JPH06122923A - Production of high ductility hot rolled steel sheet excellent in longitudinal cracking resistance - Google Patents
Production of high ductility hot rolled steel sheet excellent in longitudinal cracking resistanceInfo
- Publication number
- JPH06122923A JPH06122923A JP30054592A JP30054592A JPH06122923A JP H06122923 A JPH06122923 A JP H06122923A JP 30054592 A JP30054592 A JP 30054592A JP 30054592 A JP30054592 A JP 30054592A JP H06122923 A JPH06122923 A JP H06122923A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- amount
- steel sheet
- hot
- rolled steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は熱延鋼板の製造に関し、
今後自動車用の足まわり部品の製造に多用されると思わ
れるプレス成形性の極めて優れた熱延鋼板の製造方法に
関するものである。The present invention relates to the production of hot rolled steel sheet,
The present invention relates to a method for producing a hot-rolled steel sheet having excellent press formability, which is likely to be used in the production of suspension parts for automobiles in the future.
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】自然エ
ネルギーの節約及び環境汚染防止の観点から自動車の燃
費向上要求が最近急激に高まってきており、車体重量の
軽減を目的として部品点数の節減、薄肉高強度鋼板への
切り換えなどが検討されている。しかし、部品点数の節
減は個々の部品の形状の複雑化をもたらすため、特に、
従来、検討があまりなされていなかった足まわり部品に
ついては熱延鋼板のプレス成形性改善要求が高い現状に
ある。2. Description of the Related Art Recently, a demand for improving fuel efficiency of automobiles has been rapidly increased from the viewpoint of saving natural energy and preventing environmental pollution, and the number of parts is reduced for the purpose of reducing the weight of a vehicle body. Switching to thin high-strength steel sheets is under consideration. However, the reduction of the number of parts brings about the complexity of the shape of individual parts.
For suspension parts that have not been studied so far, there is a high demand for improvement in press formability of hot-rolled steel sheets.
【0003】C量が0.0080%以下の極低CIF鋼
板(IF鋼板:NbやTiによって鋼中Cが全量固定され
た鋼板)は、優れた伸び及び伸びフランジ性を示すこと
から、この種の用途への適用が検討され、現在、一部自
動車のロアアームなどで実用化されている。An extremely low CIF steel sheet having a C content of 0.0080% or less (IF steel sheet: a steel sheet in which the total amount of C in the steel is fixed by Nb and Ti) exhibits excellent elongation and stretch flangeability, and therefore, this type Has been studied and is currently in practical use in the lower arms of some automobiles.
【0004】しかし、この鋼板は、プレス成形性付与の
観点から、通常650℃以上の比較的高温でコイル巻取
りされ、鋼中のCがTi或いはNbの析出物として固定さ
れる結果、鋼の粒界強度が著しく低下し、鋼板が苛酷な
プレス成形を受けた場合や、更にその部品が寒冷地で使
用される場合、脆性破壊(「縦割れ」と称する)すること
があり、問題となる。一方、500℃以下の比較的低温
でコイル巻取りすると、鋼中Cの大部分は未析出の状態
でフェライト粒内及び粒界に残存するため粒界強度が高
くなって、このような問題は防止し得るが、プレス成形
性の劣化を招き好ましくない。However, from the viewpoint of imparting press formability, this steel sheet is usually coiled at a relatively high temperature of 650 ° C. or higher, and C in the steel is fixed as Ti or Nb precipitates. If the strength of the grain boundary is significantly reduced and the steel sheet is subjected to severe press forming, or if the part is used in cold regions, brittle fracture (called "vertical crack") may occur, which is a problem. . On the other hand, when the coil is wound at a relatively low temperature of 500 ° C. or less, most of C in the steel remains in the ferrite grains and in the grain boundaries in a non-precipitated state, so that the grain boundary strength becomes high. Although it can be prevented, it deteriorates the press formability, which is not preferable.
【0005】鋼板のプレス成形性は若干の未析出C(固
溶C)が残存していてもある程度高く維持できる。そこ
で、製品の段階でNb、Tiなどに固定されるC量と余剰
のC量を予測した所定のC量を製鋼の段階で作りこむと
いう報告もあるが、C、N、Nb、Tiなどの歩留り量の
ばらつきのために、最終製品の品質を安定して作り込む
ことが極めて難しいのが実情である。The press formability of the steel sheet can be maintained to some extent high even if some unprecipitated C (solid solution C) remains. Therefore, there is a report that a predetermined amount of C that predicts the amount of C fixed to Nb, Ti, etc. at the product stage and the surplus C amount is made at the stage of steelmaking, but it is not possible to use C, N, Nb, Ti, etc. In reality, it is extremely difficult to consistently manufacture the quality of the final product due to the variation in the yield amount.
【0006】また、最近の製鋼脱ガス技術の発展によっ
て、延性を大きく劣化させない0.0010%以下の極
微量のCを含む鋼の製造も可能となっているが、本方法
は現状ではコスト上昇が大きすぎる欠点がある。更に、
本方法は、Ti、Nbなどの添加を必要としないため、薄
鋼板の製造で結晶粒が著しく粗大になり、プレス成形で
は肌荒れなどの不具合が生じるほか、溶接部組織も粗大
となって靭性、疲労強度が低下するなどの実用上の問題
が生じる。Further, due to the recent development of steelmaking degassing technology, it has become possible to manufacture steel containing an extremely small amount of C of 0.0010% or less which does not significantly deteriorate ductility, but this method currently raises costs. Is too big. Furthermore,
Since this method does not require addition of Ti, Nb, etc., the crystal grains become remarkably coarse in the production of a thin steel sheet, defects such as rough skin occur in press forming, and the weld structure also becomes coarse and the toughness, Practical problems such as reduced fatigue strength occur.
【0007】このように、従来の製造技術では高延性と
優れた耐縦割れ性を併せ持つ熱延鋼板を安定して製造す
ることができなかったのである。As described above, the conventional manufacturing technique cannot stably manufacture a hot-rolled steel sheet having both high ductility and excellent longitudinal crack resistance.
【0008】本発明は、かゝる状況のもとで、従来の極
低C系IF鋼並みの優れた延性(伸び)と低C−Alキル
ド鋼並みの優れた低温靭性(耐縦割れ性)を有する熱延鋼
板を安定して製造する技術を提供することを目的とする
ものである。Under these circumstances, the present invention provides excellent ductility (elongation) comparable to that of conventional ultra-low C type IF steel and excellent low temperature toughness (longitudinal cracking resistance comparable to that of low C-Al killed steel). It is an object of the present invention to provide a technique for stably producing a hot-rolled steel sheet having).
【0009】[0009]
【課題を解決するための手段】前記課題を解決するため
に、本発明者は、従来の極低C系IF熱延鋼板の炭化物
の析出挙動に関して種々の研究を行った。その結果、従
来のIF鋼では通常0.01%以上のPを含有している
が、P量を大幅に低減した場合、Ti炭化物の析出が著
しく遅れるという知見に基づき、自動車用IF系熱延鋼
板の適正化学成分及び熱延条件を規定することによって
高延性と優れた耐縦割れ性を実現し得ることを知見し、
ここに本発明を完成したものである。In order to solve the above-mentioned problems, the present inventor has conducted various studies on the precipitation behavior of carbides in conventional ultra-low C type IF hot-rolled steel sheets. As a result, conventional IF steels usually contain 0.01% or more of P, but based on the finding that precipitation of Ti carbide is significantly delayed when the amount of P is greatly reduced, IF hot rolling for automobiles is performed. It was found that high ductility and excellent vertical cracking resistance can be realized by specifying the appropriate chemical composition and hot rolling conditions for the steel sheet,
The present invention is completed here.
【0010】すなわち、本発明は、C:0.001〜0.
005%、Mn:0.1〜0.6%、P≦0.01%、S≦
0.015%、N≦0.0060%を含有し、更にTi:
0.02〜0.08%又はTi:0.02〜0.08%及び
Nb:0.01〜0.03%を含有すると共に、以下の関
係式、 ln〔(48/93)Nb+Ti*〕・〔P〕≦−8.50、 ((48/93)Nb+Ti*)/C:4〜20、 ここで、Ti*=Ti−(TiasTiS+TiasTiN) を満足し、残部が不可避的不純物よりなる鋼の熱間圧延
に際し、炭化物析出が認められない高温から熱間圧延を
開始し、850℃以上で仕上圧延した後、600〜71
0℃間でコイル巻取りすることを特徴とする耐縦割れ性
の優れた高延性熱延鋼板の製造方法を要旨としている。That is, according to the present invention, C: 0.001 to 0.
005%, Mn: 0.1 to 0.6%, P ≦ 0.01%, S ≦
0.015%, N ≦ 0.0060%, and Ti:
0.02 to 0.08% or Ti: 0.02 to 0.08% and Nb: 0.01 to 0.03%, and the following relational expression: ln [(48/93) Nb + Ti *] [P] ≦ −8.50, ((48/93) Nb + Ti *) / C: 4 to 20, where Ti * = Ti− (TiasTiS + TiasTiN) is satisfied, and the balance is steel of inevitable impurities. During hot rolling, hot rolling is started from a high temperature at which no precipitation of carbide is observed, and finish rolling is performed at 850 ° C. or higher.
The gist is a method for producing a high-ductility hot-rolled steel sheet having excellent longitudinal crack resistance, which is characterized by winding a coil at 0 ° C.
【0011】以下に本発明を更に詳細に説明する。The present invention will be described in more detail below.
【0012】[0012]
【0013】本発明の技術的ポイントは、化学量論的に
鋼中Cを十分固定し得るTi或いはTiとNbを複合添加
した鋼を高温でコイル巻取りしてもP量を比較的低く制
御することによってTi或いはNb炭化物の析出が抑制さ
れることを見い出し、それをIF系熱延鋼板の高延性と
耐縦割れ性の付与に結び付けたこと点にある。The technical point of the present invention is that the amount of P is controlled to be relatively low even when coiled at a high temperature by Ti, which is capable of sufficiently fixing C in the steel stoichiometrically, or steel containing a combination of Ti and Nb. It was found that the precipitation of Ti or Nb carbides was suppressed by doing so, and this was linked to the impartation of high ductility and resistance to longitudinal cracking of the IF type hot rolled steel sheet.
【0014】まず、本発明の基礎となった実験の結果を
説明する。First, the results of the experiment on which the present invention is based will be described.
【0015】供試材は、表1に示す化学成分でP量を変
化させたもので、これを実験室的に溶解した極低C−T
i系鋼である。鍛造及び粗圧延後、加工熱処理用小試片
を作製した。加工熱処理では1200℃で溶体化した
後、930℃で30%の加工を付与し、10秒後に65
0℃まで急冷して同温度に2000秒保持することによ
って熱延板の仕上圧延後の冷却及びコイル巻取りをシミ
ュレートした。巻取温度(650℃)での保持時間を変化
させて鋼中固溶C量、すなわち、炭化物として析出して
いないCの量を歪み時効量として調査した。The test materials were those in which the P content was changed with the chemical components shown in Table 1, and were dissolved in a laboratory to obtain an extremely low C-T.
i-type steel. After forging and rough rolling, a small sample for thermomechanical treatment was produced. In the thermo-mechanical treatment, solution treatment was performed at 1200 ° C, 30% processing was applied at 930 ° C, and after 10 seconds, 65% was applied.
Cooling and coil winding after finish rolling of the hot-rolled sheet were simulated by quenching to 0 ° C. and holding at the same temperature for 2000 seconds. The amount of solid solution C in steel, that is, the amount of C not precipitated as carbides was investigated as the strain aging amount by changing the holding time at the coiling temperature (650 ° C.).
【0016】[0016]
【表1】 [Table 1]
【0017】その調査結果を図1に示す。650℃保持
1秒後では、鋼のP量によらず、いずれも約3.7kgf/
mm2の歪み時効量(170℃×10分の時効熱処理前後の
降伏点の差)を示すが、保持時間の増大につれて歪み時
効量に相違がでてくる。The results of the investigation are shown in FIG. After being kept at 650 ° C for 1 second, regardless of the P content of the steel, both were about 3.7 kgf /
The strain aging amount in mm 2 (difference in yield point before and after aging heat treatment at 170 ° C. × 10 minutes) is shown, and the strain aging amount varies as the holding time increases.
【0018】すなわち、P量が0.010%以上の鋼A
及びBでは、300秒以上の保持によって歪み時効量が
大きく低下するのに対して、P量が0.002%の鋼C
では2000秒保持しても歪み時効量はあまり低下しな
い。本実験では鋼中のNはすべてTiによって固定、す
なわち、TiNとして析出していると考えられるので、
歪み時効量の変化は鋼中の固溶C量の変化と考えられ
る。換言すれば、歪み時効量の低下はTiCの析出量の
増大を意味する。That is, steel A having a P content of 0.010% or more
In B and B, the strain aging amount is greatly reduced by holding for 300 seconds or more, whereas in the case of steel C in which the P amount is 0.002%.
Then, the strain aging amount does not decrease so much even if it is held for 2000 seconds. In this experiment, it is considered that all N in the steel is fixed by Ti, that is, precipitated as TiN,
The change in the strain aging amount is considered to be the change in the amount of solute C in the steel. In other words, a decrease in the strain aging amount means an increase in the TiC precipitation amount.
【0019】従来、化学量論的に鋼中のCを十分固定す
るTi量を添加した鋼を650℃で1000秒以上の長
時間保持した場合、2kgf/mm2以上の歪み時効量が残存
するとの報告例は見当らない。しかし、化学量論的にI
Fとなる鋼に多量のP(例えば0.05%以上)を添加し
て熱延鋼板とした場合、600℃以上の温度でコイル巻
取りすると、Fe・P化物がフェライト粒界及び粒内に
多量に析出する報告がある。これを逆説的にみると、P
量が少ない場合、600℃以上の高温でコイル巻取りし
てもFe・P化物の析出が抑えられることになる。TiC
などの炭化物が先に析出しているFe・P化物を析出サ
イトとして析出するのであれば、上記の鋼でP量が多い
場合、TiC析出が促進され、一方、P量が少ない場
合、TiC析出サイトの減少からTiC析出が抑制される
ことになって、本実験の結果は特に新規性あるものでは
ないと言える。Conventionally, when a steel added with a Ti content that stoichiometrically sufficiently fixes C in steel is held at 650 ° C. for a long time of 1000 seconds or more, a strain aging amount of 2 kgf / mm 2 or more remains. There is no report example. However, stoichiometrically I
When a large amount of P (for example, 0.05% or more) is added to steel that becomes F to form a hot-rolled steel sheet, when the coil is wound at a temperature of 600 ° C or higher, Fe / P compound is formed in the ferrite grain boundaries and in the grains. There is a report that a large amount is deposited. Paradoxically, this is P
When the amount is small, the precipitation of Fe / P compound can be suppressed even when coiled at a high temperature of 600 ° C. or higher. TiC
If Fe / P compound in which carbides such as the above have been precipitated as a precipitation site, TiC precipitation is promoted when the P content is high in the above steel, while TiC precipitation is promoted when the P content is low. It can be said that the results of this experiment are not particularly novel because TiC precipitation is suppressed due to the reduction of sites.
【0020】しかしながら、実情は、本実験のような微
量のP量の範囲でのFe・P析出物の析出挙動、Fe・P
析出とTiC析出との析出の早さのほか、果たしてFe・
P析出物がTiC析出サイトとなるか、熱延の段階で存
在しているであろうTiN、MnSなどはどう働くのか、
など不明な点が多く、したがって、本発明の基礎となっ
た前述の実験結果は、既存の報告や公知の事実によって
新規性を否定されるものではない。However, in reality, the precipitation behavior of Fe / P precipitates in the range of a trace amount of P as in the present experiment, Fe / P
In addition to the speed of precipitation between precipitation and TiC precipitation, Fe ・
How does the P precipitate become a TiC precipitation site, and how does TiN, MnS, etc., which may exist during the hot rolling process, work?
There are many unclear points, and therefore, the above-mentioned experimental results that are the basis of the present invention cannot be denied novelty by existing reports or known facts.
【0021】次に、Pを低減することによる歪み時効量
増大の実験結果が、自動車用鋼板の耐縦割れ性付与にど
のような意味を持つかについて説明する。Next, it will be explained what the experimental result of increasing the strain aging amount by reducing P means for imparting longitudinal crack resistance to the steel sheet for automobiles.
【0022】一般に、鋼板の耐縦割れ性は鋼中の固溶C
量によって大きく影響を受け、耐縦割れ性付与のために
は鋼中に数ppm以上の固溶Cを残存させるのが効果的と
言われている。実際に固溶C量の微量計測は極めて困難
であるので、簡便評価法として固溶C量の多少を前述の
歪み時効量(△YP)の大小で判断している。Generally, the vertical crack resistance of a steel sheet is determined by the solid solution C in the steel.
It is greatly affected by the amount, and it is said that it is effective to leave solid solution C of several ppm or more in the steel for imparting vertical cracking resistance. Actually, it is extremely difficult to measure a minute amount of the solute C amount, and therefore, as a simple evaluation method, the amount of the solute C amount is judged by the magnitude of the strain aging amount (ΔYP).
【0023】薄鋼板の深絞り成形品の延性−脆性遷移温
度(縦割れ遷移温度)と歪み時効量との関係を図2に示
す。歪み時効量が小さくなると縦割れ遷移温度が上昇
し、脆性的に破壊し易くなる。通常、縦割れの不良が報
告されていない低C−Alキルド鋼並みの遷移温度を確
保するためには、2kgf/mm2以上の歪み時効量を有する
鋼板とする必要があることがわかる。FIG. 2 shows the relationship between the ductility-brittleness transition temperature (longitudinal cracking transition temperature) and the strain aging amount of a deep drawn product of a thin steel sheet. When the strain aging amount becomes small, the vertical crack transition temperature rises, and it becomes brittle and easily breaks. It is generally understood that it is necessary to use a steel sheet having a strain aging amount of 2 kgf / mm 2 or more in order to secure a transition temperature comparable to that of a low C-Al killed steel in which longitudinal cracking defects have not been reported.
【0024】このような事実に鑑みて、前述のP量に関
する調査結果を耐縦割れ性の面で考察すると、P量が
0.01%以上の鋼は650℃で2000秒保持した時
点でなお若干の歪み時効量を有することから、鋼中には
微量の固溶Cを残存していることがわかるが、歪み時効
量は約1kgf/mm2であり、鋼板の耐縦割れ性確保のため
には不十分である。これに対して、0.002%P鋼は
同時点で約3kgf/mm2の歪み時効を有し、優れた耐縦割
れ性を示すと言える。Considering the above facts, when considering the above-mentioned investigation results regarding the P content in terms of resistance to longitudinal cracking, steel with a P content of 0.01% or more is still observed at 650 ° C. for 2000 seconds. Since it has a slight amount of strain aging, it can be seen that a small amount of solid solution C remains in the steel, but the amount of strain aging is about 1 kgf / mm 2, which is to ensure the vertical cracking resistance of the steel sheet. Is not enough for. On the other hand, 0.002% P steel has a strain aging of about 3 kgf / mm 2 at the same time, and it can be said that it exhibits excellent vertical cracking resistance.
【0025】以上のように、本実験結果は、プレス成形
に供される自動車用鋼板の製造に大きな意味を持つこと
がわかる。As described above, it is understood that the results of this experiment have great significance in the production of automobile steel sheets used for press forming.
【0026】鋼中固溶C量の減少に及ぼす炭化物以外の
析出物の影響については、前述のように明確な考え方は
確立されていないが、その後の実験によると、600〜
710℃のコイル巻取温度範囲ではNb、Tiなどの炭化
物形成元素とPの量で表わされる式の値とおおむね相関
がある。図3にその関係を示す。低C−Alキルド鋼並
み遷移温度、すなわち、2kgf/mm2以上の歪み時効量を
確保するためには、Cと結合し得る有効Nb量及び有効
Ti量として計算される値とP量との積、〔(48/93)Nb
+Ti*)・P〕の自然対数値を−8.50以下とする必要
がある。Regarding the influence of precipitates other than carbides on the decrease in the amount of solid solution C in steel, a clear idea has not been established as described above, but according to the subsequent experiments,
In the coil winding temperature range of 710 ° C., there is a general correlation with the value of the formula represented by the amount of P and the carbide forming elements such as Nb and Ti. FIG. 3 shows the relationship. In order to secure a transition temperature equivalent to that of a low C-Al killed steel, that is, a strain aging amount of 2 kgf / mm 2 or more, a value calculated as an effective Nb amount and an effective Ti amount that can be combined with C and a P amount are required. Product, [(48/93) Nb
It is necessary to set the natural logarithm of + Ti *) · P] to −8.50 or less.
【0027】このように、従来、不純物と見なされてい
た微量のPの領域であっても、P量によって鋼の特性が
大きく変化する。しかも、Pの低減は、現在の製鋼技術
では約0.005%Pまで比較的容易に低減し得ること
を考えると、熱延鋼板の製造への本思想の適用は実現性
が高い。As described above, the characteristics of steel change greatly depending on the amount of P even in the region of a small amount of P, which was conventionally regarded as an impurity. Moreover, considering that the reduction of P can be relatively easily reduced to about 0.005% P in the current steelmaking technology, the application of the present idea to the production of hot-rolled steel sheet is highly feasible.
【0028】次に高延性の確保について説明する。Next, ensuring high ductility will be described.
【0029】これまで説明したように、Pを低減した鋼
C(表1)は、化学量論的には鋼中CをTiで全量固定し
得るが、熱延後の状態で比較的高温でコイル巻取しても
若干の固溶Cが残留するのであるから、鋼の延性(伸び)
は劣化すると思われる。鋼Cの20mm厚粗圧延機を用い
て、次に述べる熱間圧延を実施し、熱延鋼板の伸びを調
査した。As described above, the steel C having reduced P (Table 1) can stoichiometrically fix all the C in the steel with Ti, but after hot rolling at a relatively high temperature. Since some solid solution C remains even after coiling, the ductility (elongation) of steel
Seems to deteriorate. Using a 20 mm thick rough rolling machine for steel C, hot rolling described below was carried out to investigate the elongation of the hot rolled steel sheet.
【0030】すなわち、1200℃でスラブ加熱を実施
した後、熱間圧延を行い、900℃にて仕上圧延した3
mm厚鋼板を平均冷却速度40℃/sでシャワー冷却した
後、500〜700℃の温度に設定した炉に挿入して3
0分保持し、以降炉冷した。本実験は実験室にて実施
し、500〜700℃の温度はコイル巻取温度を想定し
ており、その後の炉冷はコイル冷却をシミュレートして
いる。That is, after slab heating was performed at 1200 ° C., hot rolling was performed and finish rolling was performed at 900 ° C. 3.
After shower cooling the mm thick steel plate at an average cooling rate of 40 ° C / s, it is inserted into a furnace set to a temperature of 500 to 700 ° C for 3
It was held for 0 minutes and then cooled in the furnace. This experiment is carried out in a laboratory, and the temperature of 500 to 700 ° C. assumes the coil winding temperature, and the subsequent furnace cooling simulates the coil cooling.
【0031】常温まで冷却した鋼板を表裏面研削して引
張試験に供し、伸びを調べた。調査結果を図4に示す。
同図には、通常のIF鋼成分である鋼B、及び化学量論
的にIFとならない鋼Dについての調査結果も併せて示
してある。同図より、鋼Cは600℃以上でのコイル巻
取りによって、従来のIF鋼並みの優れた伸びを有する
ことがわかる。鋼Dはこれら2鋼種に比べると伸びは低
い。鋼Cが比較的優れた伸びを示す理由は明らかでない
が、高温巻取によって既析出物が粗大化すること、残留
する固溶C量が鋼Dのように多量でないこと、低Pであ
ること、などが鋼の延性をあまり劣化させないものと考
えられる。The steel sheet cooled to room temperature was ground and subjected to a tensile test to examine its elongation. The survey results are shown in FIG.
The figure also shows the results of a survey on steel B, which is a normal IF steel component, and steel D, which does not become IF IF stoichiometrically. From the figure, it is understood that Steel C has excellent elongation comparable to that of conventional IF steel by coiling at 600 ° C. or higher. Steel D has a lower elongation than those two steel types. It is not clear why Steel C exhibits relatively excellent elongation, but precipitates coarsen due to high temperature winding, the amount of residual solid solution C is not as large as that of Steel D, and low P. It is considered that, etc. do not significantly deteriorate the ductility of steel.
【0032】本発明は以上の実験結果に基づいてなされ
たものであり、以下に各条件の限定理由を示す。The present invention was made based on the above experimental results, and the reasons for limiting each condition are shown below.
【0033】C:鋼板の耐縦割れ性を向上されるために
固溶Cを残留させる必要がある。C添加量が0.005
%より多くなるとTiやNbの多量の添加を必要とし、塗
装性や本鋼板をZnめっき処理する場合のめっきの密着
性が劣化するほか、最終的に固溶Cとして残存する量の
ばらつきが大きくなって、特に延性面での不具合が大き
くなり好ましくない。一方、0.001%未満へのC量
低減は製鋼段階での負荷が大きくなって製造コスト上昇
が多くなり好ましくない。よって、C量は0.001〜
0.005%の範囲とする。C: Solid solution C needs to remain in order to improve the vertical cracking resistance of the steel sheet. C addition amount is 0.005
%, It is necessary to add a large amount of Ti and Nb, which deteriorates the paintability and the adhesion of the plating when this steel sheet is plated with Zn, and there is a large variation in the amount remaining as solid solution C in the end. In particular, this is not preferable because the defect in ductility becomes serious. On the other hand, reducing the C content to less than 0.001% is not preferable because the load at the steelmaking stage becomes large and the manufacturing cost increases. Therefore, the amount of C is 0.001-
The range is 0.005%.
【0034】Mn:Mnは鋼の熱間脆化防止の観点から
0.1%以上の添加が望ましい。しかし、0.6%を超え
る多量の添加は鋼の延性低下をもたらすので、0.6%
を上限値とする。Mn: Mn is preferably added in an amount of 0.1% or more from the viewpoint of preventing hot embrittlement of steel. However, addition of a large amount exceeding 0.6% causes a decrease in the ductility of the steel, so 0.6%
Is the upper limit.
【0035】P:P量は前述の理由から少ないほどよ
い。TiやNbの量にもよるが、P量が0.01%以下で
あれば本発明の効果が期待できる。For the above reason, the smaller the P: P amount, the better. Although depending on the amounts of Ti and Nb, if the P amount is 0.01% or less, the effect of the present invention can be expected.
【0036】Ti、Nb:Ti或いはTi及びNbの添加
は、前述のように鋼のプレス成形性、溶接部特性などの
面で必須である。低P化による本発明の効果を有効に発
揮させるためには、0.02〜0.08%のTi量、0.0
1〜0.03%のNb量が好ましい。いずれも少なすぎる
と炭化物析出挙動を制御することができなくなり、多す
ぎると製造コストの上昇を招くほか、C量の限定理由で
述べたような弊害を生じる。Ti, Nb: Addition of Ti or Ti and Nb is indispensable in terms of press formability of steel, welded portion characteristics, etc., as described above. In order to effectively bring out the effect of the present invention by lowering the P content, a Ti content of 0.02 to 0.08% and 0.0
A Nb content of 1-0.03% is preferred. If the amount is too small, it becomes impossible to control the carbide precipitation behavior, and if the amount is too large, the production cost rises, and the adverse effects described for the reason for limiting the amount of C occur.
【0037】更に、本発明では、鋼のCと結合し得る有
効Ti量(N及びSと結合し得るTi量を除外したTiの量
(これを「Ti*」で表示する)とNb量とP量との間に
は、次の関係式、 ln〔(48/93)Nb+Ti*〕・〔P〕≦−8.50 の関係を満足する必要がある。ここで、Ti*=Ti−(T
iasTiS+TiasTiN)である。Further, in the present invention, the amount of effective Ti capable of binding to C of steel (the amount of Ti excluding the amount of Ti capable of binding to N and S) is
(This is indicated by "Ti *") and the amount of Nb and the amount of P have the following relational expression, ln [(48/93) Nb + Ti *]. [P] ≤-8.50. Need to be satisfied. Here, Ti * = Ti- (T
iasTiS + TiasTiN).
【0038】この限定は、既に図3で示したように、耐
縦割れ性の確保が目的である。この関係式の値の下限値
は特に規定しないが、実用上、−10.5程度である。The purpose of this limitation is to secure vertical cracking resistance as already shown in FIG. The lower limit of the value of this relational expression is not particularly specified, but is practically about -10.5.
【0039】更に、有効Ti量とNb量及びC量との間に
は、次の関係式、 ((48/93)Nb+Ti*)/C:4〜20 の関係を満足する必要がある。この関係式の値が4より
小さいと、図4に示すようにコイルを高温巻取しても優
れた延性が得られない。また、20を超える値では鋼中
析出物量が多くなって延性がかえって劣化する。Further, it is necessary to satisfy the following relational expression ((48/93) Nb + Ti *) / C: 4 to 20 between the effective Ti amount and the Nb amount and the C amount. If the value of this relational expression is smaller than 4, excellent ductility cannot be obtained even when the coil is wound at a high temperature as shown in FIG. On the other hand, if the value exceeds 20, the amount of precipitates in the steel increases and the ductility rather deteriorates.
【0040】S、N:SやNはTiと結合し易く、これ
らが多量に存在すると、有効Ti量確保のためのTi添加
量を多くする必要がある。この場合、鋼中の非金属介在
物の増大により鋼の延性が劣化するほか、製造コストが
上昇することになって好ましくない。このようなことか
ら、S≦0.015%及びN≦0.0060%を規定す
るものである。なお、S量、N量の下限値は特に規定し
ないが、実用上の製造コストを考慮すると、S≒0.0
01%、N≒0.0015%である。S, N: S and N easily bind to Ti, and if they are present in a large amount, it is necessary to increase the amount of Ti added to secure the effective Ti amount. In this case, the ductility of the steel deteriorates due to the increase of non-metallic inclusions in the steel, and the manufacturing cost increases, which is not preferable. Therefore, S ≦ 0.015% and N ≦ 0.0060% are specified. The lower limits of the amounts of S and N are not specified, but considering practical manufacturing costs, S ≈ 0.0
01% and N≈0.0015%.
【0041】次に本発明の製造条件について説明する。Next, the manufacturing conditions of the present invention will be described.
【0042】上記鋼の熱間圧延では実質的にTiCの析
出が認められない温度で圧延を開始する。なお、圧延開
始温度の望ましい上限は炉設備或いは連続鋳造した高温
鋳片搬送上の制約から1200℃で、望ましい下限は鋼
の化学成分及びスラブの処理条件にもよるが、実質上T
iC析出が認められない1050℃程度である。In the hot rolling of the above steel, the rolling is started at a temperature at which precipitation of TiC is not substantially recognized. In addition, a desirable upper limit of the rolling start temperature is 1200 ° C. due to restrictions on the furnace equipment or the transportation of high temperature slabs continuously cast, and a desirable lower limit depends on the chemical composition of the steel and the processing conditions of the slab, but it is substantially T.
The temperature is about 1050 ° C at which iC precipitation is not observed.
【0043】仕上圧延は、寸法精度の確保から、大部分
がオーステナイト域と思われる850℃以上で実施す
る。The finish rolling is carried out at 850 ° C. or higher, which is considered to be mostly in the austenite range, in order to secure dimensional accuracy.
【0044】コイル巻取温度は、延性を高く維持する観
点から600℃以上とする。しかし、高温巻取がすぎる
と酸洗性が著しく劣化するので、710℃を超える温度
での巻取りは避けるべきである。The coil winding temperature is 600 ° C. or higher from the viewpoint of maintaining high ductility. However, if the coiling temperature is too high, the pickling property is significantly deteriorated, and coiling at a temperature higher than 710 ° C. should be avoided.
【0045】なお、本発明は熱間鋼板に関するものであ
るが、これを原板として電気めっき及び溶融めっきの処
理を施しても、高延性及び優れた耐縦割れ性が損なわれ
るものではない。Although the present invention relates to a hot rolled steel sheet, high ductility and excellent vertical cracking resistance are not impaired even if the hot rolling steel sheet is used as a raw sheet for electroplating and hot dip coating.
【0046】次に本発明の実施例を示す。Next, examples of the present invention will be described.
【0047】[0047]
【0048】表2に示す化学成分の異なる鋼を実験室に
て溶解し、20mm厚の熱延用スラブを作製した。スラブ
加熱温度を1150℃として熱間圧延を実施し、仕上温
度880℃で3mm厚に圧延した。その後、平均冷却速度
30℃/sでシャワー冷却し、670℃にてコイル巻取
処理を行った。炉冷にて常温まで冷却した圧延板の表裏
面を研削し、2mm厚のJIS5号引張試験片を加工し、
試験に供した。また歪み時効量も調査した。それらの結
果を表3に示す。Steels having different chemical compositions shown in Table 2 were melted in a laboratory to prepare a 20 mm thick hot rolling slab. Hot rolling was performed at a slab heating temperature of 1150 ° C., and rolling was performed at a finishing temperature of 880 ° C. to a thickness of 3 mm. After that, shower cooling was performed at an average cooling rate of 30 ° C./s, and coil winding processing was performed at 670 ° C. The front and back surfaces of the rolled plate cooled to normal temperature by furnace cooling are ground, and a JIS No. 5 tensile test piece with a thickness of 2 mm is processed.
It was submitted to the test. The amount of strain aging was also investigated. The results are shown in Table 3.
【0049】表3において、本発明条件で製造された鋼
(本発明鋼)は2kgf/mm2以上の歪み時効量を有し、優れ
た伸びを示している。In Table 3, steels manufactured under the conditions of the present invention
(Inventive steel) has a strain aging amount of 2 kgf / mm 2 or more and exhibits excellent elongation.
【0050】一方、比較鋼No.2は、PとTi量のバラ
ンスが本発明条件範囲を外れているため、歪み時効量が
2kgf/mm2未満となっている。また、比較鋼No.4及び
No.5は、CとTi或いはCとTiとNbのバランスが化
学量論的にIFとならないことから伸びが劣化してい
る。比較鋼No.6は、TiとC量のバランス及びTiとP
量のバランスは本発明条件を満足しているが、P量が多
すぎることから、鋼板の歪み時効量が低下しており、縦
割れの危険がある。On the other hand, Comparative Steel No. 2 has a strain aging amount of less than 2 kgf / mm 2 because the balance between the amounts of P and Ti is outside the range of the conditions of the present invention. Further, the comparative steels No. 4 and No. 5 have deteriorated elongation because the balance between C and Ti or C, Ti and Nb is not stoichiometrically IF. Comparative steel No. 6 has a balance of Ti and C content and Ti and P.
The amount balance satisfies the conditions of the present invention, but the amount of P is too large, so the strain aging amount of the steel sheet is reduced, and there is a risk of vertical cracking.
【0051】[0051]
【表2】 [Table 2]
【0052】[0052]
【表3】 [Table 3]
【0053】[0053]
【発明の効果】以上詳述したように、本発明によれば、
従来の極低C系IF鋼並みの優れた延性(伸び)と低C−
Alキルド鋼並みの優れた低温靭性(耐縦割れ性)を有す
る熱延鋼板を安定して製造することができ、特に自動車
用の足まわり部品用として適している。As described in detail above, according to the present invention,
Excellent ductility (elongation) comparable to conventional ultra-low C IF steel and low C-
A hot rolled steel sheet having excellent low temperature toughness (longitudinal cracking resistance) comparable to that of Al killed steel can be stably produced, and is particularly suitable for suspension parts for automobiles.
【図1】巻取温度(650℃)での保持時間と歪み時効量
(鋼中固溶C量:炭化物として析出していないCの量)の
関係を示す図である。[Fig.1] Holding time at winding temperature (650 ℃) and strain aging amount
It is a figure which shows the relationship of (amount of solid solution C in steel: amount of C which has not precipitated as carbide).
【図2】薄鋼板深絞り成形品の縦割れ遷移温度と歪み時
効利用の関係を示す図である。FIG. 2 is a diagram showing a relationship between a transition temperature of vertical cracking of a deep-formed thin steel sheet and utilization of strain aging.
【図3】歪み時効量に及ぼす鋼のNb、Ti、P量の影響
を示す図である。FIG. 3 is a diagram showing the influence of the amounts of Nb, Ti and P of steel on the strain aging amount.
【図4】鋼の伸びに及ぼすコイル巻取温度の影響を示す
図である。FIG. 4 is a diagram showing the effect of coil winding temperature on the elongation of steel.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 阿南吾郎 兵庫県加古川市金沢町1番地株式会社神戸 製鋼所加古川製鉄所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Goro Anan 1 Kanazawa-cho, Kakogawa-shi, Hyogo Kobe Steel Works Kakogawa Works
Claims (1)
〜0.005%、Mn:0.1〜0.6%、P≦0.01
%、S≦0.015%、N≦0.0060%を含有し、更
にTi:0.02〜0.08%又はTi:0.02〜0.08
%及びNb:0.01〜0.03%を含有すると共に、以
下の関係式、 ln〔(48/93)Nb+Ti*〕・〔P〕≦−8.50、 ((48/93)Nb+Ti*)/C:4〜20、 ここで、Ti*=Ti−(TiasTiS+TiasTiN) を満足し、残部が不可避的不純物よりなる鋼の熱間圧延
に際し、炭化物析出が認められない高温から熱間圧延を
開始し、850℃以上で仕上圧延した後、600〜71
0℃間でコイル巻取りすることを特徴とする耐縦割れ性
の優れた高延性熱延鋼板の製造方法。1. In weight% (hereinafter, the same), C: 0.001
Up to 0.005%, Mn: 0.1 to 0.6%, P ≦ 0.01
%, S ≦ 0.015%, N ≦ 0.0060%, and Ti: 0.02 to 0.08% or Ti: 0.02 to 0.08%.
% And Nb: 0.01 to 0.03%, and the following relational expression: ln [(48/93) Nb + Ti *] [P] ≦ −8.50, ((48/93) Nb + Ti *) ) / C: 4 to 20, where Ti * = Ti- (TiasTiS + TiasTiN) is satisfied, and the balance is unavoidable impurities during the hot rolling of steel, the hot rolling is started from a high temperature at which no carbide precipitation is observed. Then, after finish rolling at 850 ° C. or higher, 600 to 71
A method for producing a high-ductility hot-rolled steel sheet excellent in longitudinal crack resistance, which comprises winding a coil at 0 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30054592A JPH06122923A (en) | 1992-10-12 | 1992-10-12 | Production of high ductility hot rolled steel sheet excellent in longitudinal cracking resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30054592A JPH06122923A (en) | 1992-10-12 | 1992-10-12 | Production of high ductility hot rolled steel sheet excellent in longitudinal cracking resistance |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06122923A true JPH06122923A (en) | 1994-05-06 |
Family
ID=17886121
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30054592A Pending JPH06122923A (en) | 1992-10-12 | 1992-10-12 | Production of high ductility hot rolled steel sheet excellent in longitudinal cracking resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06122923A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999050463A1 (en) * | 1998-03-27 | 1999-10-07 | Corus Staal Bv | Method for manufacturing a forming steel having good forming characteristics and low-carbon grade forming steel |
-
1992
- 1992-10-12 JP JP30054592A patent/JPH06122923A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999050463A1 (en) * | 1998-03-27 | 1999-10-07 | Corus Staal Bv | Method for manufacturing a forming steel having good forming characteristics and low-carbon grade forming steel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7252722B2 (en) | Steel sheet | |
EP2415894B1 (en) | Steel sheet excellent in workability and method for producing the same | |
KR100608555B1 (en) | Manufacturing method of high strength hot dip galvanized steel sheet with excellent ductility and fatigue resistance | |
JP5408314B2 (en) | High-strength cold-rolled steel sheet excellent in deep drawability and material uniformity in the coil and method for producing the same | |
JP6455461B2 (en) | High strength steel plate with excellent bendability and method for producing the same | |
JP3420370B2 (en) | Thin steel sheet excellent in press formability and method for producing the same | |
KR20210050539A (en) | Steel member, steel plate, and manufacturing method thereof | |
WO2017164139A1 (en) | High-strength hot-dip galvanized steel sheet and method for manufacturing same | |
JP2012082523A (en) | High-strength cold rolled steel plate with excellent baking hardenability, hot dipped steel plate, and method of manufacturing the cold rolled steel plate | |
JP4177477B2 (en) | Manufacturing method of cold-rolled steel sheet and hot-dip galvanized steel sheet with excellent room temperature aging resistance and panel characteristics | |
JPH03257124A (en) | Production of cold rolled steel sheet for deep drawing having baking hardenability | |
CN111699273B (en) | High-strength steel sheet, high-strength galvanized steel sheet, and methods for producing same | |
JP3613129B2 (en) | Alloyed hot-dip galvanized high-tensile steel plate with excellent formability and method for producing the same | |
JP2001207236A (en) | High tensile strength hot dip galvanized steel plate and producing method therefor | |
JPH0826411B2 (en) | Method for manufacturing high strength cold rolled steel sheet with excellent deep drawability | |
JP3125397B2 (en) | Manufacturing method of high tensile alloyed hot-dip galvanized steel sheet with excellent stretch flangeability | |
JP4301045B2 (en) | High-strength steel plate, plated steel plate, and production method thereof | |
JPH09209039A (en) | Production of high strength cold rolled steel sheet excellent in deep drawability | |
JP2004002909A (en) | Complex metallographic structure type high tensile strength hot-dip galvanized cold rolled steel sheet with excellent deep drawability and stretch-flange formability, and manufacturing method | |
JPH06145893A (en) | High strength galvanized steel sheet excellent in ductility and delayed fracture resistance and its production | |
JPH06122923A (en) | Production of high ductility hot rolled steel sheet excellent in longitudinal cracking resistance | |
JP3404798B2 (en) | Method for producing high-strength steel sheet having bake hardenability | |
JPH0699760B2 (en) | Method for producing steel plate with hot dip zinc for ultra deep drawing | |
EP4455346A1 (en) | High strength and high formability steel sheet having excellent spot weldability, and method for manufacturing same | |
JP3376590B2 (en) | Method for producing high tensile alloyed hot-dip galvanized steel sheet with excellent stretch flangeability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20010911 |