[go: up one dir, main page]

JPH0612836B2 - Method for manufacturing photoelectric conversion element - Google Patents

Method for manufacturing photoelectric conversion element

Info

Publication number
JPH0612836B2
JPH0612836B2 JP59171438A JP17143884A JPH0612836B2 JP H0612836 B2 JPH0612836 B2 JP H0612836B2 JP 59171438 A JP59171438 A JP 59171438A JP 17143884 A JP17143884 A JP 17143884A JP H0612836 B2 JPH0612836 B2 JP H0612836B2
Authority
JP
Japan
Prior art keywords
disilane
formation
photoactive layer
glow discharge
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59171438A
Other languages
Japanese (ja)
Other versions
JPS6150380A (en
Inventor
信弘 福田
貞雄 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP59171438A priority Critical patent/JPH0612836B2/en
Publication of JPS6150380A publication Critical patent/JPS6150380A/en
Publication of JPH0612836B2 publication Critical patent/JPH0612836B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F71/00Manufacture or treatment of devices covered by this subclass
    • H10F71/10Manufacture or treatment of devices covered by this subclass the devices comprising amorphous semiconductor material
    • H10F71/103Manufacture or treatment of devices covered by this subclass the devices comprising amorphous semiconductor material including only Group IV materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 本発明は非晶質シリコン(以下a-Si:Hと略称する)光電
変換素子の製造方法に関し、特にその高効率化および高
速製造に関する。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing an amorphous silicon (hereinafter abbreviated as a-Si: H) photoelectric conversion element, and particularly to high efficiency and high speed manufacturing thereof.

〔従来技術およびその問題点〕[Prior art and its problems]

光電変換素子とくに非晶質シリコン太陽電池の高効率化
が検討されて成果をあげつつあるが、高速成膜条件にお
いては未だ効率の向上は緒についたばかりである。すな
わち、光活性層の形成速度を20Å/Sとするような高速
製造条件においては、高効率は達成されていない。
The photoelectric conversion element, especially the improvement of the efficiency of the amorphous silicon solar cell, has been studied and the results have been achieved, but the improvement of the efficiency has only just begun under the high-speed film forming conditions. That is, high efficiency has not been achieved under the high-speed manufacturing conditions such that the formation rate of the photoactive layer is 20Å / S.

本発明者らは先に、高速でかつ高効率を達成するために
ジシラン(Si2H6)を原料とする非晶質シリコン太陽電
池の製造方法を開示した。即ちジシランを原料として場
合、ある閾値を越えるエネルギーが供給される条件下で
ジシランを分解することがこのために不可欠であること
を開示した。
The present inventors have previously disclosed a method for producing an amorphous silicon solar cell using disilane (Si 2 H 6 ) as a raw material in order to achieve high speed and high efficiency. That is, it has been disclosed that when disilane is used as a raw material, it is essential to decompose the disilane under the condition that energy exceeding a certain threshold is supplied.

しかしながらジシランが高速成膜性であるが故に半導体
接合界面の制御が困難であつた。なぜなら、この界面は
高々1000Å以下の厚みであり、20Å/Sのような高速で
成膜を行う場合、僅か50秒以下の短い時間で制御せねば
ならぬからである。本発明者らこの界面をモノシランで
形成したり、放電電力を低下させて成膜速度を遅くした
りして形成することを試みたが未だ充分の成果を得てい
ない。
However, it is difficult to control the semiconductor junction interface because disilane has a high film-forming property. This is because this interface has a thickness of 1000 Å or less at most, and when a film is formed at a high speed of 20 Å / S, it must be controlled in a short time of only 50 seconds or less. The present inventors have tried to form this interface with monosilane or to reduce the discharge power to slow the film formation rate, but have not yet obtained sufficient results.

本発明者らはこのようにモノシランで界面を作成してジ
シランへ移行することやジシランを用いかつ放電電力を
低下させて成膜速度をおそくすることは、たとえ界面の
数100Åの領域といえども好ましくないことを見出し
た。けだし、これらの場合には、短絡電流の著しい減少
が生じ、曲線因子(F.F.)も低下するからである。
The inventors of the present invention thus create an interface with monosilane and transfer it to disilane, and using disilane to reduce the discharge power to slow down the film deposition rate, even if it is a region of several 100 Å of the interface. It was found to be unfavorable. This is because, in these cases, the short-circuit current is significantly reduced in these cases, and the fill factor (FF) is also reduced.

〔発明の目的〕[Object of the Invention]

本発明の目的は高速製膜条件においても短絡電流の低下
や曲線因子の低下をひきおこすことがない高光電変換効
率の光電変換素子を製造する方法を提供することであ
る。
An object of the present invention is to provide a method for producing a photoelectric conversion element having high photoelectric conversion efficiency that does not cause a decrease in short circuit current or a decrease in fill factor even under high-speed film forming conditions.

〔発明の開示〕[Disclosure of Invention]

本発明者らはジシランとモノシランの併用は好ましくな
いのでジシランのみで光活性層の製造を検討し必要エネ
ルギーを与えつつ堆積速度のみを低下させて膜質を劣化
させずに界面を形成しうることに着目し、本発明を完成
した。
Since the present inventors do not like to use disilane and monosilane in combination, it is possible to study the production of the photoactive layer using only disilane and reduce the deposition rate while providing the required energy to form the interface without degrading the film quality. Focusing attention, the present invention has been completed.

すなわち、本発明に従つて、電極を有する基板上に、シ
リコン水素化物のグロー放電分解により、第1の導電
層、光活性層および第2の導電層を順次形成し、第2の
電極を設ける光電変換素子の製造方法において、少くと
も該光活性層の形成をジシランにより行い、かつ該ジシ
ラン単位質量当り、活性層薄膜の形成速度が主としてジ
シラン流量に依存し印加エネルギー量によつては実質的
に影響されることのない最低のエネルギー量(以下、閾
値という)以上のエネルギーを常に印加すると共に、該
光活性層形成の少くとも初期領域はより低い速度で、残
りをより高速度となるごとく連続的に堆積速度を変化さ
せて行なうことを特徴とする光電変換素子の製造方法が
提供される。
That is, according to the present invention, a first conductive layer, a photoactive layer and a second conductive layer are sequentially formed on a substrate having an electrode by glow discharge decomposition of silicon hydride, and a second electrode is provided. In the method for producing a photoelectric conversion element, at least the photoactive layer is formed by disilane, and the formation rate of the active layer thin film per unit mass of the disilane is mainly dependent on the flow rate of disilane and is substantially dependent on the applied energy amount. Energy is always applied over a minimum energy amount (hereinafter, referred to as a threshold value) that is not affected by, and at least the initial region of the formation of the photoactive layer is at a lower speed and the rest is at a higher speed. Provided is a method for manufacturing a photoelectric conversion element, which is characterized in that the deposition rate is continuously changed.

以下本発明を詳細に説明する。The present invention will be described in detail below.

本発明の方法において使用するジシランとはモノシラン
含量が10vol%未満、好ましくは5%未満、より好ま
しくは1%未満、さらに好ましくは0.1%未満、最も
好ましくはほぼ0%のものである。モノシラン含量が大
になると太陽電池の曲線因子(F.F.)が急激に悪くな
る。
The disilane used in the process of the present invention has a monosilane content of less than 10 vol%, preferably less than 5%, more preferably less than 1%, even more preferably less than 0.1%, most preferably almost 0%. The fill factor (FF) of solar cells rapidly deteriorates with increasing monosilane content.

本発明の方法において「閾値」とはジシラン単位質量当
りの、活性層薄膜の形成速度が主としてジシラン流量に
依存し印加エネルギー量によつては実質的に影響される
ことのない最低のエネルギー量として定義されるが、よ
り具体的には、本発明者らが特願昭58−1726号に
開示したように、a−Si:H膜の形成速度がグロー放電に
用いる高周波電力に依存して変化しないようになるグロ
ー放電電力値である。すなわち、閾値を越えるグロー放
電電力においては、形成速度は原料ガス流量によつて支
配されるので、原料ガス流量を低下させることにより、
堆積速度を低下させうる。この方法を用いればジシラン
を用いてa−Si:H膜を形成するにあたつても、その膜
質を低下させることなく、体積速度を低下せしめうるの
で、界面における不純物分布の制御や膜質の異なる界面
の形成を避けることができる。
In the method of the present invention, the "threshold value" means the minimum amount of energy per unit mass of disilane that does not substantially affect the rate of formation of the active layer thin film and the amount of applied energy. Although defined, more specifically, as disclosed by the present inventors in Japanese Patent Application No. 58-1726, the a-Si: H film formation rate changes depending on the high frequency power used for glow discharge. It is the glow discharge power value at which it becomes impossible to do so. That is, at glow discharge power exceeding the threshold value, the formation rate is governed by the raw material gas flow rate, so by reducing the raw material gas flow rate,
It can reduce the deposition rate. By using this method, even when forming an a-Si: H film using disilane, the volume velocity can be lowered without lowering the film quality, so that the control of the impurity distribution at the interface and the different film quality can be achieved. The formation of interfaces can be avoided.

これに対し、SiHを用いる方法や、Siを用
いても電力や流量を低下させる方法においては前記の問
題点を解決できない。
On the other hand, the above problems cannot be solved by the method using SiH 4 or the method using Si 2 H 6 to reduce the electric power and the flow rate.

本発明において閾値は供給エネルギー(Supplied ene
rgy)として表わすのが便利である。
In the present invention, the threshold is the supplied energy (Supplied ene
It is convenient to express it as rgy).

供給エネルギーの求め方は次の式による。The method of calculating the supplied energy is as follows.

〔I〕式に用いる成膜条件の単位はRF電力(W)、原料
ガス流量(標準状態毎分当りの流量≡SCCM)であり、13
44≡60(分)22.4(/mol)で表わされる係数であ
る。たとえばジシラン30SCCM、希釈のためのヘリウムガ
ス270SCCMのときは、平均分子量=(30×62.2+270×
4)/300=9.82、 であり、RF電力(グロー放電電力)=100Wのときに
は、〔I〕式に代入して を得る。閾値の値は先に定義した通りであるが、具体的
には例示すれば、ジシランの場合50KJ/g−Si
、ヘリウム希釈10%ジシランの場合10KJ/g−S
、水素希釈10%ジシランの場合30KJ/g−Si
のごとくなる。
The unit of film forming conditions used in the formula [I] is RF power (W) and raw material gas flow rate (standard state flow rate per minute ≡SCCM).
It is a coefficient represented by 44 ≡ 60 (min) 22.4 (/ mol). For example, when disilane 30SCCM and helium gas 270SCCM for dilution, average molecular weight = (30 x 62.2 + 270 x
4) /300=9.82, Then, when RF power (glow discharge power) = 100 W, it is substituted into the formula [I]. To get The threshold value is as defined above. Specifically, for example, in the case of disilane, it is 50 KJ / g-Si.
2 H 6, when helium dilution 10% disilane least 10 KJ / g-S
i 2 H 6 , hydrogen diluted 10% disilane 30KJ / g-Si
It becomes like 2 H 6 .

本発明の方法は光活性層の形成をジシランにより行いか
つジシランにかかる閾値以上の必要エネルギーを常に印
加すると共に、特に光活性層の形成の少くとも初期領域
(界面領域)は上記閾値以上の範囲でより低速度で、残
りの大部分の領域をより高速度となるごとく連続的に堆
積速度を堆積速度を変化させて行うものである。
In the method of the present invention, the formation of the photoactive layer is performed by disilane, and necessary energy above the threshold value for disilane is always applied, and particularly at least the initial region (interface region) of the formation of the photoactive layer is in the range above the threshold value. At a lower speed, the deposition rate is continuously changed so that the remaining most area becomes higher speed.

ここで界面領域とは、光活性層の形成開始初期(たとえ
ばP−i接合界面)または形成終了点(たとえばi−n
接合界面)から1000Å以内の膜厚部分、より好ましくは
50〜500Åの膜厚部分をいう。本発明の方法においては
光活性層の界面領域は必ず10Å/S以下の堆積速度で形
成されなければならない。10Å/Sを越えると該領域に
おける鵜不純物の深さ方向の濃度分布の制御が困難にな
り太陽電池の性能が低下する。本発明の方法においては
光活性層の界面領域を上記の如く閾値以下のエネルギー
を与えつつ、堆積速度を10Å/S以下の低速で行ないつ
いで光活性層の大部分にあたる残りの部分を20Å/Sを
越える高速で堆積するものである。
Here, the interface region means an initial stage of formation of a photoactive layer (for example, a P-i junction interface) or an end point of formation (for example, i-n).
The film thickness part within 1000 Å from the bonding interface), more preferably
It refers to the film thickness portion of 50 to 500Å. In the method of the present invention, the interface region of the photoactive layer must be formed at a deposition rate of 10Å / S or less. If it exceeds 10Å / S, it becomes difficult to control the concentration distribution of cormorant impurities in the depth direction in the region, and the performance of the solar cell deteriorates. In the method of the present invention, the interface region of the photoactive layer is provided with energy below the threshold value as described above, the deposition rate is low at 10 Å / S or less, and the remaining part corresponding to most of the photoactive layer is 20 Å / S. It deposits at a high speed that exceeds

この場合堆積速度は連続的に変化させなければならな
い。堆積速度の変化は閾値以上の供給エネルギーを与え
つつ行なう。ここで連続的な変化とは不連続でない変化
をいい、不連続な変化とは、流量の変化にRF電力の変
化が上記規定の供給エネルギー条件を満足すべく追従で
きないような変化をいう。もし堆積速度を不連続的に急
激に変化させると太陽電池特性の低下が生じる。
In this case, the deposition rate must be changed continuously. The change of the deposition rate is performed while supplying the supplied energy above the threshold value. Here, the continuous change means a change that is not discontinuous, and the discontinuous change means a change that does not allow the change in the RF power to follow the change in the flow rate so as to satisfy the specified energy supply condition. If the deposition rate is changed abruptly in a discontinuous manner, the solar cell characteristics will deteriorate.

なお、実際上便利な方法としてRF電力の上昇を流量の
上昇に先行させる方法がある。この方法による限り供給
エネルギーは閾値を下回ることはない。
As a practically convenient method, there is a method in which an increase in RF power precedes an increase in flow rate. As long as this method is used, the supplied energy does not fall below the threshold value.

界面領域の膜堆積速度は上記したごとく10Å/S以下で
あるが、この部分の厚みは高々1000Å通常50〜500Åと
薄いので、平均堆積速度から要求される界面領域の堆積
時間の範囲内であれば、膜堆積速度は低い方がより制御
しやすい。
The film deposition rate in the interface region is 10 Å / S or less as described above, but the thickness of this part is as thin as 1000 Å usually 50 to 500 Å, so it should be within the deposition time range of the interface region required from the average deposition rate. For example, a lower film deposition rate is easier to control.

なお、本発明の方法を実施するに際し、より好ましく
は、第1の導電層を形成した基板を安定したグロー放電
中に移送することにより、光活性層の形成を開始するこ
とである。
In carrying out the method of the present invention, more preferably, the formation of the photoactive layer is started by transferring the substrate on which the first conductive layer is formed into stable glow discharge.

グロー放電の立上がり時には必ず放電に乱れが生じるの
で、これを避けるために、安定したグロー放電中に基板
を移送することが行なわれる。光活性層において界面領
域の形成だけを、高速で行なう残りの部分から分離して
おこなうことも本発明の効果を発揮させるに好ましい方
法の一つである。基板の移送時に放電に乱れる生じさせ
ないためには基板および基板ホルダーは電気的に絶縁さ
れているか、基板および基板ホルダー自身が絶縁物であ
ることが好ましい。
Discharge is always disturbed when the glow discharge rises. Therefore, in order to avoid this, the substrate is transferred during stable glow discharge. Forming only the interface region in the photoactive layer separately from the remaining portion, which is performed at high speed, is also one of the preferred methods for exerting the effect of the present invention. In order to prevent the discharge from being disturbed during the transfer of the substrate, it is preferable that the substrate and the substrate holder are electrically insulated, or that the substrate and the substrate holder themselves are insulators.

本発明の方法を実施するための好ましい形態をガラス基
板を用いる例について示す。グロー放電反応室に透明導
電膜が形成されたガラス基板を挿入する。ついで減圧下
100〜400℃の温度に加熱維持する。ジシランとp型ドー
ピングガスとによりp型a−Si:H膜を形成する。p
型a−Si:H膜のかわりにグロー放電法や光分解法に
よりジシラン、p型ドーピングガス、炭素含有化合物と
からp型a−Si:H膜を形成してもよい。ついでジシ
ランをa−Si:H膜の形成速度がグロー放電に用いる
高周波電力に依存して変化しない領域、即ち閾値以上の
領域において分解し光活性層を形成する。界面の形成は
ジシランの流量を低くして行ない、ついでRF電力を上
昇させながらジシラン流量を増加させる。また堆積速度
の遅いグロー放電中へ基板を移送して光活性層を形成し
はじめることは特に好ましいことである。
A preferred mode for carrying out the method of the present invention will be described with respect to an example using a glass substrate. A glass substrate on which a transparent conductive film is formed is inserted into the glow discharge reaction chamber. Then under reduced pressure
Keep heating at a temperature of 100-400 ° C. A p-type a-Si: H film is formed with disilane and a p-type doping gas. p
Instead of the type a-Si: H film, a p-type a-Si: H film may be formed from disilane, a p-type doping gas, and a carbon-containing compound by a glow discharge method or a photolysis method. Then, disilane is decomposed in a region where the formation rate of the a-Si: H film does not change depending on the high frequency power used for glow discharge, that is, a region equal to or more than a threshold value to form a photoactive layer. The interface is formed by lowering the flow rate of disilane, and then increasing the flow rate of disilane while increasing the RF power. It is also particularly preferred to transfer the substrate into a glow discharge with a slow deposition rate to begin forming the photoactive layer.

光活性層はジシランに対し1Vppm以下の微量のジボラ
ンを添加して形成されることもありうる。ついでジシラ
ンとn型ドーピングガスによりn型a−Si:H膜又は
n型微結晶化水素化シリコン膜を形成する。さらに第2
の電極を形成して本発明を完成する。
The photoactive layer may be formed by adding a minute amount of diborane of 1 Vppm or less to disilane. Then, an n-type a-Si: H film or an n-type microcrystalline silicon hydride film is formed by using disilane and an n-type doping gas. And second
The electrode is formed to complete the present invention.

光活性層の形成条件は形成温度100〜400℃、圧力0.0
5〜2Torrである。このとき希釈ガスとして水素やヘリ
ウムを用いることができる。希釈ガスを用いることによ
り光活性層の光導電度を希釈ガスを用いない場合に比べ
2〜10倍増加させることができる。
The conditions for forming the photoactive layer are a forming temperature of 100 to 400 ° C. and a pressure of 0.0.
It is 5 to 2 Torr. At this time, hydrogen or helium can be used as the diluent gas. By using a diluent gas, the photoconductivity of the photoactive layer can be increased by 2 to 10 times as compared with the case where the diluent gas is not used.

p型又はn型のドーピングガスはそれぞれジボラン(B2
6)およびホスフイン(PH3)が水素又はヘリウムで希
釈して用いられる。
The p-type or n-type doping gas is diborane (B 2
H 6) and phosphine (PH 3) is used diluted with hydrogen or helium.

太陽電池の形成方法は上記の態様の外にも(i)基板側か
らn型−i型−p型と積層する方法、(ii)電極を分解し
ておいて、複数の太陽電池を形成しこれらを直列接続し
た型で得る集積型太陽電池を製造する方法、(ii)電極お
よびa−Si:H膜を一様に形成した後、レーザー光のよ
うな加熱手段で分解し、ついで集積化する方法等いろい
ろあるが、これらのいずれの方法をも用いることができ
る。またp,i,n型a−Si:H膜を単一の反応室で作
成する方法や別々の反応室で作成することもできる。
In addition to the above-described embodiment, the method for forming a solar cell is (i) a method of stacking n-type-i-type-p-type from the substrate side, (ii) disassembling the electrodes to form a plurality of solar cells A method for producing an integrated solar cell, which is obtained by a series connection of these, (ii) after uniformly forming an electrode and an a-Si: H film, decomposing it by heating means such as laser light, and then integrating. There are various methods, and any of these methods can be used. Further, the p, i, n-type a-Si: H film can be formed in a single reaction chamber or in separate reaction chambers.

なお、本発明においてp型,i型,n型a−Si:H層の
膜厚はそれぞれ50〜500Å、2000〜8000Å、50〜500Åで
ある。
In the present invention, the p-type, i-type and n-type a-Si: H layers have film thicknesses of 50 to 500Å, 2000 to 8000Å and 50 to 500Å, respectively.

本発明で用いる基板や電極の材料については特に制限さ
れず、従来用いられている物質が有効に用いられる。
The materials of the substrate and electrodes used in the present invention are not particularly limited, and conventionally used substances are effectively used.

たとえば、基板として絶縁性又は導電性、透明又は不透
明のいずれの性質を有するものでもよい。基本的にはガ
ラス、アルミナ、シリコン、ステンレンステイール、ア
ルミニウム、モリブデン、耐熱性高分子等の物質で形成
されるフイルムあるいは板状の材料を基板として有効に
用いることができる。電極材料としては、光入射側には
もちろん透明あるいは透光性の材料を用いなければなら
ないが、これ以外の制限はない。アルミニウム、モリブ
デン、ニクロム、ITO、酸化錫、ステンレス等の薄膜
又は薄板が電極材料として有効に用いられる。
For example, the substrate may have any of insulating or conductive properties and transparent or opaque properties. Basically, a film or plate-like material formed of a substance such as glass, alumina, silicon, stainless steel, aluminum, molybdenum, and heat resistant polymer can be effectively used as a substrate. As the electrode material, of course, a transparent or translucent material must be used on the light incident side, but there is no other limitation. A thin film or thin plate of aluminum, molybdenum, nichrome, ITO, tin oxide, stainless steel, etc. is effectively used as an electrode material.

〔発明を実施するための好ましい形態〕[Preferred modes for carrying out the invention]

以下実施例により本発明を説明する。 The present invention will be described below with reference to examples.

(実施例) 基板挿入室、p層、光活性層、n層の各層形成室、基板
取出し室からなるプラズマCVD装置において、本発明
の方法を実施した。p層はB2H6/Si2H6=0.1vol%、
Si2H6/H2=50vol%で、圧力0.1Torr、供給エネルギ
ー8.2KJ/g−Si2H6、温度200℃で約100Åの膜厚に
形成された。つぎに光活性層形成室に移し、温度300
℃、形成圧力0.08〜0.3Torrにおいて供給エネル
ギーを60KJ/g−Si2H6として光活性層を形成した。光
活性層の形成は2Å/Sの堆積速度を有する界面形成部
に基板を移送し50秒間の滞留の後、30Å/Sの堆積速
度になるようにRF電力および流量を変化させ、約5000
Åの膜厚とすることで行なわれた。この時の平均の堆積
速度は23Å/Sを越える高速である。ついでn層形成室
に移送した。
(Example) The method of the present invention was carried out in a plasma CVD apparatus including a substrate insertion chamber, a p-layer, a photoactive layer, an n-layer forming chamber, and a substrate unloading chamber. The p layer is B 2 H 6 / Si 2 H 6 = 0.1vol%,
Si 2 H 6 / H 2 = 50 vol%, pressure 0.1 Torr, supply energy 8.2 KJ / g-Si 2 H 6 , temperature 200 ° C., and a film thickness of about 100 Å was formed. Next, it was moved to the photoactive layer forming chamber and the temperature was adjusted to 300
A photoactive layer was formed with the supply energy of 60 KJ / g-Si 2 H 6 at a forming pressure of 0.08 to 0.3 Torr. The photoactive layer is formed by transferring the substrate to an interface forming part having a deposition rate of 2Å / S, retaining it for 50 seconds, and then changing the RF power and flow rate so that the deposition rate is 30Å / S.
It was performed by setting the film thickness to Å. The average deposition rate at this time is higher than 23Å / S. Then, it was transferred to the n-layer forming chamber.

PH3/Si2H6=1vol%、S2H6/H2=10vol%でn層を約30
0Å形成した。基板取出し室を経て取り出し真空蒸着に
よりAl電極を形成した。AMI100mW/cm2の光を照射し
たところ光活性層の平均堆積速度が23Å/Sを越す高速
製造条件であつたにかかわらず、短絡電流は13〜14mÅ
/cm2、曲線因子は0.65〜0.7を維持しており、
光電変換効率の低下をひきおこさないことがわかつた。
PH 3 / Si 2 H 6 = 1vol%, S 2 H 6 / H 2 = 10vol%, n layer is about 30
0 Å formed. It was taken out through the substrate taking-out chamber and an Al electrode was formed by vacuum vapor deposition. Irradiation with light of 100 mW / cm 2 of AMI resulted in a short-circuit current of 13 to 14 mÅ, despite the high-speed manufacturing conditions where the average deposition rate of the photoactive layer exceeded 23 Å / S.
/ Cm 2 , the fill factor is maintained at 0.65 to 0.7,
It was found that the photoelectric conversion efficiency did not decrease.

〔発明の効果〕〔The invention's effect〕

以上のごとく、たとえば上記実施例に示すように、本発
明の方法によれば高速製造条件においても短絡電流の低
下や曲線因子の低下等の太陽電池特性の低下を生じさせ
ることなく光電変換効率の高効率化を達成できるもので
ある。
As described above, for example, as shown in the above Examples, according to the method of the present invention, the photoelectric conversion efficiency can be improved even under the high-speed manufacturing conditions without causing the deterioration of the solar cell characteristics such as the decrease of the short circuit current and the decrease of the fill factor. It is possible to achieve high efficiency.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電極を有する基板上に、シリコン水素化物
のグロー放電分解により、第1の導電層、光活性層およ
び第2の導電層を順次形成し、第2の電極を設ける光電
変換素子の製造方法において、少なくとも該光活性層の
形成をジシランにより行い、かつ該ジシラン単位質量当
り、活性層薄膜の形成速度が主としてジシラン流量に依
存し印加エネルギー量によっては実質的に影響されるこ
とのない最低のエネルギー量(以下閾値という)以上の
エネルギーを常に印加してあらかじめ形成されている安
定したグロー放電中に第1の導電層が形成された基板を
移送してグロー放電を乱すことなく光活性層の形成を開
始すると共に、該光活性層形成の少なくとも初期100
0Å以下の領域は10Å/秒より低い堆積速度で、残り
の光活性層をより高い堆積速度となるごとくグロー放電
を停止することなく連続的に堆積速度を変化させて行う
ことを特徴とする光電変換素子の製造方法。
1. A photoelectric conversion element in which a first conductive layer, a photoactive layer and a second conductive layer are sequentially formed on a substrate having electrodes by glow discharge decomposition of silicon hydride, and a second electrode is provided. In the method for producing the same, at least the formation of the photoactive layer is performed with disilane, and the formation rate of the active layer thin film per unit mass of the disilane is mainly dependent on the disilane flow rate and is substantially affected by the applied energy amount. The minimum amount of energy (hereinafter referred to as the threshold value) is constantly applied to transfer the substrate on which the first conductive layer is formed during the stable glow discharge that has been previously formed, and the light is emitted without disturbing the glow discharge. The formation of the active layer is started and at least the initial 100 of the formation of the photoactive layer.
The region below 0 Å has a deposition rate lower than 10 Å / sec, and the remaining photoactive layer is deposited by continuously changing the deposition rate without stopping the glow discharge so that the deposition rate becomes higher. Method for manufacturing conversion element.
JP59171438A 1984-08-20 1984-08-20 Method for manufacturing photoelectric conversion element Expired - Lifetime JPH0612836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59171438A JPH0612836B2 (en) 1984-08-20 1984-08-20 Method for manufacturing photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59171438A JPH0612836B2 (en) 1984-08-20 1984-08-20 Method for manufacturing photoelectric conversion element

Publications (2)

Publication Number Publication Date
JPS6150380A JPS6150380A (en) 1986-03-12
JPH0612836B2 true JPH0612836B2 (en) 1994-02-16

Family

ID=15923122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59171438A Expired - Lifetime JPH0612836B2 (en) 1984-08-20 1984-08-20 Method for manufacturing photoelectric conversion element

Country Status (1)

Country Link
JP (1) JPH0612836B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0799776B2 (en) * 1986-02-14 1995-10-25 住友電気工業株式会社 Method for manufacturing amorphous silicon solar cell
JPS6340383A (en) * 1986-08-06 1988-02-20 Hitachi Ltd Manufacturing method for amorphous solar cells
JP2575397B2 (en) * 1987-07-29 1997-01-22 三井東圧化学株式会社 Method for manufacturing photoelectric conversion element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0666137B2 (en) * 1983-03-19 1994-08-24 株式会社日立製作所 Deflection yoke

Also Published As

Publication number Publication date
JPS6150380A (en) 1986-03-12

Similar Documents

Publication Publication Date Title
US4564533A (en) Method for depositing silicon carbide non-single crystal semiconductor films
AU2005200023B2 (en) Photovoltaic device
JP2533639B2 (en) Method for producing amorphous silicon doped with P-type carbon
CN102668111A (en) Photoelectric conversion device and method for producing same
JPS6150378A (en) Manufacturing method of amorphous solar cells
US4799968A (en) Photovoltaic device
JP3106810B2 (en) Method for producing amorphous silicon oxide thin film
JP2003188400A (en) Crystalline silicon carbide film and manufacturing method thereof, and solar cell
JPH0544198B2 (en)
JP2692964B2 (en) Solar cell
JPH0612836B2 (en) Method for manufacturing photoelectric conversion element
JPH0612835B2 (en) Manufacturing method of photoelectric conversion element
JP3697199B2 (en) Solar cell manufacturing method and solar cell
JPH0691010B2 (en) Amorphous thin film manufacturing method
JPH0447453B2 (en)
JP3201540B2 (en) Solar cell and method of manufacturing the same
JPH0714072B2 (en) Method for manufacturing photoelectric conversion element
JPH06260665A (en) Amorphous solar cell
JP3746711B2 (en) Method for manufacturing microcrystalline silicon solar cell
JP2728874B2 (en) Semiconductor device manufacturing method
JP2575397B2 (en) Method for manufacturing photoelectric conversion element
JP2000196122A (en) Photovoltaic element
JP2002246317A (en) Thin-film forming method by plasma cvd method
JP2003218030A (en) Crystal silicon semiconductor device and method of manufacturing the same
JPH0714073B2 (en) Photoelectric conversion element manufacturing method and manufacturing apparatus thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term