JPH06120562A - Blue light emitting device - Google Patents
Blue light emitting deviceInfo
- Publication number
- JPH06120562A JPH06120562A JP28949592A JP28949592A JPH06120562A JP H06120562 A JPH06120562 A JP H06120562A JP 28949592 A JP28949592 A JP 28949592A JP 28949592 A JP28949592 A JP 28949592A JP H06120562 A JPH06120562 A JP H06120562A
- Authority
- JP
- Japan
- Prior art keywords
- gallium nitride
- compound semiconductor
- type
- light emitting
- blue light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910002601 GaN Inorganic materials 0.000 claims abstract description 69
- 239000004065 semiconductor Substances 0.000 claims abstract description 36
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910052594 sapphire Inorganic materials 0.000 claims abstract description 10
- 239000010980 sapphire Substances 0.000 claims abstract description 10
- 239000000758 substrate Substances 0.000 claims abstract description 10
- 239000000853 adhesive Substances 0.000 claims abstract description 7
- 150000001875 compounds Chemical class 0.000 claims description 17
- -1 gallium nitride compound Chemical class 0.000 claims description 11
- 230000001070 adhesive effect Effects 0.000 claims description 6
- 238000005530 etching Methods 0.000 abstract description 5
- 150000002259 gallium compounds Chemical class 0.000 abstract 3
- 238000000034 method Methods 0.000 description 10
- 239000013078 crystal Substances 0.000 description 7
- 229910052738 indium Inorganic materials 0.000 description 6
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 6
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 5
- 239000010931 gold Substances 0.000 description 5
- 229910052737 gold Inorganic materials 0.000 description 4
- 239000012535 impurity Substances 0.000 description 3
- 229910000679 solder Inorganic materials 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/73—Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16245—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/45144—Gold (Au) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48247—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Led Device Packages (AREA)
- Led Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はp−n接合を有する窒化
ガリウム系化合物半導体を用いた青色発光デバイスに関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blue light emitting device using a gallium nitride compound semiconductor having a pn junction.
【0002】[0002]
【従来の技術】青色発光ダイオード、青色レーザーダイ
オード等の青色発光デバイスの材料としてGaN、In
GaN、GaAlN等の窒化ガリウム系化合物半導体が
知られている。GaN and In are used as materials for blue light emitting devices such as blue light emitting diodes and blue laser diodes.
Gallium nitride-based compound semiconductors such as GaN and GaAlN are known.
【0003】例えばGaNを用いた従来の代表的な青色
発光ダイオードの構造を図1に示す。1はサファイア基
板、2はn型GaN層、3は非常に高抵抗なi型GaN
層であり、この発光ダイオードは、サファイア基板1を
上にしてn型GaN層2とリードフレーム7とをインジ
ウムよりなる電極4を介して接続し、i型GaN層3に
形成された同じくインジウムよりなる電極5とリードフ
レーム7とを金線6で接続した構造を有する。(リード
フレーム7は詳しくはステム、メタルポスト等、区別さ
れて呼ばれることもあるが、本明細書において、モール
ド樹脂中の窒化ガリウム系化合物半導体電極より外部に
取り出された電極リードを全てリードフレームとい
う。)FIG. 1 shows the structure of a typical conventional blue light emitting diode using GaN, for example. 1 is a sapphire substrate, 2 is an n-type GaN layer, and 3 is i-type GaN having a very high resistance
This light emitting diode is a layer in which the n-type GaN layer 2 and the lead frame 7 are connected via the electrode 4 made of indium with the sapphire substrate 1 facing upward, and the same indium formed on the i-type GaN layer 3 is made of indium. The electrode 5 and the lead frame 7 are connected by a gold wire 6. (The lead frame 7 may be referred to as a stem, a metal post, or the like in detail, but in the present specification, all electrode leads taken out from the gallium nitride-based compound semiconductor electrode in the mold resin are referred to as a lead frame. .)
【0004】図1の発光ダイオードにおいて、電極5を
半導体チップの側面に設けることは非常に困難で、さら
に電極5とリードフレーム7とを金線で接続しなければ
ならないため量産性に乏しいという問題があった。さら
に、電極材料であるインジウムは窒化ガリウム系化合物
半導体とは十分なオーミック接触が得られないという欠
点があった。In the light emitting diode of FIG. 1, it is very difficult to provide the electrode 5 on the side surface of the semiconductor chip, and further, the electrode 5 and the lead frame 7 must be connected by a gold wire, so that mass productivity is poor. was there. Further, indium, which is an electrode material, has a drawback that sufficient ohmic contact cannot be obtained with a gallium nitride-based compound semiconductor.
【0005】この問題を解決する手段として、例えば特
開昭55−9442号公報、特開昭56−60076号
公報において、図2に示すような発光ダイオードが提案
されている。As a means for solving this problem, light emitting diodes as shown in FIG. 2 have been proposed, for example, in JP-A-55-9442 and JP-A-56-60076.
【0006】図2において、25はn型GaN層の電
極、24はi型GaN層の電極、26はリードフレーム
7と電極との接着性を良くするために形成されたAu薄
膜、27は電極25を形成するためにスクライブによっ
て、n型GaN層まで削り取られた溝である。また電極
24、および25は、GaN層側にAl、その上にNi
が形成された2層構造となっており、NiとAu薄膜2
6とは半田で接続されている。In FIG. 2, 25 is an n-type GaN layer electrode, 24 is an i-type GaN layer electrode, 26 is an Au thin film formed to improve the adhesion between the lead frame 7 and the electrode, and 27 is an electrode. This is a groove cut to the n-type GaN layer by scribing to form 25. The electrodes 24 and 25 are made of Al on the GaN layer side and Ni on the GaN layer side.
Has a two-layer structure in which the Ni and Au thin films 2 are formed.
6 is connected with solder.
【0007】図2に示す構造の発光ダイオードとする
と、確かに量産性を向上させることができるが、i型G
aN層の溝27をスクライブで形成するために、結晶に
傷、クラック等のダメージを与えGaNの結晶性を悪く
するという欠点がある。The light emitting diode having the structure shown in FIG. 2 can certainly improve the mass productivity, but the i type G
Since the groove 27 of the aN layer is formed by scribing, there is a drawback that the crystallinity of GaN is deteriorated by damaging the crystal such as scratches and cracks.
【0008】ところで、窒化ガリウム系化合物半導体は
p型結晶が得られにくく、p型不純物をドープして結晶
成長を行っても、その結晶は低抵抗なp型とならず、非
常に高抵抗でほぼ絶縁体に近いi型となってしまうこと
が知られている。従って、図1、図2に示すように、i
型GaN層に形成した電極が、n型GaN層と接触して
も短絡せずに通電できるのである。このように非常に高
抵抗な窒化ガリウム系化合物半導体を含む構造をMIS
構造と呼び、この構造ではどのような発光デバイスを作
成しても十分な発光を得ることができなかった。しかし
ながら、最近になって、高抵抗なi型GaN層を低抵抗
なp型にする技術が数々開発されてきている。例えば特
開平2−42770号公報、特開平2−257679号
公報には電子線照射による技術が開示されている。By the way, it is difficult to obtain a p-type crystal from a gallium nitride-based compound semiconductor, and even if a crystal is grown by doping a p-type impurity, the crystal does not become a p-type with a low resistance, and has a very high resistance. It is known that it becomes an i-type which is almost an insulator. Therefore, as shown in FIGS. 1 and 2, i
Even if the electrode formed on the n-type GaN layer comes into contact with the n-type GaN layer, current can be supplied without a short circuit. As described above, a structure including a gallium nitride-based compound semiconductor having an extremely high resistance is formed into a MIS.
It is called a structure, and it was not possible to obtain sufficient light emission with any structure of this structure. However, recently, various techniques for converting a high-resistance i-type GaN layer into a low-resistance p-type have been developed. For example, Japanese Patent Application Laid-Open Nos. 2-42770 and 2-257679 disclose techniques by electron beam irradiation.
【0009】[0009]
【発明が解決しようとする課題】高抵抗なi型GaNを
低抵抗なp型GaNにすることができるようになると、
上記した従来の半導体チップの構造にすることは、電極
が短絡してしまうため不可能である。また、従来のよう
に、スクライブ等の強制的な物理的手段でGaN層を削
り取ってしまうと、結晶にダメージを与えてしまい発光
しなくなる恐れがある。さらにまた、従来のMIS構造
で使用していた電極材料では窒化ガリウム系化合物半導
体と十分なオーミック接触を得ることができず、接触抵
抗が大きいためVf(駆動電圧)が高く、実用的な発光
デバイスを得ることは困難である。When high resistance i-type GaN can be changed to low resistance p-type GaN,
The above-described conventional semiconductor chip structure is impossible because the electrodes are short-circuited. Further, if the GaN layer is scraped off by a forcible physical means such as scribing as in the conventional case, the crystal may be damaged and light may not be emitted. Furthermore, the electrode material used in the conventional MIS structure cannot obtain a sufficient ohmic contact with the gallium nitride-based compound semiconductor, and the contact resistance is large, so that Vf (driving voltage) is high and a practical light emitting device. Is hard to get.
【0010】従って、本発明はこのような事情を鑑みて
成されたものであり、その目的とするところは、p−n
接合を有する窒化ガリウム系化合物半導体チップの結晶
性を傷めることなく、量産性に優れた構造とし、さらに
窒化ガリウム系化合物半導体を用いた青色発光デバイス
を高輝度化、および低駆動電圧化するものである。Therefore, the present invention has been made in view of such circumstances, and its object is pn
A gallium nitride-based compound semiconductor chip having a junction has a structure that is excellent in mass productivity without damaging the crystallinity, and further improves the brightness and the driving voltage of a blue light-emitting device using a gallium nitride-based compound semiconductor. is there.
【0011】[0011]
【課題を解決するための手段】本発明の青色発光デバイ
スは、サファイア基板上に、少なくともn型窒化ガリウ
ム系化合物半導体とp型窒化ガリウム系化合物半導体と
が積層され、前記n型窒化ガリウム系化合物半導体およ
びp型窒化ガリウム系化合物半導体から、電極が取り出
されてリードフレームと接続された構造を有する青色発
光デバイスであって、前記p型窒化ガリウム系化合物半
導体の一部がエッチングされて、電極が形成されるべき
n型窒化ガリウム系化合物半導体が露出されており、さ
らにサファイア基板を上面にして、n型窒化ガリウム系
化合物半導体、およびp型窒化ガリウム系化合物半導体
に設けられた電極と、リードフレームとが導電性接着剤
を介して接続されていることを特徴とするものである。In the blue light emitting device of the present invention, at least an n-type gallium nitride compound semiconductor and a p-type gallium nitride compound semiconductor are laminated on a sapphire substrate, and the n-type gallium nitride compound is formed. A blue light emitting device having a structure in which electrodes are taken out from a semiconductor and a p-type gallium nitride compound semiconductor and connected to a lead frame, wherein a part of the p-type gallium nitride compound semiconductor is etched to form electrodes. The n-type gallium nitride-based compound semiconductor to be formed is exposed, and the electrode provided on the n-type gallium nitride-based compound semiconductor and the p-type gallium nitride-based compound semiconductor with the sapphire substrate as the upper surface, and the lead frame. And are connected via a conductive adhesive.
【0012】本発明の青色発光デバイスを図3に示す青
色発光ダイオードを例にして説明する。33はp型Ga
N層、34はp型GaN層の電極、35はn型GaN層
の電極、36は電極34および35とリードフレーム7
を接続する導電性接着剤である。The blue light emitting device of the present invention will be described by taking the blue light emitting diode shown in FIG. 3 as an example. 33 is p-type Ga
N layer, 34 is a p-type GaN layer electrode, 35 is an n-type GaN layer electrode, 36 is electrodes 34 and 35 and the lead frame 7
It is a conductive adhesive for connecting the.
【0013】サファイア基板上に窒化ガリウム系化合物
半導体を積層する方法には、MOCVD、MBE法等の
気相成長法により形成することができ、n型不純物とし
ては、Si、p型不純物としてはMg、Zn等がよく知
られている。As a method for laminating a gallium nitride-based compound semiconductor on a sapphire substrate, a vapor phase growth method such as MOCVD or MBE can be used. Si is used as an n-type impurity and Mg is used as a p-type impurity. , Zn, etc. are well known.
【0014】高抵抗なi型GaN層を低抵抗なp型にす
るには、前記した公報に記載されているように電子線照
射を行っても良いし、また我々が先に出願した特願平3
−357046号に記載したアニーリング法を用いるこ
とができる。In order to make a high-resistance i-type GaN layer into a low-resistance p-type, electron beam irradiation may be performed as described in the above-mentioned publication, or the Japanese Patent Application filed previously by the applicant. Flat 3
The annealing method described in -357046 can be used.
【0015】n型GaN層2が露出するまでp型GaN
層33をエッチングして取り除くには、例えば硫酸とリ
ン酸によるウエットエッチング法、または特開平3−1
08779号公報に開示されるようなドライエッチング
法を用いることができる。P-type GaN until the n-type GaN layer 2 is exposed
To remove the layer 33 by etching, for example, a wet etching method using sulfuric acid and phosphoric acid, or Japanese Patent Laid-Open No. 3-1.
The dry etching method as disclosed in Japanese Patent Publication No. 08779 can be used.
【0016】p型GaN層の電極34はおよびn型Ga
N層の電極には、例えばアルミニウム、金を用い、蒸着
により形成することができる。The electrode 34 of the p-type GaN layer and the n-type Ga are
The N layer electrode can be formed by vapor deposition using, for example, aluminum or gold.
【0017】導電性接着剤36は、リードフレーム7と
電極34、35を電気的に接続できればどのような材料
でも良く、例えば銀ペースト、半田等を好ましく用いる
ことができ、また従来のようにリードフレームに金を蒸
着した後、半田を介して接続してもよい。The conductive adhesive 36 may be made of any material as long as it can electrically connect the lead frame 7 and the electrodes 34 and 35. For example, silver paste, solder or the like can be preferably used. After gold is vapor-deposited on the frame, it may be connected via solder.
【0018】[0018]
【作用】図3に示すように、本発明の青色発光デバイス
は、まずp型窒化ガリウム系化合物半導体層の一部をエ
ッチングにより除去して、n型窒化ガリウム系化合物半
導体層の一部を少なくとも電極が形成できる面積分、露
出させているため、従来のスクライブに比べて、結晶に
与えるダメージが格段に少ない。また電極形成時におい
ても、従来は図1に示すような数μmしかない側面にn
型電極を設けるのに対し、本願ではエッチング面積によ
り電極の大きさを自由に変更できると共に、p型電極お
よびn型電極を同一方向から形成できるため歩留が格段
に向上する。また、符号34に示したようにp型電極の
面積を大きくできるため、接触抵抗を下げて駆動電圧を
低くすることができる。As shown in FIG. 3, in the blue light emitting device of the present invention, first, a part of the p-type gallium nitride compound semiconductor layer is removed by etching to remove at least a part of the n-type gallium nitride compound semiconductor layer. Since the exposed area corresponds to the area where the electrodes can be formed, the damage to the crystal is significantly less than that of the conventional scribe. In addition, even when electrodes are formed, n is formed on the side surface which is conventionally only a few μm as shown in FIG.
In contrast to providing the mold electrode, in the present application, the size of the electrode can be freely changed depending on the etching area, and the p-type electrode and the n-type electrode can be formed in the same direction, so that the yield is significantly improved. Further, as shown by reference numeral 34, the area of the p-type electrode can be increased, so that the contact resistance can be reduced and the drive voltage can be reduced.
【0019】[0019]
【実施例】サファイア基板1のC面にMOCVD装置を
用いてGaNバッファ層を200オングストロームの膜
厚で成長させ、その上にSiをドープしたn型GaN層
を4μmの膜厚で、その上にSiをドープしたn型In
0.3Ga0.7N層を200オングストロームの膜厚で、さ
らにその上にMgをドープしたp型GaN層を0.5μ
mの膜厚で順に成長させる。EXAMPLE A GaN buffer layer was grown to a thickness of 200 angstroms on the C-plane of a sapphire substrate 1 using an MOCVD apparatus, and a Si-doped n-type GaN layer was deposited thereon to a thickness of 4 μm. N-type In doped with Si
A 0.3 Ga 0.7 N layer is formed to a thickness of 200 angstrom, and a Mg-doped p-type GaN layer is further formed to a thickness of 0.5 μ.
The film is grown in order with a film thickness of m.
【0020】p型GaN層成長後、ウエハーを装置から
取り出し、新たにアニーリング装置にいれて、窒素雰囲
気中700℃でアニーリングを行い、p型GaN層をさ
らに低抵抗化する。After the growth of the p-type GaN layer, the wafer is taken out of the apparatus, newly placed in an annealing apparatus, and annealed at 700 ° C. in a nitrogen atmosphere to further reduce the resistance of the p-type GaN layer.
【0021】次に、p型GaN層の上にフォトレジスト
により所定のパターンを形成し、p型GaN層の一部を
n型GaN層に達するまでエッチングする。Next, a predetermined pattern is formed on the p-type GaN layer with a photoresist, and a part of the p-type GaN layer is etched until it reaches the n-type GaN layer.
【0022】エッチング終了後、レジストを剥離し、再
度フォトレジストで電極パターンを作成して、蒸着によ
りn型GaN層にアルミニウム電極と、p型GaN層に
金電極を形成する。さらにそれらの電極上に、同じく蒸
着により、導電性接着剤としてインジウム層を形成す
る。その後、ウエハーをダイシングによりチップ状にカ
ットする。After the etching is completed, the resist is peeled off, an electrode pattern is formed again with a photoresist, and an aluminum electrode is formed on the n-type GaN layer and a gold electrode is formed on the p-type GaN layer by vapor deposition. Further, an indium layer is formed as a conductive adhesive on these electrodes by vapor deposition as well. After that, the wafer is cut into chips by dicing.
【0023】カットしたGaNチップを図3に示すよう
にサファイア基板側を上にして、リードフレームに取り
付け、インジウムを溶着して、リードフレームと電気的
に接続する。最後に、エポキシ樹脂で全体をレンズ形状
にモールドして青色発光ダイオードとする。The cut GaN chip is attached to a lead frame with the sapphire substrate side facing up as shown in FIG. 3, indium is welded, and electrically connected to the lead frame. Finally, the whole is molded in a lens shape with an epoxy resin to obtain a blue light emitting diode.
【0024】このようにして得た青色発光ダイオードは
歩留がほぼ100%に近く、発光させると順方向電圧5
Vで、発光波長450nm、発光出力200μWであっ
た。The yield of the blue light emitting diode thus obtained is close to 100%, and when light is emitted, a forward voltage of 5% is obtained.
At V, the emission wavelength was 450 nm and the emission output was 200 μW.
【0025】[0025]
【発明の効果】以上説明したように本発明によると、結
晶に与えるダメージが少なく、また電極の接触面積を大
きくすることができるため、駆動電圧が低く、発光効率
に優れた青色発光デバイスを実現できる。さらに、デバ
イスを作成する際の歩留が飛躍的に向上する。As described above, according to the present invention, a blue light emitting device having a low driving voltage and excellent luminous efficiency can be realized because the damage to the crystal is small and the contact area of the electrodes can be increased. it can. In addition, the yield at the time of making a device is dramatically improved.
【図1】 従来の青色発光ダイオードの一構造を示す概
略断面図。FIG. 1 is a schematic cross-sectional view showing one structure of a conventional blue light emitting diode.
【図2】 従来の青色発光ダイオードの一構造を示す概
略断面図。FIG. 2 is a schematic sectional view showing a structure of a conventional blue light emitting diode.
【図3】 本発明の青色発光ダイオードの一構造を示す
概略断面図。FIG. 3 is a schematic cross-sectional view showing one structure of a blue light emitting diode of the present invention.
1・・・サファイア基板、 2・・・n型GaN
層、33・・・p型GaN層 34、35・・・
電極、36・・・導電性接着剤、 7・・・リー
ドフレーム。1 ... Sapphire substrate, 2 ... n-type GaN
Layer, 33 ... P-type GaN layer 34, 35 ...
Electrodes, 36 ... Conductive adhesive, 7 ... Lead frame.
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成4年11月25日[Submission date] November 25, 1992
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】全図[Correction target item name] All drawings
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図1】 [Figure 1]
【図2】 [Fig. 2]
【図3】 [Figure 3]
Claims (1)
化ガリウム系化合物半導体とp型窒化ガリウム系化合物
半導体とが積層され、前記n型窒化ガリウム系化合物半
導体およびp型窒化ガリウム系化合物半導体から、電極
が取り出されてリードフレームと接続された構造を有す
る青色発光デバイスであって、 前記p型窒化ガリウム系化合物半導体の一部がエッチン
グされて、電極が形成されるべきn型窒化ガリウム系化
合物半導体が露出されており、さらにサファイア基板を
上面にして、n型窒化ガリウム系化合物半導体およびp
型窒化ガリウム系化合物半導体に設けられた電極と、リ
ードフレームとが導電性接着剤を介して接続されている
ことを特徴とする青色発光デバイス。1. A sapphire substrate on which at least an n-type gallium nitride-based compound semiconductor and a p-type gallium nitride-based compound semiconductor are stacked, and an electrode is formed from the n-type gallium nitride-based compound semiconductor and the p-type gallium nitride-based compound semiconductor. Is a blue light emitting device having a structure connected to a lead frame by removing a part of the p-type gallium nitride compound semiconductor, and an n-type gallium nitride compound semiconductor on which an electrode is to be formed. The exposed n-type gallium nitride-based compound semiconductor and p
A blue light emitting device, characterized in that an electrode provided on the type gallium nitride compound semiconductor is connected to a lead frame via a conductive adhesive.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28949592A JPH06120562A (en) | 1992-10-01 | 1992-10-01 | Blue light emitting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28949592A JPH06120562A (en) | 1992-10-01 | 1992-10-01 | Blue light emitting device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06120562A true JPH06120562A (en) | 1994-04-28 |
Family
ID=17744021
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28949592A Pending JPH06120562A (en) | 1992-10-01 | 1992-10-01 | Blue light emitting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06120562A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1117225A (en) * | 1997-06-23 | 1999-01-22 | Nichia Chem Ind Ltd | Photoelectric device |
US6060729A (en) * | 1997-11-26 | 2000-05-09 | Rohm Co., Ltd. | Light-emitting device |
US6696704B1 (en) | 1999-01-11 | 2004-02-24 | Matsushita Electric Industrial Co., Ltd. | Composite light-emitting device, semiconductor light-emitting unit and method for fabricating the unit |
DE19901917B4 (en) * | 1998-01-29 | 2009-11-26 | Rohm Co. Ltd., Kyoto | Light emitting diode element |
-
1992
- 1992-10-01 JP JP28949592A patent/JPH06120562A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1117225A (en) * | 1997-06-23 | 1999-01-22 | Nichia Chem Ind Ltd | Photoelectric device |
US6060729A (en) * | 1997-11-26 | 2000-05-09 | Rohm Co., Ltd. | Light-emitting device |
DE19901917B4 (en) * | 1998-01-29 | 2009-11-26 | Rohm Co. Ltd., Kyoto | Light emitting diode element |
US6696704B1 (en) | 1999-01-11 | 2004-02-24 | Matsushita Electric Industrial Co., Ltd. | Composite light-emitting device, semiconductor light-emitting unit and method for fabricating the unit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2803742B2 (en) | Gallium nitride-based compound semiconductor light emitting device and method for forming electrode thereof | |
US5369289A (en) | Gallium nitride-based compound semiconductor light-emitting device and method for making the same | |
US8004006B2 (en) | Nitride semiconductor light emitting element | |
US20180012929A1 (en) | Light-emitting device and manufacturing method thereof | |
US7023026B2 (en) | Light emitting device of III-V group compound semiconductor and fabrication method therefor | |
JP3259811B2 (en) | Method for manufacturing nitride semiconductor device and nitride semiconductor device | |
JP2828187B2 (en) | Gallium nitride based compound semiconductor light emitting device | |
JP3700872B2 (en) | Nitride III-V compound semiconductor device and method for manufacturing the same | |
US20090026473A1 (en) | InGaAlN LIGHT-EMITTING DEVICE AND MANUFACTURING METHOD THEREOF | |
TWI420698B (en) | Method for manufacturing semiconductor light emitting device | |
JP2000277804A (en) | Nitride semiconductor device and manufacture thereof, and light emitting element | |
JPH114020A (en) | Semiconductor light emitting element, method of manufacturing the same, and semiconductor light emitting device | |
JP3207773B2 (en) | Compound semiconductor light emitting device and method of manufacturing the same | |
KR20080003871A (en) | Nitride semiconductor element and production method therefor | |
CN101840972A (en) | Structure and manufacturing method of flip-chip semiconductor optoelectronic element | |
JP2010219310A (en) | Optical device and optical device structure | |
JPH11238913A (en) | Semiconductor light-emitting device chip | |
US8835949B2 (en) | Three-terminal light emitting device (LED) with built-in electrostatic discharge (ESD) protection device | |
US20080265272A1 (en) | Light Emitting Device Having Zener Diode Therein And Method Of Fabricating The Same | |
JP2914065B2 (en) | Blue light emitting device and method of manufacturing the same | |
JP2019517144A (en) | Method of forming p-type layer of light emitting device | |
KR102147587B1 (en) | Ⅲ-nitride light-emitting device grown on a relaxed layer | |
JP2836685B2 (en) | Method for manufacturing p-type gallium nitride-based compound semiconductor | |
KR20090076163A (en) | Nitride semiconductor light emitting device manufacturing method and nitride semiconductor light emitting device manufactured thereby | |
JPH0638265U (en) | Electrodes of gallium nitride-based light emitting device |