[go: up one dir, main page]

JPH0612667B2 - New battery - Google Patents

New battery

Info

Publication number
JPH0612667B2
JPH0612667B2 JP59174018A JP17401884A JPH0612667B2 JP H0612667 B2 JPH0612667 B2 JP H0612667B2 JP 59174018 A JP59174018 A JP 59174018A JP 17401884 A JP17401884 A JP 17401884A JP H0612667 B2 JPH0612667 B2 JP H0612667B2
Authority
JP
Japan
Prior art keywords
iodine
battery
composition
poly
thienylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59174018A
Other languages
Japanese (ja)
Other versions
JPS6154156A (en
Inventor
隆一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP59174018A priority Critical patent/JPH0612667B2/en
Publication of JPS6154156A publication Critical patent/JPS6154156A/en
Publication of JPH0612667B2 publication Critical patent/JPH0612667B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/182Cells with non-aqueous electrolyte with solid electrolyte with halogenide as solid electrolyte

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 リチウムを負極活物質としヨウ素を正極活物質として用
いる電池は心臓のペースメーカーやコンピューターのバ
ックアップ用電源として用いられている(J.Power Sour
ces,5,15(1980)等)。この電池は多くの場合溶媒を用い
ることなく作製されており、この無溶媒下で電池が機能
することのために,この電池は液漏れの心配がなく長期
間の保存,使用に耐え上記の心臓のペースメーカーやコ
ンピューターのバックアップ用電源に使用されている次
第である。すなわち,この電池においてはリチウムとヨ
ウ素の反応(あるいは電池反応)によって生成するLi
Iが正極と負極の間に介在し,この固体電解質が無溶媒
下(すなわち無電解質液下)においても電池を正常に機
能させるはたらきをしている。固体電解質としてはLi
Iの他にAl2O3等を用いてもよい。このように,リチウ
ムを負極活物質としヨウ素を正極活物質として用い溶媒
を使用しない電池は実用上の大きな利点を有するが,こ
の電池の作製に当っては正極活物質であるヨウ素は高分
子化合物等と混合し(あるいは付加体を形成させ)て得
られる組成物として用いる必要がある。すなわち,ヨウ
素は室温において電気伝導度が10-6S・cm-1以下の電気の
不良導体であり,かつ成型性に劣る物質であるために,
電池の電極剤として用いるためには高分子化合物等と上
記組成物を作製せしめることにより,電気伝導性及び成
型性を増加させる必要がある。このような,ヨウ素と組
成物を作らせる高分子化合物としてはポリ(2−ビニル
ピリジン)やナイロン−6などいくつかの例が報告され
ている(J.Power Sources,5,15(1980);Inorg.Chim.Act
a,77,L179(1983)等)が,いずれのものも主鎖に沿った
π共役系を有しない高分子化合物であり主鎖に沿ったπ
−共役系を有する高分子化合物とヨウ素から成る組成物
を上記リチウム固体電解質電池の正極合剤に用いた報告
例はない。
DETAILED DESCRIPTION OF THE INVENTION A battery using lithium as a negative electrode active material and iodine as a positive electrode active material is used as a backup power source for cardiac pacemakers and computers (J. Power Sour).
ces, 5 , 15 (1980) etc.). In most cases, this battery is manufactured without using a solvent, and because the battery functions in the absence of solvent, this battery can withstand long-term storage and use without the risk of liquid leakage, It is used as a backup power source for pacemakers and computers. That is, in this battery, Li produced by the reaction of lithium and iodine (or battery reaction)
I intervenes between the positive electrode and the negative electrode, and this solid electrolyte functions to make the battery function normally even in the absence of solvent (that is, in the absence of electrolyte solution). Li as a solid electrolyte
In addition to I, Al 2 O 3 or the like may be used. Thus, a battery that uses lithium as a negative electrode active material and iodine as a positive electrode active material and does not use a solvent has a great practical advantage. However, in the production of this battery, the positive electrode active material iodine is a polymer compound. It is necessary to use it as a composition obtained by mixing (or forming an adduct) with the above. That is, since iodine is a poor conductor of electricity with an electric conductivity of 10 -6 S · cm -1 or less at room temperature, and is poor in moldability,
In order to use it as an electrode material for batteries, it is necessary to increase the electrical conductivity and moldability by preparing a polymer compound and the above composition. Several examples of such polymer compounds that make up a composition with iodine have been reported, such as poly (2-vinylpyridine) and nylon-6 (J. Power Sources, 5 , 15 (1980); Inorg.Chim.Act
a, 77 , L179 (1983), etc.) are polymer compounds that do not have a π-conjugated system along the main chain and
There is no report that a composition comprising a polymer compound having a conjugated system and iodine is used as a positive electrode mixture of the above lithium solid electrolyte battery.

本発明は主鎖に沿ったπ共役系を有するポリマーがヨウ
素と電気伝導性の組成物をつくる(J.Chem.Phys.,73,94
6(1980);J.Chem.Phys.,71,1506(1979);Bull.Chem.So
c.Jpn.,56,1503(1983)等)ことに着目し,この組成物を
上記リチウム固体電解質電池の正極合剤として使用した
ものであり,次の利点を有する。
In the present invention, a polymer having a π-conjugated system along the main chain makes a composition electrically conductive with iodine (J. Chem. Phys., 73 , 94).
6 (1980); J. Chem. Phys., 71 , 1506 (1979); Bull. Chem. So
c. Jpn., 56 , 1503 (1983)), and using this composition as a positive electrode mixture of the above lithium solid electrolyte battery, it has the following advantages.

すなわち,ヨウ素と高分子化合物の組成物が上記の正極
合剤として有効に機能するためには当該組成物の電気伝
導度がおよそ10-5S・cm-1以上の電気伝導度を持つことが
望ましく,この時には正極合剤に由来する電池の内部抵
抗を抑えることができ電池は有効に機能できる。主鎖に
沿ったπ共役系を有しないポリマーとヨウ素から成る組
成物を正極合剤として用いる既存の上記リチウム固体電
解質電池においては,この組成物の電気伝導度は放電に
よってヨウ素が組成物中より失なわれるに従って減少
し,放電に関与していないヨウ素の重量が高分子化合物
の重量より小さくなりヨウ素と高分子化合物から成る組
成物中のヨウ素の重量割合が約50%以下となるとその電
気伝導度は通常10-5S・cm-1以下となる。従って,主鎖に
沿ったπ共役系を有しない高分子化合物とヨウ素の組成
物を正極合剤とするリチウム固体電池では,有効に電池
反応(正極:組成物+e→I+高分子化合物;負
極:Li→Li+e)に利用される組成物中のヨウ
素の割合は,放電に伴う正極合剤の抵抗の増大とそれに
伴う電池の内部抵抗の増大のために,ある程度低く抑え
られる。上記リチウム固体電解質電池を心臓のペースメ
ーカー等に使用する際には電池の内部抵抗は10Ωの
オーダー以下であることが望ましい。上記の主鎖に沿っ
たπ共役系を有しない高分子化合物とヨウ素の組成物を
用いる電池に対して,本発明の電池においてはヨウ素の
有効な利用を行なうことができる。すなわち,ポリ(2,
5−チエニレン)又はポリ(3−アルキル−2,5−チエニ
レン)などのその誘導体、及びポリ(ピロリレン)又は
ポリ(N−置換2,5−ピロリレン)などのその誘導体か
ら選ばれたπ共役系を有する本発明の高分子化合物とヨ
ウ素の組成物においては,ヨウ素の高分子化合物に対す
る重量割合が10%程度の低い値でも通常10-5S・cm-1以上
の電気伝導度を有するものが多く,自己放電を考えなけ
れば,ヨウ素を高度に利用し電池を高度に放電させるこ
とができる電池をこの組成物を用いて作製できる。たと
えば、ヨウ素の含有量が高分子に対して15重量%のと
き、その組成物の電気伝導度は10-5Scm-1以上となる。
この結果同一重量の電池を作製した場合においても,よ
り長時間使用可能な電池が得られ,このことはたとえば
心臓のペースメーカー用電池を考えると患者の体中に埋
込まれた電池を手術によって取替えるのに必要な期間の
延長につながり実用上の利点が大きい。
That is, in order for the composition of iodine and the polymer compound to effectively function as the positive electrode mixture, the electric conductivity of the composition should be about 10 −5 S · cm −1 or more. Desirably, at this time, the internal resistance of the battery due to the positive electrode mixture can be suppressed and the battery can function effectively. In the existing lithium solid electrolyte battery using a composition composed of a polymer having no π-conjugated system along the main chain and iodine as a positive electrode mixture, the electrical conductivity of this composition is higher than that of iodine in the composition due to discharge. The electrical conductivity decreases when the weight of iodine, which is not involved in discharge, becomes smaller than that of the polymer compound and the weight ratio of iodine in the composition composed of iodine and polymer compound is less than about 50%. Degrees are usually below 10 -5 S · cm -1 . Therefore, in a lithium solid state battery using a composition of a polymer compound having no π-conjugated system along the main chain and iodine as a positive electrode mixture, a battery reaction (positive electrode: composition + e → I + polymer compound is effectively performed. The proportion of iodine in the composition used for the negative electrode: Li → Li + + e ) can be suppressed to a certain low level due to the increase in the resistance of the positive electrode mixture due to discharge and the increase in the internal resistance of the battery accompanying it. . When the lithium solid electrolyte battery is used in a pacemaker of the heart or the like, the internal resistance of the battery is preferably on the order of 10 5 Ω or less. In the battery of the present invention, iodine can be effectively used in the battery using the composition of the polymer compound having no π-conjugated system along the main chain and iodine. That is, poly (2,
5-thienylene) or a derivative thereof such as poly (3-alkyl-2,5-thienylene), and a π-conjugated system selected from a derivative thereof such as poly (pyrrolylene) or poly (N-substituted 2,5-pyrrolylene) In the composition of the polymer compound and iodine of the present invention having the above, one having an electric conductivity of 10 −5 S · cm −1 or more is usually used even when the weight ratio of iodine to the polymer compound is as low as about 10%. In many cases, if self-discharge is not taken into consideration, a battery capable of highly discharging iodine by utilizing iodine can be produced using this composition. For example, when the content of iodine is 15% by weight based on the polymer, the electric conductivity of the composition is 10 −5 Scm −1 or more.
As a result, even if a battery of the same weight is manufactured, a battery that can be used for a longer period of time can be obtained. This means that, for example, when considering a battery for a cardiac pacemaker, the battery implanted in the patient's body is replaced by surgery. It will lead to the extension of the period necessary for, and the practical advantage will be great.

なお,本発明に用いる組成物においては,高分子化合物
からヨウ素に電子が移動し高分子化合物中にプラス電荷
が存在しヨウ素がIあるいはポリヨウ化物イオンIm -
として存在する可能性がある(Bull.Chem.Soc.Jpn.,56,
1503(1983)等)。この場合には,放電反応に際しては高
分子化合物中のプラス電荷が負極側に流れることにより
電池が機能し,また電池の起電力はリチウム,ヨウ素及
びLiIの標準エネルギーから計算される値と若干異な
る値となる。しかし,この場合にも組成物全体としての
電荷は実質的に0であり,また電池の起電力の変化は実
用上ほとんど問題とならない。
In the composition used in the present invention, an electron is transferred from the polymer compound to iodine and a positive charge is present in the polymer compound, and iodine is I or polyiodide ion I m −.
May exist as (Bull.Chem.Soc.Jpn., 56 ,
1503 (1983)). In this case, the battery functions by the positive charge in the polymer compound flowing to the negative electrode side during the discharge reaction, and the electromotive force of the battery is slightly different from the value calculated from the standard energy of lithium, iodine and LiI. It becomes a value. However, even in this case, the electric charge of the composition as a whole is substantially zero, and the change in the electromotive force of the battery is practically not a problem.

ヨウ素と組成物を形成させる本発明の高分子化合物とし
てはポリ(2,5−チエニレン)又はポリ(3−アルキル
−2,5−チエニレン)などのその誘導体、及びポリ(ピ
ロリレン)又はポリ(N−置換−2,5−ピロリレン)な
どのその誘導体が適当であり、これらの主鎖に沿ったπ
結合を有する高分子化合物とヨウ素の付加体あるいは組
成物は半導性を有する。正極合剤の主成分は上記組成物
であるが,正極合剤に必要に応じて炭素粉を混入しても
よい。また,負極活物質をリチウムからマグネシウム,
亜鉛等の他の金属に変えた場合にも,それぞれ相当する
電池を作製することができる。
Examples of the polymer compound of the present invention which forms a composition with iodine include poly (2,5-thienylene) or a derivative thereof such as poly (3-alkyl-2,5-thienylene), and poly (pyrrolylene) or poly (N). -Substituted-2,5-pyrrolylene) and its derivatives such as π along these backbones are suitable.
An adduct or composition of a polymer compound having a bond and iodine has semiconductivity. The main component of the positive electrode mixture is the above composition, but carbon powder may be mixed into the positive electrode mixture as needed. In addition, the negative electrode active material is changed from lithium to magnesium,
Even if the metal is changed to another metal such as zinc, the corresponding batteries can be manufactured.

実施例1. ヨウ素とポリ(2,5−チエニレン)の組成物はヨウ素の
ポリ(2,5−チエニレン)に対する重量割合が15%,100
%,150%,400%のとき各々常温で2×10-4S・cm-1,1
×10-2S・cm-1,4×10-2S・cm-1,8×10-3S・cm-1の電気
伝導度を示した。ヨウ素とポリ(2,5−チエニレン)を
3:1の重量比でガラス管中に取り,ガラス管中の空気
を真空ポンプで除いた後にガラス管を溶封する。このガ
ラス管を150℃の油浴中で15時間加熱した後油浴か
ら取出し開封する。油浴から取出しガラス管を室温に戻
した段階で遊離のヨウ素は実質的に存在しておらず,ヨ
ウ素とポリ(2,5−チエニレン)が3:1の重量比れ付
加して生成した組成物が得られた。この生成物(組成
物)61.2mgと厚さ0.5mmのリチウム板(三井金属鉱山
(株)製)を直径約11mm厚さ約2mmのステンレス鋼製
容器(Inorg.Chim.Acta,77,L179(1983))中にアルゴン
気流下で閉じ込めてボタン型電池を作製した。このボタ
ン型電池の正極と負極はポリプロピレンによって絶縁さ
れており,正極活物質である上記組成と負極活物質であ
るLiの反応によって両極の間に生成するLiIが固体
電解質の役割を果している。また,アルゴン気流中での
操作は高林理化(株)製グローボックス中で行なった。
このようにして得られたボタン型電池を500kΩの抵抗
の下に放電せしめたところ,放電開始時の閉回路電圧は
2.8Vであり,閉回路電圧は約1630時間後に2.3Vとなっ
た。この間平均の閉回路電圧は2.58Vであった。すなわ
ち,上記放電期間中においては平均2.58÷(5×105)=
5.16×10-6Aの電流が流れていたことになり,放電の終
止電圧を2.3Vとすれば,5.16×10-6×1630×3600=30.
3クーロンの電気量が放電されたことになる。一方,本
実施例において用いた組成物中のヨウ素の重量は61.2×
0.75=45.9mgであり,これは45.9×10-3×96500÷127=
34.9クーロンの電気量に相当する。従って,本実施例に
おいては,30.3÷34.9=87%のヨウ素が有効に放電に使
われたことを示している。このヨウ素の利用率は,ほゞ
同じ操作,装置を用いて得られたリチウムを負極活物質
としナイロン−6とヨウ素の組成物を正極活物質とする
ボタン型電池(Inorg.Chim.Acta,77,L179(1983))にお
いて500kΩ抵抗下での放電に際して得られているヨ
ウ素の利用率(40〜50%)を越えている。このよう
にして,主鎖に沿った連続するπ共役系を有するポリ
(2,5−チエニレン)とヨウ素から成る組成物がリチウ
ム−ヨウ素固体電解質電池の正極活物質となることが分
った。なお,本実施例で用いたポリ(2,5−チエニレ
ン)はニッケル錯体触媒存在下に2,5−ジブロモチオフ
ェンと1:1のモル比のマグネシウムの反応混合物を原
料として得たものであり,クロロホルム抽出によって低
分子量化合物を除いた後(Bull.Chem.Soc.Jpn.,56,1497
(1983))に使用した。分子量は約2600(特許1200926)
であると考えられている。
Example 1. In the composition of iodine and poly (2,5-thienylene), the weight ratio of iodine to poly (2,5-thienylene) is 15%, 100%.
%, 150%, 400% at room temperature 2 × 10 -4 S ・ cm -1 , 1
Electrical conductivity of × 10 -2 S · cm −1 , 4 × 10 −2 S · cm −1 , 8 × 10 −3 S · cm −1 was shown. Iodine and poly (2,5-thienylene) are placed in a glass tube at a weight ratio of 3: 1, air in the glass tube is removed by a vacuum pump, and then the glass tube is sealed. After heating this glass tube in an oil bath at 150 ° C. for 15 hours, it is taken out from the oil bath and opened. When the glass tube was taken out of the oil bath and returned to room temperature, free iodine was substantially absent, and the composition was formed by adding iodine and poly (2,5-thienylene) in a weight ratio of 3: 1. The thing was obtained. 61.2 mg of this product (composition) and a 0.5 mm-thick lithium plate (manufactured by Mitsui Mining & Smelting Co., Ltd.) were placed in a stainless steel container (Inorg.Chim.Acta, 77 , L179 (Dia. 11 mm in diameter and 2 mm in thickness). 1983)) and sealed in an argon stream to fabricate a button-type battery. The positive electrode and the negative electrode of this button-type battery are insulated by polypropylene, and LiI generated between both electrodes by the reaction of the above-mentioned composition as the positive electrode active material and Li as the negative electrode active material plays the role of a solid electrolyte. The operation in an argon stream was performed in a Takabayashi Rika Co., Ltd. glow box.
When the button-type battery obtained in this way was discharged under a resistance of 500 kΩ, the closed circuit voltage at the start of discharge was
It was 2.8V, and the closed circuit voltage became 2.3V after about 1630 hours. During this period, the average closed circuit voltage was 2.58V. That is, during the above discharge period, the average is 2.58 ÷ (5 × 10 5 ) =
This means that a current of 5.16 × 10 -6 A was flowing, and if the discharge end voltage is 2.3 V, 5.16 × 10 -6 × 1630 × 3600 = 30.
3 The amount of electricity in Coulomb has been discharged. On the other hand, the weight of iodine in the composition used in this example was 61.2 ×
0.75 = 45.9 mg, which is 45.9 × 10 -3 × 96500 ÷ 127 =
Equivalent to 34.9 Coulomb electricity. Therefore, in this example, it is shown that 30.3 / 34.9 = 87% of iodine was effectively used for discharging. This iodine utilization rate is approximately the same as that of a button-type battery (Inorg.Chim.Acta, 77) that uses lithium obtained as a negative electrode active material and a composition of nylon-6 and iodine as a positive electrode active material using the same device. , L179 (1983)), the utilization rate (40 to 50%) of iodine obtained during discharge under a resistance of 500 kΩ is exceeded. In this way, it was found that the composition composed of poly (2,5-thienylene) having a continuous π-conjugated system along the main chain and iodine became the positive electrode active material of the lithium-iodine solid electrolyte battery. The poly (2,5-thienylene) used in this example was obtained by using a reaction mixture of 2,5-dibromothiophene and magnesium in a molar ratio of 1: 1 in the presence of a nickel complex catalyst as a raw material. After removing low molecular weight compounds by chloroform extraction (Bull.Chem.Soc.Jpn., 56 , 1497
(1983)). Molecular weight is about 2600 (patent 1200926)
Is believed to be.

実施例2. 実施例1.と同様にしてポリ(2,5−チエニレン)とヨ
ウ素1:1の重量比で含有する組成物をつくり,実施例
1.と同様のボタン型電池を製作した。この電池を50
0kΩ及び100kΩの抵抗の下に放電し,500kΩ
の場合には終止電圧を2.3V100kΩの場合には放電
終止電圧を2.0Vとすると,ヨウ素の利用率は500k
Ω放電においては85%100kΩ放電においては65
%であった。
Example 2. Example 1. A composition containing poly (2,5-thienylene) and iodine in a weight ratio of 1: 1 was prepared in the same manner as in Example 1, and Example 1. A button type battery similar to the above was manufactured. 50 this battery
Discharge under the resistance of 0kΩ and 100kΩ, and 500kΩ
When the final voltage is 2.3V and 100kΩ, and the final discharge voltage is 2.0V, the iodine utilization rate is 500k.
85% for Ω discharge 65 for 100 kΩ discharge
%Met.

実施例3. ポリ(2,5−チエニレン)に5重量%の炭素粉(ライオ
ン(株)販売のケッチエンブラック)を混入する。この
混合物とヨウ素(ポリ(2,5−チエニレン)に対して4
倍の重量)をガラス管中にとり,ガラス管中の気体を真
空ポンプで除いてガラス管を溶封した。このガラス管を
実施例1.と同様に150℃の油浴中で15時間加熱する
ことにより,ポリ(2,5−チエニレン)とヨウ素を1:
4の重量比で含む組成物とポリ(2,5−チエニレン)に
対し5重量%の炭素粉から成る物質を得た(なお,ヨウ
素の一部は炭素粉に吸着されている可能性がある)。こ
の物質を正極活物質に又リチウム板を負極活物質に用い
て実施例1.と同様のボタン型電池を作製した。このボ
タン型電池を500kΩの抵抗の下に実施例1と同様連
続放電すると放電開始時には2.8Vの閉路電圧が得られ
た。閉回路電圧が2.3Vになった時点で放電を止めると
62%のヨウ素利用率が得られた。
Example 3. Poly (2,5-thienylene) is mixed with 5% by weight of carbon powder (Ketchen Black sold by Lion Corporation). 4 for this mixture and iodine (poly (2,5-thienylene))
Double the weight) was taken in a glass tube, the gas in the glass tube was removed by a vacuum pump, and the glass tube was sealed. This glass tube was used in Example 1. In the same manner as above, by heating in an oil bath at 150 ° C for 15 hours, poly (2,5-thienylene) and iodine are mixed with 1: 1.
A substance consisting of 5% by weight of carbon powder to poly (2,5-thienylene) and a composition containing it in a weight ratio of 4 was obtained (note that some of the iodine may be adsorbed by the carbon powder). ). This material was used as a positive electrode active material and a lithium plate was used as a negative electrode active material. A button type battery similar to the above was manufactured. When this button-type battery was continuously discharged under a resistance of 500 kΩ as in Example 1, a closed circuit voltage of 2.8 V was obtained at the start of discharge. When the discharge was stopped when the closed circuit voltage reached 2.3 V, 62% iodine utilization was obtained.

実施例4. ポリ(3−メチル−2,5−チエニレン)(Bull.Chem.So
c.Jpn.,561497(1983))に5重量%の炭素粉(ライオン
(株)販売のケッチェンブラック)を混入する。この混
合物とヨウ素(ポリ(3−メチル−2,5−チエニレン)
に対して9倍の重量)をガラス管にとり,ガラス管中の
気体を真空ポンプで除いてガラス管を溶封した。このガ
ラス管を150℃の油浴中で15時間加熱することによ
り,ポリ(3−メチル−2,5−チエニレン)とヨウ素を
1:9の重量比で含む組成物とポリ(3−メチル−2,5
−チエニレン)に対し5重量%の炭素粉から成る物質を
得た(ヨウ素の一部は炭素粉に吸着されている可能性が
ある)。この物質を正極活物質に又リチウム板を負極活
物質に用いて実施例1.と同様のボタン型電池を作製し
た。このボタン型電池を500kΩの抵抗の下に連続放
電すると放電開始時には2.8Vの閉回路電圧が得られ
た。閉回路電圧が2.33Vになるまでに流れた電気量をも
とに実施例1.と同様にしてヨウ素利用率を計算すると
63%であった。本実施例において炭素粉を加えない場
合にも,正常に機能する電池を得た。
Example 4. Poly (3-methyl-2,5-thienylene) (Bull.Chem.So
c. Jpn., 56 1497 (1983)) with 5% by weight of carbon powder (Ketjen Black sold by Lion Corporation). This mixture and iodine (poly (3-methyl-2,5-thienylene))
9 times the weight) was taken in a glass tube, and the gas in the glass tube was removed by a vacuum pump to seal the glass tube. By heating this glass tube in an oil bath at 150 ° C. for 15 hours, a composition containing poly (3-methyl-2,5-thienylene) and iodine in a weight ratio of 1: 9 and poly (3-methyl-thiophene) was added. 2,5
A material consisting of 5% by weight of carbon powder (thienylene) was obtained (some iodine may be adsorbed on the carbon powder). This material was used as a positive electrode active material and a lithium plate was used as a negative electrode active material. A button type battery similar to the above was manufactured. When this button-type battery was continuously discharged under a resistance of 500 kΩ, a closed circuit voltage of 2.8 V was obtained at the start of discharge. Example 1 based on the amount of electricity flowing until the closed circuit voltage reaches 2.33V. When the iodine utilization rate was calculated in the same manner as above, it was 63%. In this example, a battery that functions normally even when no carbon powder was added was obtained.

実施例5. テトラヒドロフラン中で2,5−ジブロモ−N−メチルピ
ロールとマグネシウムを1:1のモル比で反応させて得
られた溶液にNi錯体を触媒として加えることにより
(特許951386),ポリ(N−メチル−2,5−ピロリレ
ン)を得た。ポリ(N−メチル−2,5−ピロリレン)の
重量に対し9倍の重量のヨウ素をとり,両者をガラス管
中に加え,ガラス管中の気体を真空ポンプで除いてから
ガラス管を溶封した。このガラス管を150℃の油浴中
で15時間加熱することにより前記の両者から成る組成
物を得,この組成物77.4mgを用いリチウム板を負極に用
いて実施例1.と同様のボタン型電池を作製した。この
ボタン型電池を500kΩの抵抗の下に連続放電すると
放電開始時には2.8Vの閉路電圧が得られ,また閉路電
圧は1000時間以上の長期に亙って2.3V以上の電圧を示
した。
Example 5. By adding a Ni complex as a catalyst to a solution obtained by reacting 2,5-dibromo-N-methylpyrrole and magnesium at a molar ratio of 1: 1 in tetrahydrofuran (patent 951386), poly (N-methyl- 2,5-Pyrrolylene) was obtained. Take 9 times as much iodine as the weight of poly (N-methyl-2,5-pyrrolylene), add both into a glass tube, remove the gas in the glass tube with a vacuum pump, and then seal the glass tube. did. This glass tube was heated in an oil bath at 150 ° C. for 15 hours to obtain a composition comprising both of the above, and 77.4 mg of this composition was used, and a lithium plate was used as a negative electrode. A button type battery similar to the above was manufactured. When this button-type battery was continuously discharged under a resistance of 500 kΩ, a closed circuit voltage of 2.8 V was obtained at the start of discharge, and the closed circuit voltage was 2.3 V or more for a long period of 1000 hours or more.

比較例 実施例1において、ポリ(2,5−チエニレン)に代えて
ポリピロールを使用して同様にして電池を作成した。そ
の放電開始時の閉回路電圧は2.65Vであり、放電開始後
1000時間以内に2.3Vに達した。
Comparative Example A battery was made in the same manner as in Example 1 except that polypyrrole was used instead of poly (2,5-thienylene). The closed circuit voltage at the start of discharge was 2.65 V, and after the start of discharge
It reached 2.3V within 1000 hours.

以上の実施例1〜5及び比較例で得られた電池の性能を
表にまとめて示す。
The performance of the batteries obtained in the above Examples 1 to 5 and Comparative Example is summarized in the table.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭56−149774(JP,A) 特開 昭58−112247(JP,A) 特開 昭57−13670(JP,A) 特開 昭57−34677(JP,A) 特開 昭57−40870(JP,A) 特開 昭57−154774(JP,A) ─────────────────────────────────────────────────── --- Continuation of the front page (56) Reference JP-A-56-149774 (JP, A) JP-A-58-112247 (JP, A) JP-A-57-13670 (JP, A) JP-A-57- 34677 (JP, A) JP 57-40870 (JP, A) JP 57-154774 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ポリ(2,5−チエニレン)又はその誘導体
及びポリ(ピロリレン)又はその誘導体から選ばれた高
分子化合物とヨウ素から成る組成物を正極合剤の主成分
として用い、リチウムを負極活物質とし、正極と負極の
間に介在させる電解質として固体電解質を用いることを
特徴とする一次電池。
1. A composition comprising a polymer compound selected from poly (2,5-thienylene) or a derivative thereof and poly (pyrrolylene) or a derivative thereof and iodine is used as a main component of a positive electrode mixture, and lithium is used as a negative electrode. A primary battery comprising an active material and a solid electrolyte as an electrolyte interposed between a positive electrode and a negative electrode.
JP59174018A 1984-08-23 1984-08-23 New battery Expired - Lifetime JPH0612667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59174018A JPH0612667B2 (en) 1984-08-23 1984-08-23 New battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59174018A JPH0612667B2 (en) 1984-08-23 1984-08-23 New battery

Publications (2)

Publication Number Publication Date
JPS6154156A JPS6154156A (en) 1986-03-18
JPH0612667B2 true JPH0612667B2 (en) 1994-02-16

Family

ID=15971198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59174018A Expired - Lifetime JPH0612667B2 (en) 1984-08-23 1984-08-23 New battery

Country Status (1)

Country Link
JP (1) JPH0612667B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200259210A1 (en) * 2016-03-14 2020-08-13 Idemitsu Kosan Co., Ltd. Method for producing solid electrolyte

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4263382A (en) * 1980-03-28 1981-04-21 Union Carbide Corporation Charge transfer complex cathodes for solid electrolyte cells
JPS58112247A (en) * 1981-12-25 1983-07-04 Ryuichi Yamamoto Battery and storage battery using high molecular compound carrying iodine holding power as electrode

Also Published As

Publication number Publication date
JPS6154156A (en) 1986-03-18

Similar Documents

Publication Publication Date Title
US7879492B2 (en) Electrode materials derived from polyquinonic ionic compounds and their use in electrochemical generators
US4303748A (en) Electrochemical generators for producing current and new materials for their manufacture
JP3555097B2 (en) Electrode materials and secondary batteries
JPH10505705A (en) Secondary battery using organic sulfur / metal charge conductive material for positive electrode
JPH0337968A (en) Lithium secondary battery
EP3439086B1 (en) Aqueous secondary cell
JPS6122577A (en) Electrochemical generator with composite electrodes
JP2002516643A (en) Particulate interfaces for electrolyte cells and electrolysis processes
JPH0612667B2 (en) New battery
JPH03291863A (en) Secondary cell
JP2000067910A (en) Sealed alkaline zing storage battery
JPH0425676B2 (en)
JPH06275322A (en) Lithium battery
Takeuchi et al. Lithium batteries for medical applications
Changzhi et al. A wound-type lithium/polyaniline secondary cell
JPH0467302B2 (en)
US3936318A (en) Electrical energy storage battery means
JPH04363862A (en) Lithium secondary battery
JPH0526305B2 (en)
JPH04324258A (en) Lithium battery
JPH0831449A (en) High-capacity battery for secondary battery
JPS58212066A (en) Secondary battery
JPS58212065A (en) Secondary battery
JPH0654668B2 (en) Iodine battery
JPS62157678A (en) secondary battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term