[go: up one dir, main page]

JPH06120533A - Thin film solar cell and method of manufacturing the same - Google Patents

Thin film solar cell and method of manufacturing the same

Info

Publication number
JPH06120533A
JPH06120533A JP4266388A JP26638892A JPH06120533A JP H06120533 A JPH06120533 A JP H06120533A JP 4266388 A JP4266388 A JP 4266388A JP 26638892 A JP26638892 A JP 26638892A JP H06120533 A JPH06120533 A JP H06120533A
Authority
JP
Japan
Prior art keywords
electrode layer
layer
electrode
solar cell
insulating substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4266388A
Other languages
Japanese (ja)
Inventor
Kiyoo Saito
清雄 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP4266388A priority Critical patent/JPH06120533A/en
Publication of JPH06120533A publication Critical patent/JPH06120533A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

(57)【要約】 (修正有) 【目的】光入射側に設けられる透明電極層の高いシート
抵抗によるロスを回避できる薄膜太陽電池を複雑なパタ
ーニング工程なしで製造する。 【構成】透光性絶縁基板1を分散して貫通する複数の接
続導体ピン7を用いてその基板側の透明電極層2全面と
光入射面と反対側に設けられた取出し電極層としての導
電性シート6とを接続することにより、透明電極層2を
通る径路を短くして電流を外部端子9へ取出すことがで
きる。さらにこの貫通導体の挿入される穴8は、基板1
をアモルファス半導体層3の取付けのために利用でき、
その取付けねじ16の頭部を透明電極層2と貫通導体の
接続のための取出し電極9のマスクとして有効に利用す
る。
(57) [Summary] (Modified) [Purpose] To manufacture a thin-film solar cell capable of avoiding loss due to high sheet resistance of the transparent electrode layer provided on the light incident side without complicated patterning steps. A plurality of connection conductor pins 7 penetrating the transparent insulating substrate 1 in a dispersed manner are used, and the entire surface of the transparent electrode layer 2 on the substrate side and the conduction as an extraction electrode layer provided on the side opposite to the light incident surface are formed. By connecting with the conductive sheet 6, the path passing through the transparent electrode layer 2 can be shortened and an electric current can be taken out to the external terminal 9. Further, the hole 8 into which the through conductor is inserted is formed in the substrate 1
Can be used to attach the amorphous semiconductor layer 3,
The head of the mounting screw 16 is effectively used as a mask for the extraction electrode 9 for connecting the transparent electrode layer 2 and the through conductor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アモルファスシリコン
等を主成分とする薄膜半導体を用いた、透光性絶縁基板
を有する薄膜太陽電池およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film solar cell having a translucent insulating substrate and a method for manufacturing the same, which uses a thin film semiconductor containing amorphous silicon as a main component.

【0002】[0002]

【従来の技術】原料ガスのグロー放電分解や光CVDに
より形成されるアモルファス半導体薄膜は、気相成長法
で形成できるために、大面積化が容易であり、低コスト
材料として期待されている。こうしたアモルファス太陽
電池は、太陽光を入射する側にSnO2 膜やZnO膜等の透
明な電極を設けている。しかし、このような透明な電極
は、シート抵抗が大きいために、透明電極を流れる電流
による電力ロスが大きくなってしまう。そのため従来
は、前記太陽電池を複数個に分割し、分割した太陽電池
の隣接するユニットセルを電気的に接続する構造をとっ
ていた。この構造は、図2に示すように透光性絶縁基板
1上にSnO2 やZnO等からなる太陽電池の発電波長領域
に対する透光性と導電性とを有する第一電極層21、22、
23を短冊状に形成し、その上に光起電力発生部であるア
モルファス半導体層31、32、33、次いで透光性・導電性
薄膜や金属薄膜からなる第二電極層41、42、43を順に積
層する。そして、一つのユニットセルの第一電極層が隣
接するユニットセルの第二電極層と一部接触する構造と
なるように両電極層およびアモルファス半導体層のパタ
ーンを順次ずらして形成する。このような各層のパター
ンは全面に成膜した薄膜をレーザパターニング法により
パターニングすることにより形成される。
2. Description of the Related Art Since an amorphous semiconductor thin film formed by glow discharge decomposition of a raw material gas or photo-CVD can be formed by a vapor phase growth method, it is easy to increase the area and is expected as a low cost material. In such an amorphous solar cell, a transparent electrode such as a SnO 2 film or a ZnO film is provided on the side where sunlight is incident. However, since such a transparent electrode has a large sheet resistance, power loss due to a current flowing through the transparent electrode becomes large. Therefore, conventionally, the solar cell is divided into a plurality of pieces, and adjacent unit cells of the divided solar cells are electrically connected. As shown in FIG. 2, this structure has the first electrode layers 21 and 22, which have transparency and conductivity in the power generation wavelength region of a solar cell made of SnO 2 , ZnO or the like on the transparent insulating substrate 1.
23 is formed in a strip shape, on which the amorphous semiconductor layers 31, 32, 33 which are the photovoltaic generation portions, and the second electrode layers 41, 42, 43 made of a transparent / conductive thin film or a metal thin film are formed. Stack in order. Then, the patterns of both electrode layers and the amorphous semiconductor layer are sequentially shifted so that the first electrode layer of one unit cell partially contacts the second electrode layer of the adjacent unit cell. Such a pattern of each layer is formed by patterning a thin film formed on the entire surface by a laser patterning method.

【0003】[0003]

【発明が解決しようとする課題】このように、薄膜太陽
電池から発電した電力を効率良く取り出すためには、絶
縁基板上の第一電極層、アモルファス半導体層、第二電
極層を順次ずらしてレーザパターニングする複雑なパタ
ーニング工程を必要とする欠点があった。本発明の目的
は、この欠点を除き、複雑なパターニング工程を必要と
することなく発電した電力を効率良く取り出すことので
きる薄膜太陽電池およびその製造方法を提供することに
ある。
As described above, in order to efficiently extract the electric power generated from the thin-film solar cell, the first electrode layer, the amorphous semiconductor layer, and the second electrode layer on the insulating substrate are sequentially shifted to form a laser beam. There is a drawback in that a complicated patterning process of patterning is required. An object of the present invention is to provide a thin-film solar cell and a method for manufacturing the thin-film solar cell, which eliminates this drawback and can efficiently take out the generated power without requiring a complicated patterning process.

【0004】[0004]

【課題を解決するための手段】上述の目的を達成するた
めに、本発明の薄膜太陽電池は、透光性絶縁基板上に透
明導電材料よりなる第一電極層、光電変換活性層として
のアモルファス半導体層、導電材料よりなる第二電極
層、絶縁層および導電材料よりなる取出し電極層が積層
され、アモルファス半導体層および第二電極層は分散し
て明けられた複数の貫通孔に遊挿されて第一電極層およ
び接続層にそれぞれ接続される貫通導体を備え、第二電
極層および取出し電極層にそれぞれ外部端子が設けられ
たものとする。そして、接続導体が絶縁基板を嵌通する
金属製ピンであることが有効である。あるいは、アモル
ファス半導体層および第二電極層に明けられた各貫通孔
の内部に第一電極層に接触する取出し電極を有し、絶縁
基板、第一電極層および取出し電極層を貫通する金属製
ピンがその取出し電極にろう付けされたことが有効であ
る。また、このような薄膜太陽電池の製造方法は、透光
性絶縁基板に分散して複数の貫通孔を明けたのち、その
一面上に透明導電材料よりなる第一電極層を被着し、次
いで絶縁基板に明けられた各貫通孔に連通する第一電極
層の貫通孔周辺の第一電極層表面上に取出し電極を形成
し、次に頭部がその取出し電極の表面に接し、前記貫通
孔を通る取付けねじにより絶縁基板を成膜用支持体上に
固定し、その取付けねじをマスクにしてアモルファス半
導体層および第二電極層を順次成膜して第一電極層、ア
モルファス半導体層および第二電極層からなる積層構造
を形成するものとする。
In order to achieve the above object, the thin film solar cell of the present invention comprises a first electrode layer made of a transparent conductive material on a translucent insulating substrate, and an amorphous material as a photoelectric conversion active layer. A semiconductor layer, a second electrode layer made of a conductive material, an insulating layer and an extraction electrode layer made of a conductive material are stacked, and the amorphous semiconductor layer and the second electrode layer are loosely inserted into a plurality of through holes opened in a dispersed manner. It is assumed that a through conductor connected to each of the first electrode layer and the connection layer is provided, and an external terminal is provided on each of the second electrode layer and the extraction electrode layer. It is effective that the connecting conductor is a metal pin that fits through the insulating substrate. Alternatively, a metal pin penetrating the insulating substrate, the first electrode layer, and the extraction electrode layer has an extraction electrode in contact with the first electrode layer inside each through hole opened in the amorphous semiconductor layer and the second electrode layer. Is effectively brazed to the extraction electrode. In addition, such a method for manufacturing a thin-film solar cell, after forming a plurality of through holes dispersed in a transparent insulating substrate, a first electrode layer made of a transparent conductive material is deposited on one surface thereof, and then An extraction electrode is formed on the surface of the first electrode layer around the through hole of the first electrode layer communicating with each of the through holes formed in the insulating substrate, and then the head contacts the surface of the extraction electrode, and the through hole is formed. The insulating substrate is fixed on the film-forming support by a mounting screw that passes through, and the amorphous semiconductor layer and the second electrode layer are sequentially formed by using the mounting screw as a mask to form the first electrode layer, the amorphous semiconductor layer, and the second electrode layer. A laminated structure composed of electrode layers is formed.

【0005】[0005]

【作用】アモルファス半導体層および第二電極層の貫通
孔を通ずる複数の貫通導体によって光の入射する側の反
対側に備えた取出し電極層と第一電極層とを接続するこ
とにより、基板全面上の第一電極層から電流をシート抵
抗の大きい第一電極層、すなわち透明電極層の短い径路
を介するのみで外部端子へ取出すことができる。そし
て、その接続導体との接続のために第一電極層表面に形
成する取出し電極のマスクとして、基板を成膜用支持体
に固定するために上記の貫通孔を通す取付けねじの頭部
を利用すれば、アモルファス半導体層、第二電極層各層
のパターニング工程が不必要になる。
[Function] By connecting the extraction electrode layer and the first electrode layer provided on the side opposite to the light incident side by a plurality of through conductors passing through the through holes of the amorphous semiconductor layer and the second electrode layer, the entire surface of the substrate is connected. The electric current can be taken out from the first electrode layer to the external terminal only through the short path of the first electrode layer having a large sheet resistance, that is, the transparent electrode layer. Then, as a mask for the extraction electrode formed on the surface of the first electrode layer for connection with the connection conductor, the head of the mounting screw through which the through hole is passed to fix the substrate to the film-forming support is used. Then, the patterning process of each layer of the amorphous semiconductor layer and the second electrode layer becomes unnecessary.

【0006】[0006]

【実施例】図1は本発明の一実施例の薄膜太陽電池の断
面の一部を示す。図において、可とう性を有するポリエ
チレンナフタレートフィルムを用いた透光性絶縁基板1
の一面上にZnO膜からなる透明な第一電極層2、pin
構造を有するアモルファスシリコン (a−Si) 層3、銀
よりなる第二電極層4が積層され、さらにその上に樹脂
よりなる絶縁層5を介して導電性シート6が被着してい
る。そして、接続ピン7が絶縁基板1から取出し電極層
としての導電性シート6に達している。接続ピン7は、
絶縁基板1、第一電極層2および導電性シート6は貫通
しているが、a−Si層3および第二電極層4には接触せ
ず、それらの明けられた内径がピン7の径より大きい貫
通孔8を通り、絶縁層5においてもそれに明けられた貫
通孔81を通っている。第一電極層2の貫通孔8側にはAl
からなる取出し電極9が接触し、はんだ10により接続ピ
ン7に電気的に接続される。また、導電性シート6も接
続ピン7の先端とはんだ付けされている。この結果、導
電性シート6と第一電極層2とは各接続ピン7を介して
電気的に接続されるので、a−Si層3で発電される電力
は、導電性シート6にはんだ10によりろう付けされたリ
ード端子11と、第二電極層4にろう付けされたリード端
子12とから取出すことができる。なお、この太陽電池保
護のために、太陽光20の入射面側の可とう性フィルム1
は、耐環境性に適したポリビニルフルオライド (PVF)か
らなる透光性フィルム12、接着材としてのエチレン酢酸
ビニルゴム (EVA)等の樹脂13を介して被覆し、反対側の
導電性シート6は、耐環境性に適したPVFからなるフ
ィルム14が接着材13を介して被覆している。
EXAMPLE FIG. 1 shows a part of a cross section of a thin film solar cell according to an example of the present invention. In the figure, a transparent insulating substrate 1 using a flexible polyethylene naphthalate film
A transparent first electrode layer 2 made of a ZnO film on one surface, pin
An amorphous silicon (a-Si) layer 3 having a structure and a second electrode layer 4 made of silver are laminated, and a conductive sheet 6 is further deposited thereon with an insulating layer 5 made of resin interposed therebetween. Then, the connection pins 7 are taken out from the insulating substrate 1 and reach the conductive sheet 6 as an electrode layer. Connection pin 7
The insulating substrate 1, the first electrode layer 2 and the conductive sheet 6 penetrate, but they do not contact the a-Si layer 3 and the second electrode layer 4, and their exposed inner diameter is smaller than the diameter of the pin 7. It passes through the large through hole 8 and also through the through hole 81 opened in the insulating layer 5. Al on the through hole 8 side of the first electrode layer 2
The lead-out electrode 9 made of the metal comes into contact with the lead-out electrode 9 and is electrically connected to the connecting pin 7 by the solder 10. The conductive sheet 6 is also soldered to the tips of the connection pins 7. As a result, since the conductive sheet 6 and the first electrode layer 2 are electrically connected to each other through the connection pins 7, the power generated by the a-Si layer 3 is applied to the conductive sheet 6 by the solder 10. It can be taken out from the lead terminal 11 brazed and the lead terminal 12 brazed to the second electrode layer 4. In order to protect this solar cell, the flexible film 1 on the incident surface side of sunlight 20
Is covered with a transparent film 12 made of polyvinyl fluoride (PVF) suitable for environment resistance and a resin 13 such as ethylene vinyl acetate rubber (EVA) as an adhesive, and the conductive sheet 6 on the opposite side is A film 14 made of PVF suitable for environmental resistance is covered with an adhesive 13.

【0007】図3(a) 〜(e) は図1に示した太陽電池の
製造方法を示し、先ず30mm×40mmの寸法の可とう性樹脂
基板1に直径2mmの取付け穴15を4cm間隔で金属製のパ
ンチにより打ちぬき〔同図(a) 、(b) 〕、その上から第
一電極層2としてZnO膜をスパッタ法により形成し、さ
らに取付け穴15の周辺部のみを露出させるマスクを用い
て、Alのスパッタリングにより取出し電極9を形成した
〔同図(c) 〕。次いでa−Si成膜のために、取付け穴15
に嵌合する取付けねじ16を用いて、成膜トレー17に基板
1を留めた。その際、取付けねじ16の頭部が取出し電極
9を覆う〔同図(d) 〕。この取付けねじによる固定によ
って、可とう製基板1の成膜時の熱膨脹によるそりが抑
制されるので、取付けねじ16の頭部をマスクとしてのプ
ラズマCVD法により成膜されたa−Si層3の膜厚の均
一性が向上した。さらに同様に取付けねじ16の頭部をマ
スクとしてのAgのスパッタリング法により第二電極層4
を形成した〔同図(e) 〕。この際、図では、明らかでな
いが、取付けねじ16の頭部が取出し電極9の表面積より
大きいものを選ぶことにより、取出し電極9とa−Si層
3との間に空隙を形成しておく。このあと、図1に示す
ように基板1の裏面から取付け穴に接続ピン7を差込
み、はんだ10により取出し電極9とはんだ付けした。そ
の上から、接続ピン7の部分だけ穴81を明けたEVA等
の樹脂5、導電性シート6を載せ、導電性シート6と接
続ピン7をはんだ10により接続した。これにより、基板
1の全ての接続ピン7と導電性シート6とは電気的に共
通になる。さらに太陽光20の入射面側は透光性のPVF
等のフィルム12を、反対面側はPVF等のフィルム14を
それぞれ接着材13としてのEVA等の樹脂をはさんで圧
着した。
FIGS. 3 (a) to 3 (e) show a method of manufacturing the solar cell shown in FIG. 1. First, mounting holes 15 having a diameter of 2 mm are arranged at intervals of 4 cm on a flexible resin substrate 1 having a size of 30 mm × 40 mm. It is punched out by a metal punch [(a) and (b) in the same figure], a ZnO film is formed as the first electrode layer 2 by a sputtering method, and a mask exposing only the peripheral portion of the mounting hole 15 is formed. Then, the extraction electrode 9 was formed by sputtering Al (see FIG. 6 (c)). Next, mounting holes 15 for a-Si film formation
The substrate 1 was fastened to the film-forming tray 17 by using the mounting screw 16 fitted to. At this time, the head of the mounting screw 16 covers the extraction electrode 9 [(d) in the figure]. By fixing with this mounting screw, warpage due to thermal expansion during film formation of the flexible substrate 1 is suppressed, so that the a-Si layer 3 formed by the plasma CVD method using the head of the mounting screw 16 as a mask. The uniformity of the film thickness is improved. Similarly, the second electrode layer 4 is formed by the Ag sputtering method using the head of the mounting screw 16 as a mask.
Were formed [(e) in the figure]. At this time, although not clearly shown in the figure, a gap is formed between the extraction electrode 9 and the a-Si layer 3 by selecting a screw whose head portion is larger than the surface area of the extraction electrode 9. Then, as shown in FIG. 1, the connection pins 7 were inserted into the mounting holes from the back surface of the substrate 1 and soldered to the extraction electrodes 9 with solder 10. A resin 5 such as EVA having a hole 81 formed only on the connecting pin 7 and a conductive sheet 6 were placed thereon, and the conductive sheet 6 and the connecting pin 7 were connected by solder 10. As a result, all the connection pins 7 of the substrate 1 and the conductive sheet 6 are electrically common. Furthermore, the incident surface side of the sunlight 20 is a transparent PVF.
And the like, and a film 14 of PVF or the like on the opposite side, and a resin such as EVA or the like as an adhesive material 13 is press-bonded.

【0008】[0008]

【発明の効果】本発明によれば、透明電極である第一電
極層を基板および各層を貫通する複数の導体を介して反
光入射面側の取出し電極層に接続することにより、透明
電極からの電流を透明電極層の高いシート抵抗によるロ
スなしで反光入射面側に取出すことができ、複雑な直列
接続構造を必要としなくなった。さらに貫通導体の通る
穴は、第一電極層上にアモルファス半導体層および第二
電極層を積層する際の成膜用支持体上への固定と、その
際第一電極層表面に設けられている取出し電極へのマス
クとしても利用でき、フォトリソグラフィを適用するパ
ターニング工程を省略することが可能になった。この結
果、薄膜太陽電池の製造工程が簡易化され、低価格の薄
膜太陽電池が製造できる。
According to the present invention, by connecting the first electrode layer, which is a transparent electrode, to the extraction electrode layer on the side opposite to the light incident surface via the substrate and a plurality of conductors penetrating each layer, The electric current can be taken out to the side opposite to the light incident surface side without loss due to the high sheet resistance of the transparent electrode layer, which eliminates the need for a complicated series connection structure. Further, holes through which the through conductors pass are provided on the surface of the first electrode layer when the amorphous semiconductor layer and the second electrode layer are laminated on the support for film formation when the amorphous semiconductor layer and the second electrode layer are laminated. It can also be used as a mask for the extraction electrode, and it becomes possible to omit the patterning process applying photolithography. As a result, the manufacturing process of the thin film solar cell is simplified, and a low cost thin film solar cell can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の薄膜太陽電池の部分断面図FIG. 1 is a partial cross-sectional view of a thin film solar cell according to an embodiment of the present invention.

【図2】従来の直列接続型薄膜太陽電池の部分断面図FIG. 2 is a partial cross-sectional view of a conventional series-connected thin-film solar cell.

【図3】本発明の一実施例の薄膜太陽電池製造工程を順
に示し、(a) は平面図、(b) ないし(e) は断面図
3A to 3C sequentially show a thin-film solar cell manufacturing process of one embodiment of the present invention, (a) is a plan view, and (b) to (e) are sectional views.

【符号の説明】[Explanation of symbols]

1 透光性絶縁基板 2 第一電極層 3 アモルファスシリコン層 4 第二電極層 5 絶縁層 6 導電性シート 7 接続ピン 8 貫通孔 81 貫通孔 9 取出し電極 10 はんだ 11 リード端子 12 リード端子 15 取付け穴 16 取付けねじ 17 成膜トレー 1 Translucent Insulating Substrate 2 First Electrode Layer 3 Amorphous Silicon Layer 4 Second Electrode Layer 5 Insulating Layer 6 Conductive Sheet 7 Connection Pin 8 Through Hole 81 Through Hole 9 Extraction Electrode 10 Solder 11 Lead Terminal 12 Lead Terminal 15 Mounting Hole 16 Mounting screw 17 Deposition tray

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】透光性絶縁基板上に透明導電材料よりなる
第一電極層、光電変換活性層としてのアモルファス半導
体層、導電材料よりなる第二電極層、絶縁層および導電
材料よりなる取出し電極層が積層され、アモルファス半
導体層および第二電極層は分散して明けられた複数の貫
通孔に遊挿されて第一電極層および取出し電極層にそれ
ぞれ接続される貫通導体を備え、第二電極層および取出
し電極層にそれぞれ外部端子が設けられたことを特徴と
する薄膜太陽電池。
1. A first electrode layer made of a transparent conductive material, an amorphous semiconductor layer as a photoelectric conversion active layer, a second electrode layer made of a conductive material, an extraction layer made of an insulating layer and a conductive material on a transparent insulating substrate. Layers are stacked, the amorphous semiconductor layer and the second electrode layer are provided with through conductors that are loosely inserted into a plurality of through holes that are opened in a dispersed manner and are respectively connected to the first electrode layer and the extraction electrode layer. A thin-film solar cell, wherein an external terminal is provided on each of the layer and the extraction electrode layer.
【請求項2】貫通導体が絶縁基板を嵌通する金属製ピン
である請求項1記載の薄膜太陽電池。
2. The thin film solar cell according to claim 1, wherein the through conductor is a metal pin that fits through the insulating substrate.
【請求項3】アモルファス半導体層および第二電極層に
明けられた各貫通孔の内部に第一電極層に接触する取出
し電極を有し、絶縁基板を嵌通し、第一電極層および取
出し電極層を貫通する金属製ピンがその取出し電極にろ
う付けされた請求項2記載の薄膜太陽電池。
3. A first electrode layer and a lead-out electrode layer, each of which has a lead-out electrode in contact with the first electrode layer inside each of the through holes formed in the amorphous semiconductor layer and the second electrode layer and through which an insulating substrate is fitted. The thin-film solar cell according to claim 2, wherein a metal pin penetrating the electrode is brazed to the extraction electrode.
【請求項4】透光性絶縁基板に分散して複数の貫通孔を
明けたのち、その一面上に第一電極層を被着し、次いで
絶縁基板に明けられた各貫通孔に連通する第一電極層の
貫通孔周辺の第一電極層表面上に取出し電極を形成し、
次に頭部がその取出し電極の表面に接し、前記貫通孔を
通る取付けねじにより絶縁基板を成膜用支持体上に固定
し、その取付けねじをマスクにしてアモルファス半導体
層および第二電極層を順次成膜して第一電極層、アモル
ファス半導体層および第二電極層からなる積層構造を形
成することを特徴とする請求項3記載の薄膜太陽電池の
製造方法。
4. A plurality of through-holes are dispersed in a transparent insulating substrate to form a plurality of through-holes, a first electrode layer is deposited on one surface of the transparent substrate, and then the through-holes formed in the insulating substrate are communicated with each other. Forming an extraction electrode on the surface of the first electrode layer around the through hole of the one electrode layer,
Next, the head is in contact with the surface of the extraction electrode, and the insulating substrate is fixed on the film-forming support by a mounting screw passing through the through hole, and the mounting screw is used as a mask to form the amorphous semiconductor layer and the second electrode layer. The method for manufacturing a thin-film solar cell according to claim 3, wherein a film is sequentially formed to form a laminated structure including a first electrode layer, an amorphous semiconductor layer, and a second electrode layer.
JP4266388A 1992-10-06 1992-10-06 Thin film solar cell and method of manufacturing the same Pending JPH06120533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4266388A JPH06120533A (en) 1992-10-06 1992-10-06 Thin film solar cell and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4266388A JPH06120533A (en) 1992-10-06 1992-10-06 Thin film solar cell and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JPH06120533A true JPH06120533A (en) 1994-04-28

Family

ID=17430247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4266388A Pending JPH06120533A (en) 1992-10-06 1992-10-06 Thin film solar cell and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JPH06120533A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6469242B1 (en) 1999-09-01 2002-10-22 Kaneka Corporation Thin-film solar cell module and method of manufacturing the same
WO2013073863A1 (en) * 2011-11-18 2013-05-23 Lg Innotek Co., Ltd. Solar cell module

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6469242B1 (en) 1999-09-01 2002-10-22 Kaneka Corporation Thin-film solar cell module and method of manufacturing the same
WO2013073863A1 (en) * 2011-11-18 2013-05-23 Lg Innotek Co., Ltd. Solar cell module
KR101306441B1 (en) * 2011-11-18 2013-09-09 엘지이노텍 주식회사 Solar cell module
CN104054184A (en) * 2011-11-18 2014-09-17 Lg伊诺特有限公司 solar cell module
US9583659B2 (en) 2011-11-18 2017-02-28 Lg Innotek Co., Ltd. Solar cell module

Similar Documents

Publication Publication Date Title
KR910006676B1 (en) Large area photovoltaic cell and method of manufacturing the same
US6184458B1 (en) Photovoltaic element and production method therefor
US4783421A (en) Method for manufacturing electrical contacts for a thin-film semiconductor device
US6441297B1 (en) Solar cell arrangement
US6011215A (en) Point contact photovoltaic module and method for its manufacture
US9728658B2 (en) Solar cell module
JPH04276665A (en) integrated solar cells
US5385614A (en) Series interconnected photovoltaic cells and method for making same
US4854974A (en) Electrical contacts for a thin-film semiconductor device
JP2986875B2 (en) Integrated solar cell
JP2005277113A (en) Stacked solar cell module
CN107318269A (en) Solar cell and its manufacture method, solar module and wiring plate
JP2000150929A (en) Photovoltaic element and manufacture thereof
JP3520425B2 (en) Solar cell module and method of manufacturing the same
JPH0864850A (en) Thin film solar battery and fabrication thereof
JPH0419713B2 (en)
JPH06120533A (en) Thin film solar cell and method of manufacturing the same
JPH06268241A (en) Thin-film solar cell and manufacture thereof
JPS6357952B2 (en)
JP3170914B2 (en) Thin film solar cell and method of manufacturing the same
JP2648698B2 (en) Heat-resistant solar cell
JP2004342768A (en) Thin film solar cell module
JPH0555612A (en) Manufacture of integrated amorphous solar battery
JPH10242491A (en) Solar cell and solar cell panel using the same
JP2819538B2 (en) Method for manufacturing photovoltaic device