JPH06123322A - Energy absorbing member - Google Patents
Energy absorbing memberInfo
- Publication number
- JPH06123322A JPH06123322A JP4271995A JP27199592A JPH06123322A JP H06123322 A JPH06123322 A JP H06123322A JP 4271995 A JP4271995 A JP 4271995A JP 27199592 A JP27199592 A JP 27199592A JP H06123322 A JPH06123322 A JP H06123322A
- Authority
- JP
- Japan
- Prior art keywords
- energy absorbing
- absorbing member
- load
- tip
- tubular
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Vibration Dampers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は自動車に装備されるバン
パの支持部材やヘリコプターの床下部などに使用される
エネルギー吸収部材に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an energy absorbing member used for a supporting member of a bumper mounted on an automobile or a lower floor of a helicopter.
【0002】[0002]
【従来の技術】自動車には衝突時における車体及び搭乗
者の保護のため、一般に車体の前後に衝突時の衝撃エネ
ルギーを吸収するバンパが取り付けられている。バンパ
は自動車が障害物と衝突した際に加わる大きな負荷に対
して非可逆的にエネルギーを吸収する必要がある。そし
て、吸収エネルギーを大きくするため、従来からバンパ
本体を支持する支持部材の材質や構造の改良が種々なさ
れている。2. Description of the Related Art In order to protect a vehicle body and an occupant at the time of a collision, an automobile is generally provided with bumpers at the front and rear of the vehicle body for absorbing impact energy at the time of a collision. The bumper needs to irreversibly absorb energy against a large load applied when the vehicle collides with an obstacle. In order to increase the absorbed energy, various improvements have been made to the material and structure of the support member that supports the bumper body.
【0003】又、ヘリコプターの座席床下部にも不慮の
故障で機体が着地する際の衝撃を少しでも和らげ、特に
搭乗者への影響を軽減するために、軽量でエネルギー吸
収機能の高い部材が求められている。In addition, a member having a light weight and a high energy absorbing function is required in order to soften the impact when the aircraft lands on the lower floor of the seat of the helicopter due to an accidental failure, and especially to reduce the influence on passengers. Has been.
【0004】例えば、1988年2月18日公開のドイ
ツ特許(3626150)には、繊維強化プラスチック
から成る弾性変形可能な減衰成形体を介してバンパを車
体のステイに取り付けたものが開示されている。減衰成
形体は実質的にリング状に形成され、減衰成形体を形成
する繊維強化プラスチックの強化繊維は周方向に配列さ
れている。そして、減衰成形体はその側面から衝撃力が
加わる状態、すなわち衝撃力が加わる方向に対して減衰
成形体の軸が直交する状態で使用される。For example, German Patent (3626150) published on February 18, 1988 discloses a bumper attached to a stay of a vehicle body through an elastically deformable damping molded body made of fiber reinforced plastic. . The damping molded body is formed in a substantially ring shape, and the reinforcing fibers of the fiber-reinforced plastic forming the damping molded body are arranged in the circumferential direction. The damping molded body is used in a state where an impact force is applied from its side surface, that is, in a state where the axis of the damping molded body is orthogonal to the direction in which the impact force is applied.
【0005】又、特開昭57−124142号公報には
バンパに使用する衝撃保護用構造材として、図11に示
すように繊維複合材料(例えばエポキシ樹脂含浸ガラス
繊維)製の条帯21からなる網状組織で円筒状に形成さ
れた構造体22が提案されている。構造体22は筒の軸
方向に圧縮負荷が加わる状態で使用され、構造体22に
軸方向の荷重が作用すると網状組織の対向する結節点2
3において層間剥離を起こし、剪断降伏が繊維とマトリ
ックスとの界面で生ずることによりエネルギーを段階的
に吸収するようになっている。条帯21は構造体22の
長手方向軸線に対して30〜60度の傾斜角をもって傾
斜されている。又、各結節点23は約10層の繊維複合
材料製の条帯21で形成されている。Further, in Japanese Patent Laid-Open No. 57-124142, as a shock-protecting structural material used for a bumper, a strip 21 made of a fiber composite material (eg, epoxy resin-impregnated glass fiber) is used as shown in FIG. A structure 22 having a cylindrical shape formed of a network structure has been proposed. The structure 22 is used in a state in which a compressive load is applied in the axial direction of the cylinder, and when an axial load acts on the structure 22, the opposing node points 2 of the network structure 2
3 causes delamination, and shear yield occurs at the interface between the fiber and the matrix to absorb energy stepwise. The strip 21 is inclined at an inclination angle of 30 to 60 degrees with respect to the longitudinal axis of the structure 22. Further, each knot 23 is formed by about 10 layers of the strip 21 made of a fiber composite material.
【0006】又、USP3143321号等には図12
に示すように、円筒体24と、円筒体24の内面に食い
込む凸部25aを備えた固定部材25とからなるエネル
ギー吸収部材が提案されている。このエネルギー吸収部
材も筒の軸方向に圧縮負荷が加わる状態で使用される。
そして、円筒体24が軸圧縮を受けると、凸部25aが
円筒体24を外方に拡張するように作用して、円筒体2
4は継続的に破壊される。Further, in USP 3143321, etc., FIG.
As shown in FIG. 3, an energy absorbing member including a cylindrical body 24 and a fixing member 25 having a convex portion 25a that bites into the inner surface of the cylindrical body 24 is proposed. This energy absorbing member is also used in a state where a compressive load is applied in the axial direction of the cylinder.
Then, when the cylindrical body 24 is subjected to axial compression, the convex portion 25a acts so as to expand the cylindrical body 24 outward, and the cylindrical body 2
4 is continuously destroyed.
【0007】[0007]
【発明が解決しようとする課題】ところが、前記ドイツ
特許に開示されたような実質的にリング状の繊維強化プ
ラスチックに、その側面から外力を加えて破壊すると、
変形部位は荷重と同方向の部位のみで破壊され、外力に
対して直角方向の部位は実質的に元のままの形状を残し
破壊されない。従って、部材に荷重を加えた際の圧縮変
形過程で発生する応力と変形量の積(具体的には圧縮荷
重−変位量曲線と変位量を表す軸との間の面積)で表さ
れるエネルギー吸収量が極めて小さく、部材重量当たり
の効率が悪いという問題がある。However, when a substantially ring-shaped fiber reinforced plastic as disclosed in the above-mentioned German Patent is broken by applying an external force from its side surface,
The deformed part is broken only in the part in the same direction as the load, and the part in the direction perpendicular to the external force remains substantially in its original shape and is not broken. Therefore, the energy represented by the product of the stress and the deformation amount (specifically, the area between the compression load-displacement amount curve and the axis indicating the displacement amount) generated in the compressive deformation process when a load is applied to the member. There is a problem that the absorption amount is extremely small and the efficiency per member weight is poor.
【0008】一方、特開昭57−124142号公報に
開示された筒状の衝撃保護用構造材は、筒の軸方向から
圧縮荷重が加わるようにバンパを支持した状態で使用さ
れる。従って、圧縮荷重を加えて破壊を行った場合は全
ての部位が破壊されるため、側方から圧縮荷重が加わっ
た場合に比較して部材重量当たりのエネルギー吸収効率
を高めることができる。しかし、条帯21の交差角が3
0〜60度の網目組織で構成されているため、軸方向の
圧縮荷重が作用すると網目組織の変形により筒状体が小
荷重で容易に圧縮変形するという問題がある。又、バン
パ支持部材のように人体への衝撃を小さくするという条
件がある場合には、荷重の最大値を人体への影響の低い
レベルに抑える必要があり、荷重変動の激しい場合には
全体としてのエネルギー吸収量が小さくなる。従って、
人体への衝撃を小さく、しかも変形時のエネルギー吸収
量を大きくするという要求を満たすためには、突発的な
荷重の発生を防止し、圧縮荷重−変位量曲線をできるだ
け荷重変動の少ない平坦なレベルに保つことが重要とな
る。しかし、この衝撃保護用構造材は変位量の増加に伴
って荷重が逐次低下していくため、エネルギー吸収量が
大きくなり難いという問題がある。On the other hand, the tubular impact protection structural material disclosed in JP-A-57-124142 is used with the bumper being supported so that a compressive load is applied from the axial direction of the tube. Therefore, when a compressive load is applied for destruction, all parts are destroyed, so that the energy absorption efficiency per member weight can be increased compared to the case where a compressive load is applied from the side. However, the crossing angle of the strip 21 is 3
Since it is composed of a mesh structure of 0 to 60 degrees, there is a problem that when a compressive load in the axial direction acts, the cylindrical body is easily compressed and deformed by a small load due to the deformation of the mesh structure. Also, if there is a condition to reduce the impact on the human body like a bumper support member, it is necessary to suppress the maximum value of the load to a level that has a low effect on the human body. The energy absorption amount of becomes smaller. Therefore,
In order to meet the requirements of reducing the impact on the human body and increasing the amount of energy absorbed during deformation, sudden load is prevented from occurring and the compression load-displacement amount curve is set to a flat level with minimal load fluctuation. It is important to keep However, this structural member for shock protection has a problem that the amount of energy absorption is difficult to increase because the load is gradually reduced as the amount of displacement increases.
【0009】又、USP3143321号等に開示され
たエネルギー吸収部材では、筒状体の他に筒状体を破壊
するための凸部を有する固定部材を必要とし、凸部と筒
状体との嵌合状態が破壊挙動に大きく影響を与える。そ
して、筒状体と固定部材とが別々に製作されるため、両
者の製作誤差により破壊挙動が不安定になる虞がある。
更に荷重が斜め方向から加えられると円筒体が固定部材
との嵌合部位付近から折損し、充分なエネルギー吸収機
能を発揮できない虞もある。Further, the energy absorbing member disclosed in US Pat. No. 3,143,321 requires a fixing member having a convex portion for breaking the tubular body in addition to the tubular body, and the fitting between the convex portion and the tubular body is required. The combined state greatly affects the fracture behavior. Since the tubular body and the fixing member are manufactured separately, the fracture behavior may become unstable due to manufacturing errors between them.
Further, if a load is applied from an oblique direction, the cylindrical body may be broken from the vicinity of the fitting portion with the fixing member, and a sufficient energy absorbing function may not be exhibited.
【0010】本発明は前記の問題点に鑑みてなされたも
のであって、その目的は自動車の衝突時やヘリコプター
のローター故障による着地時の衝撃を和らげ、搭乗者へ
の影響を軽減するため、衝突変形時に突発的な荷重を発
生せず、しかも部材重量当たりのエネルギー吸収効率が
良いエネルギー吸収部材を提供することにある。The present invention has been made in view of the above problems, and its purpose is to soften the impact at the time of landing due to a collision of an automobile or a rotor failure of a helicopter, and to reduce the influence on passengers. An object of the present invention is to provide an energy absorbing member that does not generate a sudden load at the time of collision deformation and has high energy absorbing efficiency per member weight.
【0011】[0011]
【課題を解決するための手段】前記の目的を達成するた
め請求項1に記載の発明においては、短繊維が混入され
た繊維強化樹脂で有底筒状に成形し、筒状部内面と底部
内面とを円弧面により接続し、少なくとも筒状部の先端
から途中まではその断面積が先端側ほど小さくなるよう
にかつ軸方向に連続的に変化するように形成した。In order to achieve the above-mentioned object, in the invention according to claim 1, a fiber-reinforced resin mixed with short fibers is molded into a bottomed tubular shape, and the inner surface and the bottom portion of the tubular portion are formed. The inner surface is connected by an arcuate surface, and the tubular portion is formed so that its cross-sectional area becomes smaller toward the tip end side and continuously changes in the axial direction from the tip end to the middle.
【0012】又、請求項2に記載の発明においては、短
繊維が混入された繊維強化樹脂で有底筒状に成形し、筒
状部内面と底部内面とを円弧面により接続し、筒状部の
先端側から底部との接続部まで全長にわたってその断面
積が先端側ほど小さくなるようにかつ軸方向に連続的に
変化するように形成した。According to the second aspect of the present invention, a fiber-reinforced resin mixed with short fibers is molded into a bottomed tubular shape, and the inner surface of the tubular portion and the inner surface of the bottom portion are connected by an arc surface to form a tubular shape. The cross-sectional area is formed so as to become smaller toward the tip side and continuously change in the axial direction over the entire length from the tip side of the part to the connection part with the bottom part.
【0013】[0013]
【作用】本発明のエネルギー吸収部材は筒状部の軸方向
から圧縮荷重を受けるように取り付けられる。エネルギ
ー吸収部材の軸方向に荷重がかかると、断面積の小さな
筒状部の先端部から徐々に破壊が始まり、逐次底部側へ
破壊部位が伝播する。筒状部内面と底部内面とが円弧面
で接続されているため、接続部に応力集中による破断が
発生せず、継続的な安定した破壊が持続して大きなエネ
ルギーが吸収される。破壊は筒状部の全周にわたって全
ての部位で発生し、エネルギーを吸収するため、部材重
量当たりのエネルギー吸収効率が良くなる。The energy absorbing member of the present invention is attached so as to receive a compressive load from the axial direction of the tubular portion. When a load is applied to the energy absorbing member in the axial direction, the fracture starts gradually from the tip of the tubular portion having a small cross-sectional area, and the fracture site propagates to the bottom side successively. Since the inner surface of the cylindrical portion and the inner surface of the bottom portion are connected by the arcuate surface, breakage due to stress concentration does not occur at the connection portion, and continuous stable breakage continues and large energy is absorbed. The breakage occurs at all parts over the entire circumference of the tubular part and absorbs energy, so that the energy absorption efficiency per member weight is improved.
【0014】[0014]
【実施例】以下、本発明を具体化した一実施例を図1〜
図9に従って説明する。図1及び図2に示すように、エ
ネルギー吸収部材1は断面円形の筒状部2と底部3とか
らなる有底筒状に形成されている。筒状部2の先端には
外径が先端側ほど徐々に小さくなるように形成された先
細のテーパ部2aが形成されている。筒状部2はその外
径がテーパ部2aを除き一定に形成され、内径が底部3
側程小さくなるように形成されている。すなわち、筒状
部2は底部3に向かって徐々に肉厚となる僅かなテーパ
状に形成されている。このテーパの角度は筒状部2の先
端に設けられたテーパ部2aの角度θ(ほぼ30〜60
度)とは全く異なる極めて小さな角度(通常3度以下程
度)である。このように僅かなテーパを設けることによ
り、底部3に近い部位程大きな荷重で破壊する形を確実
にとり、先端からの継続的な破壊が助長される。筒状部
2と底部3との連続部の内面、すなわち筒状部2の内面
と底部3の内面とは円弧面4により接続されている。底
部3は自動車フレーム等への取付けに使用されるが、破
壊されずエネルギー吸収に寄与しないので、あまり厚く
して大きな重量を持たせることは、軽量化に反し好まし
くない。従って、底部3は筒状部2が破壊される荷重に
耐えられる厚さがあればよい。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment embodying the present invention will now be described with reference to FIGS.
This will be described with reference to FIG. As shown in FIGS. 1 and 2, the energy absorbing member 1 is formed in a bottomed tubular shape including a tubular portion 2 having a circular cross section and a bottom portion 3. At the tip of the tubular portion 2, a tapered taper portion 2a is formed, the outer diameter of which is gradually reduced toward the tip side. The cylindrical portion 2 has a constant outer diameter except for the tapered portion 2a, and an inner diameter of the bottom portion 3
It is formed so that it becomes smaller toward the sides. That is, the tubular portion 2 is formed in a slightly tapered shape that gradually becomes thicker toward the bottom portion 3. The angle of this taper is an angle θ (approximately 30 to 60) of the taper portion 2a provided at the tip of the tubular portion 2.
It is an extremely small angle (usually about 3 degrees or less) that is completely different from (degree). By providing such a slight taper, it is possible to ensure that the portion closer to the bottom portion 3 will be destroyed by a larger load, and continuous destruction from the tip will be promoted. The inner surface of the continuous portion of the tubular portion 2 and the bottom portion 3, that is, the inner surface of the tubular portion 2 and the inner surface of the bottom portion 3 are connected by an arc surface 4. Although the bottom portion 3 is used for mounting on a vehicle frame or the like, it is not destroyed and does not contribute to energy absorption. Therefore, it is not preferable to make the bottom portion 3 too thick to have a large weight, contrary to weight reduction. Therefore, the bottom portion 3 only needs to have a thickness that can withstand the load that breaks the tubular portion 2.
【0015】エネルギー吸収部材1の素材には短繊維が
混入された樹脂すなわち繊維強化樹脂(FRP)が使用
されている。樹脂としては熱可塑性樹脂、熱硬化性樹脂
のいずれであってもよいが、熱硬化性樹脂は熱可塑性樹
脂に比較して成形硬化に時間を要し、コスト高となるた
め一般的に熱可塑性樹脂の方が好適である。混入される
短繊維の長さ、含有率などは自由に選択できるが、繊維
長さの長い方が、又、繊維含有率の多い方が、いずれも
大きな破壊荷重を発生し、大きなエネルギー吸収効果を
有するので好ましい。又、成形は主に射出成形で行われ
る。但し、先端のテーパ部は切削加工で形成する場合も
ある。As a material of the energy absorbing member 1, a resin mixed with short fibers, that is, a fiber reinforced resin (FRP) is used. The resin may be either a thermoplastic resin or a thermosetting resin, but the thermosetting resin generally requires more time for molding and curing than the thermoplastic resin, and is generally expensive because the cost is high. Resin is preferred. The length and content of the mixed short fibers can be freely selected, but a longer fiber length and a higher fiber content both generate a large breaking load and a large energy absorption effect. Is preferable because it has The molding is mainly performed by injection molding. However, the tapered portion at the tip may be formed by cutting.
【0016】次に前記のように構成されたエネルギー吸
収部材1の作用を説明する。このエネルギー吸収部材1
は軸方向から圧縮荷重を受ける状態で、バンパの支持部
材としてあるいは、直接荷重が作用する衝撃保護部材と
して使用される。そして、自動車フレーム等への取付け
は、底部3に小径の孔を設けてボルト締め等の手段によ
り行われる。エネルギー吸収部材1が軸方向の圧縮荷重
を受けると、筒状部2はその先端にテーパ部2aが形成
されて先端程肉薄になっているため、小さな荷重で容易
に破壊が開始される。従って、遅い衝突速度でも破壊
し、突発荷重が発生せず搭乗者に衝撃を与えない。Next, the operation of the energy absorbing member 1 constructed as described above will be described. This energy absorbing member 1
Is used as a support member of a bumper or as a shock protection member to which a load is directly applied while receiving a compressive load from the axial direction. The attachment to an automobile frame or the like is performed by providing a small-diameter hole in the bottom portion 3 and bolting or the like. When the energy absorbing member 1 receives a compressive load in the axial direction, the tubular portion 2 has a taper portion 2a formed at the tip thereof and becomes thinner toward the tip thereof, so that the tubular portion 2 is easily broken with a small load. Therefore, it is destroyed even at a low collision speed, no sudden load is generated, and the passenger is not impacted.
【0017】筒状部2の先端のテーパ部2aは筒状部2
の外面側に設ける方が、破壊の伝播が継続的に円滑に起
きる傾向がある。テーパ部2aを筒状部2の内面側に設
けると、先端からの圧縮により筒状部2の中央部付近が
外方向に変形するいわば中膨らみとなり、その結果中央
部付近にクラックが入って座屈する。そして、一挙に荷
重が減少し、搭乗者に衝撃が加えられるばかりでなく継
続的な破壊挙動が維持されず、エネルギー吸収量も減少
するため好ましくない。The tapered portion 2a at the tip of the tubular portion 2 is the tubular portion 2
If it is provided on the outer surface side of the, the propagation of fracture tends to occur continuously and smoothly. When the taper portion 2a is provided on the inner surface side of the tubular portion 2, the central portion of the tubular portion 2 is deformed outward due to compression from the tip, so to speak, to form a bulge, and as a result, a crack is generated near the central portion and the seat Give in. Then, the load is reduced all at once, not only the occupant is impacted, but also the continuous fracture behavior is not maintained, and the energy absorption amount is also reduced, which is not preferable.
【0018】エネルギー吸収部材1の先端面の面積及び
テーパ部2aの角度θは、圧縮変形時に許容される最大
荷重によって決定される。発生する最大荷重を小さくす
るためには先端面の面積を小さく、しかも傾斜角度を大
きくとる方が好ましい。テーパの角度θは、先端の鋭い
方が破壊が滑らかに開始、継続されるが、エネルギー吸
収量が減るので30〜60度が好適である。The area of the tip end surface of the energy absorbing member 1 and the angle θ of the tapered portion 2a are determined by the maximum load allowed during compression deformation. In order to reduce the maximum load generated, it is preferable to make the area of the tip end face small and to increase the inclination angle. The taper angle θ is preferably 30 to 60 degrees because the sharper the tip, the more smoothly the fracture starts and continues, but the energy absorption amount decreases.
【0019】筒状部2の先端で発生した破壊は隣接部に
波及し、次々と連続的に破壊が進展して大きなエネルギ
ーを吸収する。圧縮破壊すると、筒状体は筒状体の全周
にわたって全ての部位で座屈破壊を起こしてエネルギー
を吸収する。従って、筒状部2を構成する材料の重量が
小さいにも拘らず、大きなエネルギーを吸収し、極めて
効率のよい優れたエネルギー吸収部材となる。もし筒状
部2全体が対等の強度を持った部位で構成されている
と、圧縮荷重により筒状部全体の中の最も弱い部分で破
壊(座屈)が発生して筒状の形態を保持できなくなる。
その結果、残された部位には荷重が伝播されず、継続的
な破壊が行われないため、最終的な全体の吸収エネルギ
ーは極めて小さなレベルになる。The breakage generated at the tip of the tubular portion 2 spreads to the adjacent part, and the breakup progresses continuously and absorbs a large amount of energy. Upon compression failure, the tubular body causes buckling failure at all parts along the entire circumference of the tubular body to absorb energy. Therefore, although the weight of the material forming the tubular portion 2 is small, it absorbs a large amount of energy and becomes an excellent energy absorbing member with extremely high efficiency. If the entire tubular portion 2 is composed of parts having equal strength, a compressive load causes breakage (buckling) at the weakest portion of the entire tubular portion and maintains the tubular shape. become unable.
As a result, the load is not propagated to the remaining portion and continuous destruction is not performed, so that the final total absorbed energy becomes a very small level.
【0020】筒状部2に圧縮荷重が加えられると、先端
部の破壊が次第に伝播して底部3側へ移動してくる。筒
状部2と底部3との接続部が円弧面ではなく角状である
と、前記の過程で接続部に応力集中が起こり、破壊が到
達する前に亀裂を生じて破壊し易くなる。しかし、筒状
部2と底部3との接続部が円弧面4で接続されている場
合には接続部に応力集中が発生せず、筒状部2は確実に
先端部から底部3に向かって逐次破壊され、大きなエネ
ルギーを吸収する。When a compressive load is applied to the tubular portion 2, the breakage of the tip portion gradually propagates and moves to the bottom portion 3 side. If the connecting portion between the cylindrical portion 2 and the bottom portion 3 is not a circular arc surface but a square shape, stress concentration occurs in the connecting portion in the above process, and a crack is generated before the fracture reaches, and the fracture easily occurs. However, when the connecting portion between the tubular portion 2 and the bottom portion 3 is connected by the arcuate surface 4, stress concentration does not occur at the connecting portion, and the tubular portion 2 is surely directed from the tip portion to the bottom portion 3. It is destroyed one after another and absorbs a large amount of energy.
【0021】強化用の短繊維として長さの異なるガラス
繊維を含有率30%で混入したポリプロピレンを使用し
て射出成形により製造したエネルギー吸収部材1に対し
て、軸方向からの圧縮荷重を加えた場合の圧縮荷重と変
位量との関係を測定した結果を図3,4に示す。但し、
図3はガラス繊維の長さが3mm、図4はガラス繊維の
長さが12mmの場合を示す。なお、エネルギー吸収部
材1の各部の寸法は次の通りである。An axial compressive load was applied to the energy absorbing member 1 produced by injection molding using polypropylene in which glass fibers having different lengths were mixed at a content ratio of 30% as short fibers for reinforcement. The results of measuring the relationship between the compressive load and the amount of displacement in this case are shown in FIGS. However,
FIG. 3 shows the case where the glass fiber length is 3 mm, and FIG. 4 shows the case where the glass fiber length is 12 mm. The dimensions of each part of the energy absorbing member 1 are as follows.
【0022】最先端の肉厚t0 :1.5mm、テーパ部
基端より底部側の筒状部の肉厚t1:5mm、先端から
80mm離れた位置での肉厚t2 :6mm、筒状部外径
φ:60mm、エネルギー吸収部材の長さL:100m
m、底部肉厚t3 :10mm、筒状部と底部との接続部
の曲率半径R:5mm、先端部テーパ部の角度θ:60
度。The most advanced wall thickness t0: 1.5 mm, the wall thickness t1: 5 mm of the cylindrical portion on the bottom side from the base end of the tapered portion, the wall thickness t2 at a position 80 mm away from the tip: 6 mm, outside the tubular portion. Diameter φ: 60 mm, energy absorbing member length L: 100 m
m, bottom wall thickness t3: 10 mm, radius of curvature R of connecting portion between tubular portion and bottom portion: 5 mm, angle θ of tip tapered portion: 60
Every time.
【0023】又、比較のため、テーパ部2aの基端より
底部3側の筒状部2の肉厚を5mmで一定に形成し、他
の条件は図1のエネルギー吸収部材1と同様のエネルギ
ー吸収部材について、軸方向の圧縮荷重を加えた場合の
圧縮荷重と変位量との関係の測定結果を図5に示す。但
し、ガラス繊維の長さは3mmである。又、図6には先
端テーパ部2aの角度θを10度とした場合、図7には
筒状部2と底部3との接続部を円弧面ではなく直角に形
成した場合、図8には先端テーパ部2を図9に示すよう
に内側に形成した場合の圧縮荷重と変位量との関係の測
定結果を示す。但し、ガラス繊維の長さはいずれも2m
mである。For comparison, the wall thickness of the tubular portion 2 on the bottom 3 side from the base end of the taper portion 2a is fixed to 5 mm, and other conditions are the same as the energy absorbing member 1 of FIG. FIG. 5 shows the measurement results of the relationship between the compressive load and the displacement amount when an axial compressive load is applied to the absorbing member. However, the length of the glass fiber is 3 mm. Further, in FIG. 6, when the angle θ of the tip tapered portion 2a is set to 10 degrees, in FIG. 7, when the connecting portion between the cylindrical portion 2 and the bottom portion 3 is formed at a right angle instead of an arc surface, in FIG. 10 shows the measurement results of the relationship between the compressive load and the displacement amount when the tip tapered portion 2 is formed inside as shown in FIG. However, the length of each glass fiber is 2m
m.
【0024】図3及び図4から明らかなように、ガラス
繊維の長さが3mm及び12mmのいずれの場合も、圧
縮初期に大きな荷重が発生せずにほぼ一定荷重を発生し
て破壊終了まで安定して推移し、吸収エネルギーも大き
い。又、ガラス繊維長の長い場合(図4)の方が、ガラ
ス繊維長の短い(図3)場合よりも荷重の変動が穏やか
で吸収エネルギーも大きくなっている。As is clear from FIGS. 3 and 4, when the length of the glass fiber is 3 mm or 12 mm, a large load is not generated at the initial stage of compression and a substantially constant load is generated and stable until the end of fracture. And the absorbed energy is large. Further, when the glass fiber length is long (FIG. 4), the load fluctuation is gentler and the absorbed energy is larger than when the glass fiber length is short (FIG. 3).
【0025】一方、筒状部2の肉厚がテーパ部2aを除
いて一定の場合(図5)は、肉厚が底部3側に向かって
徐々に増加する場合に比較して、荷重変動が大きく吸収
エネルギーも小さくなった。すなわち、筒状部2の肉厚
を底部3側に向かって徐々に増加させることにより、破
壊が筒状部材2の先端側から順に確実に底部3側へと伝
播することが裏付けられる。On the other hand, when the wall thickness of the cylindrical portion 2 is constant except for the taper portion 2a (FIG. 5), the load fluctuation is smaller than that when the wall thickness gradually increases toward the bottom portion 3 side. The absorbed energy was also large and small. That is, by gradually increasing the wall thickness of the tubular portion 2 toward the bottom portion 3 side, it is confirmed that the fracture is surely propagated from the tip end side of the tubular member 2 to the bottom portion 3 side in order.
【0026】又、先端テーパ部2aの角度θを10度と
小さくした場合は、図6に示すように突発的な荷重変動
が発生するとともに、筒状部2の途中で破壊が発生し
た。その結果、破壊終了までの吸収エネルギーが小さく
なった。又、筒状部2と底部3との接続部を直角とした
場合(図7)は、圧縮過程で底面付近の筒状部2に亀裂
が入り、その後は荷重が激減した。又、先端のテーパ部
2aを内側に設けた場合(図8)は、圧縮荷重により筒
状部2の一部が外方へ膨張し、亀裂を生じたため突発的
な荷重発生後、荷重が低下し、継続的に高いレベルを保
つことができないことが確認された。Further, when the angle θ of the tip tapered portion 2a is reduced to 10 degrees, a sudden load change occurs as shown in FIG. 6 and the tubular portion 2 is broken in the middle. As a result, the absorbed energy until the end of destruction became small. Further, when the connecting portion between the tubular portion 2 and the bottom portion 3 was at a right angle (FIG. 7), the tubular portion 2 near the bottom face was cracked during the compression process, and thereafter the load was drastically reduced. Further, when the tapered portion 2a at the tip is provided inside (Fig. 8), a part of the tubular portion 2 expands outward due to a compressive load and a crack is generated, so the load decreases after a sudden load occurs. However, it was confirmed that the high level could not be maintained continuously.
【0027】なお、本発明は前記両実施例に限定される
ものではなく、例えば、筒状部2の先端をテーパ状に形
成する代わりに、図10(a)に示すように筒状部2の
先端を軸に対して30度以下の角度で斜めに切り取った
形状に形成してもよい。切り取り箇所は1か所でも複数
箇所でもよい。この形状でも筒状部2の先端部はその断
面積が先端側ほど徐々に小さくなるようにかつ軸方向に
連続的に変化するようになっている。従って、このよう
な形状のエネルギー吸収部材1の場合も、筒状部2の先
端面に軸と直交する平板状の部材を介して圧縮荷重が加
われば、断面積の最も小さな筒状部2の先端から破壊が
連続的に底部3側へと進展する。又、筒状部2の先端を
斜めに切り取った形状にするとともに、その先端をテー
パ状に形成してもよい。The present invention is not limited to the above-described embodiments. For example, instead of forming the tip of the tubular portion 2 in a tapered shape, the tubular portion 2 as shown in FIG. It may be formed in a shape in which the tip of is cut obliquely at an angle of 30 degrees or less with respect to the axis. There may be one or more cutout points. Even in this shape, the cross-sectional area of the distal end portion of the tubular portion 2 gradually decreases toward the distal end side and continuously changes in the axial direction. Therefore, also in the case of the energy absorbing member 1 having such a shape, if a compressive load is applied to the tip end surface of the tubular portion 2 via the flat member orthogonal to the axis, the tubular portion 2 having the smallest cross-sectional area can be obtained. The fracture continuously progresses from the tip to the bottom 3 side. Further, the tip of the tubular portion 2 may be cut off obliquely, and the tip may be tapered.
【0028】又、テーパ部2aを除いた筒状部2の肉厚
を底部3との接続部まで徐々に全長にわたって増大させ
る代わりに、筒状部2の途中まで漸増させてその後は一
定となるようにしてもよい。Further, instead of gradually increasing the wall thickness of the tubular portion 2 excluding the taper portion 2a up to the connecting portion with the bottom portion 3, the wall thickness of the tubular portion 2 is gradually increased to a constant value thereafter. You may do it.
【0029】又、前記エネルギー吸収部材1でバンパを
支持する場合、バンパの支持を容易にするために図10
(b)に示すように、筒状部2の先端に蓋体5を取付
け、蓋体5を介してバンパ6(鎖線で図示)を支持して
もよい。蓋体5の形状がエネルギー吸収部材1の底部3
に対して斜めに傾斜しているのは、バンパ6がデザイン
上若干後方へ曲がっているため、その傾斜に沿う形状と
したためである。バンパ6、蓋体5及びエネルギー吸収
部材1はバンパ6の外側から貫通される1本のボルト7
により本体フレーム8に固定される。Further, when the bumper is supported by the energy absorbing member 1, in order to facilitate the support of the bumper, FIG.
As shown in (b), the lid 5 may be attached to the tip of the tubular portion 2 and the bumper 6 (illustrated by a chain line) may be supported via the lid 5. The shape of the lid 5 is the bottom portion 3 of the energy absorbing member 1.
The reason why the bumper 6 is inclined obliquely with respect to the bumper 6 is that since the bumper 6 is slightly bent backward due to its design, the bumper 6 has a shape along the inclination. The bumper 6, the lid 5 and the energy absorbing member 1 are provided with a single bolt 7 that penetrates from the outside of the bumper 6.
It is fixed to the body frame 8 by.
【0030】又、筒状部2の形状は製作容易性の点から
は円筒状が好ましいが、角筒状でもよい。しかし、角筒
状とする場合には、各面の接合部が角状となって異常な
応力集中が生じるのを防止するため、接合部を曲面とす
るのが好ましい。又、素材のFRPを構成する強化繊維
としてガラス繊維に代えてカーボン繊維、アラミド繊維
等の高強度の物性をもった各種の機能繊維を使用しても
よい。The shape of the cylindrical portion 2 is preferably a cylindrical shape from the viewpoint of easy manufacturing, but may be a rectangular cylindrical shape. However, in the case of the rectangular tube shape, it is preferable that the joint portion is a curved surface in order to prevent the joint portion of each surface from being angular and cause abnormal stress concentration. Further, as the reinforcing fiber constituting the FRP of the material, various functional fibers having high strength physical properties such as carbon fiber and aramid fiber may be used instead of the glass fiber.
【0031】又、エネルギー吸収部材1を直接衝撃荷重
を受ける衝撃吸収部材あるいはヘリコプターの座席床下
部等に適用してもよい。エネルギー吸収部材1を自動車
等の移動体において、バンパ等を介さずにエネルギー吸
収部材1が直接荷重を受ける状態で使用する場合、最も
荷重が加わり易い方向にエネルギー吸収部材1の先端が
向かうように設置するのが好ましい。すなわち、移動体
の前部又は後部の中央寄りに設置する場合はエネルギー
吸収部材1を前進又は後進方向と平行に設置し、側部に
設置する場合は先端が斜め前方あるいは斜め後方に向か
うように設置するのが好ましい。Further, the energy absorbing member 1 may be applied to a shock absorbing member directly receiving an impact load or a seat floor of a helicopter. When the energy absorbing member 1 is used in a moving body such as an automobile in a state in which the energy absorbing member 1 directly receives a load without a bumper or the like, the tip of the energy absorbing member 1 is directed in the direction in which the load is most easily applied. It is preferably installed. That is, the energy absorbing member 1 is installed parallel to the forward or backward direction when it is installed near the center of the front or rear of the moving body, and the tip is directed diagonally forward or diagonally backward when installed on the side. It is preferably installed.
【0032】[0032]
【発明の効果】以上詳述したように本発明のエネルギー
吸収部材は、破壊される際に筒状体の面積の小さな側の
端部から徐々に破壊が始まり、全体的にほぼ一定の荷重
レベルを保って変化し、しかもエネルギー吸収部材の全
ての部位で座屈破壊を起こしてエネルギーを吸収するの
で、エネルギー吸収量が大きくなるとともに部材重量当
たりのエネルギー吸収効率が良くなる。As described above in detail, when the energy absorbing member of the present invention is broken, the breaking gradually starts from the end portion of the tubular body having the smaller area, and the load level is substantially constant as a whole. The energy absorption amount is increased and the energy absorption efficiency per member weight is improved because the energy is absorbed and the energy is absorbed by buckling and breaking at all parts of the energy absorption member.
【図1】本発明を具体化した一実施例のエネルギー吸収
部材の断面図である。FIG. 1 is a sectional view of an energy absorbing member according to an embodiment of the present invention.
【図2】同じくエネルギー吸収部材の概略斜視図であ
る。FIG. 2 is a schematic perspective view of an energy absorbing member.
【図3】エネルギー吸収部材(ガラス繊維長さ3mm)
に軸方向荷重を加えた場合の圧縮荷重−変位量の関係を
示すグラフである。FIG. 3 Energy absorbing member (glass fiber length 3 mm)
5 is a graph showing the relationship between the compressive load and the amount of displacement when an axial load is applied to the.
【図4】エネルギー吸収部材(ガラス繊維長さ12m
m)に軸方向荷重を加えた場合の圧縮荷重−変位量の関
係を示すグラフである。FIG. 4 Energy absorbing member (glass fiber length 12 m
It is a graph which shows the compressive load-displacement amount relationship at the time of adding an axial load to m).
【図5】比較例(筒状部肉厚一定)のエネルギー吸収部
材(ガラス繊維長さ3mm)に軸方向荷重を加えた場合
の圧縮荷重−変位量の関係を示すグラフである。FIG. 5 is a graph showing a relationship between a compression load and a displacement amount when an axial load is applied to an energy absorbing member (glass fiber length 3 mm) of a comparative example (constant wall thickness of a tubular portion).
【図6】別の比較例(テーパ部角度10度)のエネルギ
ー吸収部材(ガラス繊維長さ2mm)に軸方向荷重を加
えた場合の圧縮荷重−変位量の関係を示すグラフであ
る。FIG. 6 is a graph showing the relationship between the compression load and the amount of displacement when an axial load is applied to the energy absorbing member (glass fiber length 2 mm) of another comparative example (taper angle of 10 degrees).
【図7】別の比較例(接続部直角)のエネルギー吸収部
材(ガラス繊維長さ2mm)に軸方向荷重を加えた場合
の圧縮荷重−変位量の関係を示すグラフである。FIG. 7 is a graph showing the relationship between the compressive load and the amount of displacement when an axial load is applied to the energy absorbing member (glass fiber length 2 mm) of another comparative example (perpendicular to the connecting portion).
【図8】別の比較例(テーパ部内側)のエネルギー吸収
部材(ガラス繊維長さ2mm)に軸方向荷重を加えた場
合の圧縮荷重−変位量の関係を示すグラフである。FIG. 8 is a graph showing the relationship between the compression load and the amount of displacement when an axial load is applied to the energy absorbing member (glass fiber length 2 mm) of another comparative example (inside the taper portion).
【図9】比較例のエネルギー吸収部材の断面図である。FIG. 9 is a cross-sectional view of an energy absorbing member of a comparative example.
【図10】(a)は変更例のエネルギー吸収部材の概略
斜視図であり、(b)は蓋体を介してエネルギー吸収部
材とバンパとを組付けた状態の断面図である。FIG. 10A is a schematic perspective view of an energy absorbing member of a modified example, and FIG. 10B is a cross-sectional view of a state in which the energy absorbing member and the bumper are assembled via a lid.
【図11】従来の衝撃保護用構造材を示す概略斜視図で
ある。FIG. 11 is a schematic perspective view showing a conventional structural member for impact protection.
【図12】従来のエネルギー吸収部材を示す断面図であ
る。FIG. 12 is a cross-sectional view showing a conventional energy absorbing member.
1…エネルギー吸収部材、2…筒状部、2a…テーパ
部、3…底部、4…円弧面。1 ... Energy absorption member, 2 ... Cylindrical part, 2a ... Tapered part, 3 ... Bottom part, 4 ... Arc surface.
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成5年1月21日[Submission date] January 21, 1993
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0023[Name of item to be corrected] 0023
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0023】又、比較のため、テーパ部2aの基端より
底部3側の筒状部2の肉厚を5mmで一定に形成し、他
の条件は図1のエネルギー吸収部材1と同様のエネルギ
ー吸収部材について、軸方向の圧縮荷重を加えた場合の
圧縮荷重と変位量との関係の測定結果を図5に示す。但
し、ガラス繊維の長さは3mmである。又、図6には先
端テーパ部2aの角度θを10度とした場合、図7には
筒状部2と底部3との接続部を円弧面ではなく直角に形
成した場合、図8には先端テーパ部2を図9に示すよう
に内側に形成した場合の圧縮荷重と変位量との関係の測
定結果を示す。但し、ガラス繊維の長さはいずれも3m
mである。For comparison, the wall thickness of the tubular portion 2 on the bottom 3 side from the base end of the taper portion 2a is fixed to 5 mm, and other conditions are the same as the energy absorbing member 1 of FIG. FIG. 5 shows the measurement results of the relationship between the compressive load and the displacement amount when an axial compressive load is applied to the absorbing member. However, the length of the glass fiber is 3 mm. Further, in FIG. 6, when the angle θ of the tip tapered portion 2a is set to 10 degrees, in FIG. 7, when the connecting portion between the cylindrical portion 2 and the bottom portion 3 is formed at a right angle instead of an arc surface, in FIG. 10 shows the measurement results of the relationship between the compressive load and the displacement amount when the tip tapered portion 2 is formed inside as shown in FIG. However, the length of each glass fiber is 3m
m.
【手続補正2】[Procedure Amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】図6[Name of item to be corrected] Figure 6
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図6】別の比較例(テーパ部角度10度)のエネルギ
ー吸収部材(ガラス繊維長さ3mm)に軸方向荷重を加
えた場合の圧縮荷重−変位量の関係を示すグラフであ
る。FIG. 6 is a graph showing a relationship between a compression load and a displacement amount when an axial load is applied to an energy absorbing member (glass fiber length: 3 mm) of another comparative example (tapered portion angle: 10 degrees).
【手続補正3】[Procedure 3]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】図7[Name of item to be corrected] Figure 7
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図7】別の比較例(接続部直角)のエネルギー吸収部
材(ガラス繊維長さ3mm)に軸方向荷重を加えた場合
の圧縮荷重−変位量の関係を示すグラフである。FIG. 7 is a graph showing the relationship between the compressive load and the amount of displacement when an axial load is applied to the energy absorbing member (glass fiber length 3 mm) of another comparative example (perpendicular to the connecting portion).
【手続補正4】[Procedure amendment 4]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】図8[Correction target item name] Figure 8
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図8】別の比較例(テーパ部内側)のエネルギー吸収
部材(ガラス繊維長さ3mm)に軸方向荷重を加えた場
合の圧縮荷重−変位量の関係を示すグラフである。FIG. 8 is a graph showing the relationship between the compressive load and the amount of displacement when an axial load is applied to the energy absorbing member (glass fiber length 3 mm) of another comparative example (inside the taper portion).
Claims (2)
筒状に成形し、筒状部内面と底部内面とを円弧面により
接続し、少なくとも筒状部の先端から途中まではその断
面積が先端側ほど小さくなるようにかつ軸方向に連続的
に変化するように形成したエネルギー吸収部材。1. A fiber-reinforced resin mixed with short fibers, which is molded into a tubular shape with a bottom, and the inner surface of the tubular portion and the inner surface of the bottom portion are connected by an arcuate surface, at least from the tip to the middle of the tubular portion. An energy absorbing member formed so that the area becomes smaller toward the tip side and continuously changes in the axial direction.
筒状に成形し、筒状部内面と底部内面とを円弧面により
接続し、筒状部の先端側から底部との接続部まで全長に
わたってその断面積が先端側ほど小さくなるようにかつ
軸方向に連続的に変化するように形成したエネルギー吸
収部材。2. A fiber-reinforced resin mixed with short fibers, which is molded into a tubular shape with a bottom, and an inner surface of the tubular portion and an inner surface of the bottom portion are connected by an arc surface, and a connecting portion from a tip end side of the tubular portion to the bottom portion. An energy absorbing member formed such that its cross-sectional area becomes smaller toward the distal end side over the entire length and continuously changes in the axial direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04271995A JP3141569B2 (en) | 1992-10-09 | 1992-10-09 | Energy absorbing material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04271995A JP3141569B2 (en) | 1992-10-09 | 1992-10-09 | Energy absorbing material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06123322A true JPH06123322A (en) | 1994-05-06 |
JP3141569B2 JP3141569B2 (en) | 2001-03-05 |
Family
ID=17507687
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04271995A Expired - Lifetime JP3141569B2 (en) | 1992-10-09 | 1992-10-09 | Energy absorbing material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3141569B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2784151A1 (en) * | 1998-10-01 | 2000-04-07 | Allibert Ind | ENERGY ABSORPTION DEVICE ON SHOCK AND PROCESS FOR OBTAINING SAME |
WO2001020189A1 (en) * | 1999-09-13 | 2001-03-22 | Idemitsu Petrochemical Co., Ltd. | Shock absorbing member, automobile interior member and automobile door trim |
WO2013080974A1 (en) | 2011-11-28 | 2013-06-06 | 帝人株式会社 | Shock absorption member |
JP2014005901A (en) * | 2012-06-26 | 2014-01-16 | Kyoraku Co Ltd | Impact energy absorber |
-
1992
- 1992-10-09 JP JP04271995A patent/JP3141569B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2784151A1 (en) * | 1998-10-01 | 2000-04-07 | Allibert Ind | ENERGY ABSORPTION DEVICE ON SHOCK AND PROCESS FOR OBTAINING SAME |
WO2001020189A1 (en) * | 1999-09-13 | 2001-03-22 | Idemitsu Petrochemical Co., Ltd. | Shock absorbing member, automobile interior member and automobile door trim |
WO2013080974A1 (en) | 2011-11-28 | 2013-06-06 | 帝人株式会社 | Shock absorption member |
JP2014005901A (en) * | 2012-06-26 | 2014-01-16 | Kyoraku Co Ltd | Impact energy absorber |
Also Published As
Publication number | Publication date |
---|---|
JP3141569B2 (en) | 2001-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3144054B2 (en) | Energy absorbing material | |
JP3246041B2 (en) | Energy absorbing material | |
JP6610677B2 (en) | Vehicle shock absorbing member structure | |
KR100189710B1 (en) | Propeller shaft for a vehicle | |
JP5791676B2 (en) | Shock absorber | |
CN104417469B (en) | Impact absorber | |
JP2018100055A (en) | Energy absorption structure | |
JP6281558B2 (en) | Vehicle shock absorbing member structure | |
JP3141570B2 (en) | Energy absorbing material | |
US6682436B2 (en) | Shock absorbing tube | |
EP0683328A1 (en) | Propeller shaft | |
JPH06123322A (en) | Energy absorbing member | |
JP6365893B2 (en) | Vehicle shock absorbing member structure | |
JP3837818B2 (en) | FRP thick energy absorber | |
ITRM930126A1 (en) | IMPROVEMENT IN VEHICLE SEATS. | |
JP2005247096A (en) | Vehicular impact absorbing body and vehicular impact absorbing device | |
US6715593B1 (en) | Crush tube assembly | |
JP6560568B2 (en) | Energy absorbing structure | |
JP6340640B2 (en) | Vehicle shock absorption structure | |
JP4092478B2 (en) | Shock-absorbing component integrated with connecting member and method of manufacturing the same | |
JP6534584B2 (en) | Energy absorbing structure | |
JPH05332385A (en) | Energy absorbing member | |
JPH08170674A (en) | Energy absorber provided with local reinforcing jig | |
JP2892854B2 (en) | Energy absorbing material | |
WO2025069134A1 (en) | Energy-absorbing structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121222 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121222 Year of fee payment: 12 |