
分解条件に達していたとしても実用的な脱H2速度が得
られないため、脱H2処理時のH2分圧は10Pa以下と
した。The H 2 partial pressure during de H 2 treatment of the present invention, 10
It exceeds Pa the temperature range below, i.e. either does not lead to decomposition conditions RH 2 ■ 3-phase at 900 ° C. or less, practical de H 2 rate is obtained even in the equilibrium theory has reached the cracking conditions no order, H 2 partial pressure at the time of de-H 2 process was 10Pa or less.
【0023】この発明において、脱H2処理の温度が5
00℃未満ではRH2■3相からのH2の離脱が起こら
ず、そのため正方晶Nd2Fe14B型化合物が再結晶し
ない。また、900℃を超えると正方晶Nd2Fe14B
型化合物は生成するが、再結晶粒が粗大に成長し、高い
保磁力が得られない。そのため、脱H2処理の温度範囲
は500℃〜900℃とする。また、加熱処理保持時間
は、上記の再結晶反応を充分に行わせるためには15分
〜8時間の加熱保持が必要である。In the present invention, the temperature for the H 2 removal treatment is 5
When the temperature is lower than 00 ° C., H 2 is not released from the RH 2 3 phase, and therefore the tetragonal Nd 2 Fe 14 B type compound is not recrystallized. Further, when the temperature exceeds 900 ° C., tetragonal Nd 2 Fe 14 B
A type compound is produced, but recrystallized grains grow coarsely and a high coercive force cannot be obtained. Therefore, the temperature range of the H 2 removal treatment is 500 ° C. to 900 ° C. Further, the heat treatment holding time is required to be 15 minutes to 8 hours in order to sufficiently carry out the above recrystallization reaction.
【0024】脱H2処理後の正方晶Nd2Fe14B型化合
物の再結晶粒径は実質的に0.05μm以下の平均再結
晶粒径を得ることは困難であり、また、たとえ得られた
としても、磁気特性上の利点がない。一方、平均再結晶
粒径が1μmを超えると、粉末の保磁力が低下するため
好ましくない。そのため、平均再結晶粒径を0.05〜
1μmとした。The recrystallized grain size of the de H 2 treatment tetragonal Nd 2 Fe 14 B type compound after is substantially difficult to obtain an average recrystallized grain size below 0.05 .mu.m, also obtained if Even if it does, there is no advantage in magnetic characteristics. On the other hand, if the average recrystallized grain size exceeds 1 μm, the coercive force of the powder decreases, which is not preferable. Therefore, the average recrystallized grain size is 0.05 to
It was 1 μm.
【0025】この発明において用いられるバインダー
は、樹脂や金属を問わず特にその種類を限定するもので
ないが、後述の成形法に応じて最適のバインダーが適宜
選定される。例えば、圧縮成形法による場合はエポキシ
系のような熱硬化性樹脂が用いられることが多く、成形
後に硬化処理として加熱を行う。また、射出成形法では
ナイロン系のような熱可塑性樹脂が用いられ、硬化処理
を特に必要としない。金属バインダーの場合は、主に複
合磁石の使用条件によってバインダーとして用いられる
金属の融点が選択される。また、樹脂バインダーの透水
性を嫌う場合や、樹脂バインダーからの放出ガスを嫌う
場合には、金属バインダーが選択される。例えば、Z
n、In、Sn、Pbおよびこれらの合金があり、融点
が150〜500℃の範囲にある金属や合金から適宜選
定される。この発明において、バインダー量は樹脂バイ
ンダーの場合は0.5〜20wt%であるが、圧縮成形
法の場合は1〜10wt%が好ましく、押出し成形の場
合は1〜10wt%が好ましく、射出成形、シート状成
形の場合は3〜20wt%、成形後に含浸させる場合は
成形体の空孔率で決定されるが0.5〜5wt%、ま
た、金属バインダーの場合は、5〜50wt%である。
上記のバインダー量はその下限値よりも少ない場合は、
成形が困難になり、内部に空孔が多く残留して強度不足
となり、また脱粒が起こりやすく、さらに成形時の外部
磁界による配向が困難となり、磁石特性が劣化する。バ
インダー量がその上限値より多い場合は、磁束密度、エ
ネルギー積等の磁石特性が劣化するため好ましくない。The binder used in the present invention is not particularly limited in kind regardless of resin or metal, but an optimum binder is appropriately selected according to a molding method described later. For example, in the case of the compression molding method, a thermosetting resin such as an epoxy resin is often used, and heating is performed as a curing treatment after molding. In addition, a thermoplastic resin such as nylon is used in the injection molding method, and curing treatment is not particularly required. In the case of a metal binder, the melting point of the metal used as the binder is selected mainly depending on the usage conditions of the composite magnet. Further, when the water permeability of the resin binder is disliked or the gas released from the resin binder is disliked, the metal binder is selected. For example, Z
There are n, In, Sn, Pb and alloys thereof, and they are appropriately selected from metals and alloys having a melting point in the range of 150 to 500 ° C. In the present invention, the amount of the binder is 0.5 to 20 wt% in the case of the resin binder, preferably 1 to 10 wt% in the compression molding method, 1 to 10 wt% in the extrusion molding, and injection molding, In the case of sheet-like molding, it is 3 to 20 wt%, in the case of impregnating it after molding, it is 0.5 to 5 wt% depending on the porosity of the molded body, and in the case of a metal binder, it is 5 to 50 wt%.
When the amount of the above binder is less than the lower limit value,
Molding becomes difficult, many voids remain inside, the strength becomes insufficient, and grain breakage easily occurs. Further, orientation by an external magnetic field during molding becomes difficult, and magnet characteristics deteriorate. When the amount of the binder is more than the upper limit value, magnetic properties such as magnetic flux density and energy product are deteriorated, which is not preferable.
【0026】成形方法は特に限定しないが、磁界を印加
して成形できる方法として一般的なのは、圧縮成形法と
射出成形法である。また、ヨーク材との一体成形も可能
である。押出し成形法は特に、長尺形状の磁石を生産す
るには生産性のよい方法である。また、ベースフィルム
上にシート状スラリーを作製し、必要形状に打ち抜いて
硬化処理を行い、薄肉磁石を製作することができる。更
に、原料粉末のみを磁界中で成形、取り出した後、前記
バインダーを含浸させることもできる。The molding method is not particularly limited, but the compression molding method and the injection molding method are common methods for molding by applying a magnetic field. Further, it is also possible to integrally form with the yoke material. The extrusion molding method is a highly productive method particularly for producing a long magnet. In addition, a thin-walled magnet can be manufactured by preparing a sheet-shaped slurry on a base film, punching it into a required shape, and performing a curing treatment. Further, only the raw material powder may be molded in a magnetic field, taken out, and then impregnated with the binder.
【0027】[0027]
【作用】この発明によるR−T−B系複合磁石は、Bの
一部をCで置換することによって、安定して大きな磁気
異方性が得られて残留磁束密度Brを大きくすることが
でき、さらに、Al,Cr,Ni,Ga,Zr,In,
Sn.Hf,Ti,V,Nb,Mo,Ta,Wの1種ま
たは2種以上を添加することにより磁気特性を改善向上
することが可能である。さらに、特定組成範囲のR−T
−M−B−C系合金粗粉砕粉を用いて、水素処理法にお
ける水素圧力を10kPa以上とし、脱水素工程の水素
圧力を10Pa以下とすることにより、平均結晶粒径が
0.05〜1μmの再結晶粒よりなる磁気的に異方性の
大きな、高い保磁力を有する磁粉を安定して得ることが
でき、バインダーと結合した複合磁石の磁気特性が向上
する。In the RTB composite magnet according to the present invention, a large magnetic anisotropy can be stably obtained by substituting C for a part of B, and the residual magnetic flux density Br can be increased. , Al, Cr, Ni, Ga, Zr, In,
Sn. It is possible to improve and improve the magnetic characteristics by adding one or more of Hf, Ti, V, Nb, Mo, Ta and W. Furthermore, R-T of a specific composition range
-M-B-C system alloy coarsely pulverized powder is used, the hydrogen pressure in the hydrogen treatment method is set to 10 kPa or more, and the hydrogen pressure in the dehydrogenation step is set to 10 Pa or less, so that the average crystal grain size is 0.05 to 1 μm. It is possible to stably obtain a magnetic powder having a high magnetic anisotropy composed of recrystallized grains and having a high coercive force, and to improve the magnetic characteristics of the composite magnet combined with the binder.
【0028】[0028]
【実施例】実施例1 高周波誘導溶解法によって溶製して得られた、表1に示
すNo.1〜14の組成の鋳塊を、1100℃、24時
間、10Pa以下の真空中で焼鈍して、鋳塊中の正方晶
Nd2Fe14B型化合物の体積比を90%以上とした。
この鋳塊を、Arガス雰囲気中(O2量0.5%以下)
でスタンプミルにて平均粒度100μmに粗粉砕した
後、この粗粉砕粉を管状炉に入れ、1Pa以下にまで真
空排気した。その後、純度99.9999%以上の10
0kPaのH2ガスを導入しつつ、原料温度800℃に
て2時間保持した。引き続き原料を800℃に保持した
まま、H2ガスの供給を止め、ロータリーポンプ、油拡
散ポンプによって炉内を真空排気し、1時間保持した。
このときの原料処理室内の圧力は最終的に0.05Pa
まで低下した。その後炉内に純度99.999%以上の
Arガスを導入すると共に原料を冷却し、原料温度が5
0℃以下となったところで原料を取り出した。得られた
各磁石用粉末は、結晶粒径が0.05〜1μmのものが
体積比で80%〜95%の範囲にあり、平均粒径は0.
3μm〜0.5μmの範囲であった。それぞれの保磁力
HcJ、磁化I、磁化容易方向の残留磁束密度Brを測
定して表1に示す。なお、磁化の値は外部磁界0.8M
A/mの時の値で、磁界中で配向して測定した。この原
料粉末にバインダーとして、熱硬化性エポキシ樹脂を3
wt%混合した後、0.8MA/mの磁界中、3.0t
on/cm2の圧力で圧縮成形し、さらに150℃、1
時間の条件で樹脂の硬化処理を行って希土類複合磁石を
作製した。各磁石の保磁力HcJ、磁化I、磁化容易方
向の残留磁束密度Brを測定して表2に示す。Example 1 No. 1 shown in Table 1 obtained by melting by a high frequency induction melting method. The ingots having the compositions of 1 to 14 were annealed at 1100 ° C. for 24 hours in a vacuum of 10 Pa or less so that the volume ratio of the tetragonal Nd 2 Fe 14 B type compound in the ingot was 90% or more.
This ingot was placed in an Ar gas atmosphere (O 2 amount of 0.5% or less).
After roughly pulverizing with a stamp mill to an average particle size of 100 μm, this coarsely pulverized powder was put into a tubular furnace and evacuated to 1 Pa or less. Then, the purity of 99.9999% or more 10
While introducing H 2 gas of 0 kPa, the raw material temperature was kept at 800 ° C. for 2 hours. Subsequently, while keeping the raw material at 800 ° C., the supply of H 2 gas was stopped, the inside of the furnace was evacuated by a rotary pump and an oil diffusion pump, and it was kept for 1 hour.
The pressure inside the raw material processing chamber at this time is finally 0.05 Pa.
Fell to. After that, Ar gas having a purity of 99.999% or more was introduced into the furnace, and the raw material was cooled to a raw material temperature of 5
The raw material was taken out when the temperature became 0 ° C or lower. Each of the obtained magnet powders has a crystal grain size of 0.05 to 1 μm in a volume ratio of 80% to 95% and an average grain size of 0.
It was in the range of 3 μm to 0.5 μm. The coercive force HcJ, the magnetization I, and the residual magnetic flux density Br in the easy magnetization direction are measured and shown in Table 1. The value of magnetization is 0.8 M in the external magnetic field.
The value at A / m was measured by orienting in a magnetic field. To this raw material powder, a thermosetting epoxy resin 3 is used as a binder.
After mixing wt%, in a magnetic field of 0.8 MA / m, 3.0t
compression-molded at a pressure of on / cm 2 and then 150 ° C. for 1
The resin was cured under the conditions of time to produce a rare earth composite magnet. The coercive force HcJ, the magnetization I, and the residual magnetic flux density Br in the easy magnetization direction of each magnet are measured and shown in Table 2.
【0029】比較例 表1に示すNo.15〜17の3種類の組成の粗粉砕粉
について、実施例と同様の処理を行い、水素処理による
永久磁石用合金粉末を得た。得られた比較例による磁石
用粉末の保磁力HcJ、磁化I、残留磁束密度Brを測
定して表1に示す。また、実施例1と同様にバインダー
として、熱硬化性エポキシ樹脂を3wt%混合して希土
類複合磁石を作製し、各磁石の保磁力HcJ、磁化I、
磁化容易方向の残留磁束密度Brを測定して表2に示
す。Comparative Example No. 1 shown in Table 1 The coarsely pulverized powders having three types of compositions of 15 to 17 were treated in the same manner as in the example to obtain alloy powder for permanent magnet by hydrogen treatment. The coercive force HcJ, the magnetization I, and the residual magnetic flux density Br of the obtained magnet powder according to the comparative example are measured and shown in Table 1. In addition, as in Example 1, 3 wt% of thermosetting epoxy resin was mixed as a binder to prepare a rare earth composite magnet, and the coercive force HcJ, magnetization I, and
The residual magnetic flux density Br in the easy magnetization direction is measured and shown in Table 2.
【0030】実施例2 表1に示すNo.6〜14の9種類の組成の磁石用粉末
に、アミノシラン系カップリング材を0.5wt%、チ
タネート系カップリング材を0.5wt%、Arガス中
で混合し、続いてバインダーとしてナイロン12を8w
t%混合し、Arガス中、230℃で15分間混練して
コンパウンドを作製した。このコンパウンドを射出成形
機に装填し、280℃、印加磁界0.8MA/mの条件
で射出成形を行い、希土類複合磁石を作製した。各磁石
の保磁力HcJ、磁化I、磁化容易方向の残留磁束密度
Brを測定して表2に示す。Example 2 No. 1 shown in Table 1 Aminosilane-based coupling material (0.5 wt%), titanate-based coupling material (0.5 wt%) and Ar gas were mixed with 9 to 9 magnet powders of 6 to 14 and then Nylon 12 was used as a binder. 8w
t% was mixed and kneaded in Ar gas at 230 ° C. for 15 minutes to prepare a compound. This compound was loaded into an injection molding machine, and injection molding was performed under the conditions of 280 ° C. and an applied magnetic field of 0.8 MA / m to produce a rare earth composite magnet. The coercive force HcJ, the magnetization I, and the residual magnetic flux density Br in the easy magnetization direction of each magnet are measured and shown in Table 2.
【0031】実施例3 表1に示すNo.6〜14の9種類の組成の磁石用粉末
に、バインダーとしてZn粉末を25wt%混合した
後、0.8MA/mの磁界中、3.0ton/cm2の
圧力で圧縮成形を行い、取り出した後にArガス雰囲気
で425℃で15分間の熱処理を行って希土類複合磁石
を作製した。各磁石の保磁力HcJ、磁化I、磁化容易
方向の残留磁束密度Brを測定して表2に示す。Example 3 No. 1 shown in Table 1 Zn powder as a binder was mixed at 25 wt% with 9 kinds of magnet powders of 6 to 14 and then compression molded at a pressure of 3.0 ton / cm 2 in a magnetic field of 0.8 MA / m and taken out. After that, heat treatment was performed at 425 ° C. for 15 minutes in an Ar gas atmosphere to produce a rare earth composite magnet. The coercive force HcJ, the magnetization I, and the residual magnetic flux density Br in the easy magnetization direction of each magnet are measured and shown in Table 2.
【0032】[0032]
【表1】 [Table 1]
【0033】[0033]
【表2】 [Table 2]
【0034】[0034]
【発明の効果】この発明の組成によるR−T−M−B−
C系永久磁石用粉末は、特定組成範囲のR−T−M−B
−C系粗粉砕粉を、例えば水素吸蔵合金より放出された
高純度のH2ガス中で、水素圧力を10kPa以上の加
熱処理並びに水素圧力を10Pa以下の所定雰囲気で加
熱保持する脱H2処理を行うことで、平均結晶粒径が
0.05〜1μmの再結晶粒よりなる磁気的に異方性の
大きな、高い保磁力を有する磁性合金粉末を得ることが
でき、種々バインダーと結合させて高性能複合磁石を製
造できる。According to the composition of the present invention, R-T-M-B-
C-based permanent magnet powder has a specific composition range of R-T-M-B.
-C-based coarsely pulverized powder is heat-treated at a hydrogen pressure of 10 kPa or more in a high-purity H 2 gas released from, for example, a hydrogen storage alloy, and de-H 2 treatment is performed by heating and holding the hydrogen pressure at a predetermined atmosphere of 10 Pa or less. By carrying out, it is possible to obtain a magnetic alloy powder having a large magnetic anisotropy and a high coercive force, which is composed of recrystallized grains having an average crystal grain size of 0.05 to 1 μm, and is combined with various binders. A high-performance composite magnet can be manufactured.
Claims (2)
の少なくとも1種でかつPrまたはNdの1種または2
種をRのうち50原子%以上含有)、T:67〜85原
子%(T:FeまたはFeの1部を50原子%以下のC
oにて置換)、B,Cの量が B+C=4〜10原子%
C/(B+C)=0.01〜0.8を満足する値を有
する組成の合金粉末からなり、合金粉末の70vol%
以上が正方晶Nd2Fe14B型結晶構造を有する化合物
で、かつ該化合物のうち体積比で少なくとも50%以上
の結晶粒径が0.05〜1μmで、平均粒径が10〜1
000μmからなり、その磁化容易方向の残留磁束密度
が0.9〜1.6Tを有する合金粉末を、バインダーと
結合したことを特徴とする磁気異方性を有する希土類系
複合磁石。1. R: 10 to 20 atomic% (R; at least one rare earth element and one or two Pr or Nd).
Species are contained in R of 50 atomic% or more), T: 67 to 85 atomic% (T: Fe or a part of Fe is 50 atomic% or less of C).
the amount of B and C is B + C = 4 to 10 atom%.
C / (B + C) = consisting of an alloy powder having a composition satisfying a value of 0.01 to 0.8, 70 vol% of the alloy powder
The above is a compound having a tetragonal Nd 2 Fe 14 B type crystal structure, and at least 50% by volume of the compound has a crystal grain size of 0.05 to 1 μm and an average grain size of 10 to 1.
A rare earth-based composite magnet having magnetic anisotropy, characterized in that an alloy powder having a residual magnetic flux density of 000 μm and having a residual magnetic flux density in the easy magnetization direction of 0.9 to 1.6 T is bonded to a binder.
の少なくとも1種でかつPrまたはNdの1種または2
種をRのうち50原子%以上含有)、T:67〜85原
子%(T:FeまたはFeの1部を50原子%以下のC
oにて置換)、M;10原子%以下(M;Al、Ti、
V、Cr、Ni、Ga、Zr、Nb、Mo、In、S
n、Hf、Ta、Wのうち1種または2種以上)、B,
Cの量がB+C=4〜10原子% C/(B+C)=
0.01〜0.8 を満足する値を有する組成の合金粉
末からなり、合金粉末の70vol%以上が正方晶Nd
2Fe14B型結晶構造を有する化合物で、かつ該化合物
のうち体積比で少なくとも50%以上の結晶粒径が0.
05〜1μmで、平均粒径が10〜1000μmからな
り、その磁化容易方向の残留磁束密度が0.9〜1.6
Tを有する合金粉末を、バインダーと結合したことを特
徴とする磁気異方性を有する希土類系複合磁石。2. R: 10 to 20 atomic% (R; at least one rare earth element and one or two Pr or Nd).
Species are contained in R of 50 atomic% or more), T: 67 to 85 atomic% (T: Fe or a part of Fe is 50 atomic% or less of C).
Substituted with o), M; 10 atomic% or less (M; Al, Ti,
V, Cr, Ni, Ga, Zr, Nb, Mo, In, S
one or more of n, Hf, Ta, W), B,
The amount of C is B + C = 4 to 10 atomic% C / (B + C) =
It is composed of an alloy powder having a composition satisfying a value of 0.01 to 0.8, and 70 vol% or more of the alloy powder is tetragonal Nd.
2 Fe 14 B-type crystal structure compound, and the crystal grain size of at least 50% by volume of the compound is 0.
The average particle diameter is 05 to 1 μm, the average particle diameter is 10 to 1000 μm, and the residual magnetic flux density in the easy magnetization direction is 0.9 to 1.6.
A rare earth-based composite magnet having magnetic anisotropy, characterized in that an alloy powder having T is combined with a binder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4191729A JP2978004B2 (en) | 1992-06-24 | 1992-06-24 | Method for producing rare earth composite magnet having magnetic anisotropy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4191729A JP2978004B2 (en) | 1992-06-24 | 1992-06-24 | Method for producing rare earth composite magnet having magnetic anisotropy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0613215A true JPH0613215A (en) | 1994-01-21 |
JP2978004B2 JP2978004B2 (en) | 1999-11-15 |
Family
ID=16279523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4191729A Expired - Fee Related JP2978004B2 (en) | 1992-06-24 | 1992-06-24 | Method for producing rare earth composite magnet having magnetic anisotropy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2978004B2 (en) |
-
1992
- 1992-06-24 JP JP4191729A patent/JP2978004B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2978004B2 (en) | 1999-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5288277B2 (en) | Manufacturing method of RTB-based permanent magnet | |
JP3250551B2 (en) | Method for producing anisotropic rare earth magnet powder | |
JPH09165601A (en) | Anisotropic rare earth alloy powder for permanent magnet and production of anisotropic bonded magnet | |
JP7586881B2 (en) | Sintered rare earth neodymium-iron-boron magnets, their manufacturing method and use of praseodymium hydride | |
JP3540438B2 (en) | Magnet and manufacturing method thereof | |
EP2645381B1 (en) | Process for producing R-T-B-based rare earth magnet particles | |
JP3623571B2 (en) | Method for producing RTB-based anisotropic bonded magnet | |
JP3597615B2 (en) | Method for producing RTB based anisotropic bonded magnet | |
US5186761A (en) | Magnetic alloy and method of production | |
CN1061163C (en) | Double-phase rare-earth-iron-boron magnetic powder and its prepn. method | |
JP3504735B2 (en) | Method for producing RTMN based anisotropic bonded magnet | |
JPH05335120A (en) | Anisotropic bonded manget manufacturing magnet powder coated with solid resin binder and manufacture thereof | |
JP3634565B2 (en) | Method for producing anisotropic rare earth alloy powder for permanent magnet | |
JPH10172850A (en) | Production of anisotropic permanent magnet | |
JP2002025813A (en) | Anisotropic rare earth magnet powder | |
JP2978004B2 (en) | Method for producing rare earth composite magnet having magnetic anisotropy | |
JP3086334B2 (en) | Anisotropic rare earth alloy powder for permanent magnet | |
JP2999648B2 (en) | Rare earth magnet, rare earth magnet alloy powder and method for producing the same | |
JPS6230846A (en) | Production of permanent magnet material | |
JP3432858B2 (en) | Method for producing Fe-BR bonded magnet | |
JPH04143221A (en) | Permanent magnet manufacturing method | |
JPH0521219A (en) | Production of rare-earth permanent magnet | |
JP3529551B2 (en) | Manufacturing method of rare earth sintered magnet | |
JPH0532460B2 (en) | ||
JPH04346607A (en) | Production of permanent magnet powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |