[go: up one dir, main page]

JPH06120152A - Manufacture of hydrogen-doped amorphous semiconductor film - Google Patents

Manufacture of hydrogen-doped amorphous semiconductor film

Info

Publication number
JPH06120152A
JPH06120152A JP4267331A JP26733192A JPH06120152A JP H06120152 A JPH06120152 A JP H06120152A JP 4267331 A JP4267331 A JP 4267331A JP 26733192 A JP26733192 A JP 26733192A JP H06120152 A JPH06120152 A JP H06120152A
Authority
JP
Japan
Prior art keywords
hydrogen
amorphous semiconductor
semiconductor film
film
plasma treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4267331A
Other languages
Japanese (ja)
Inventor
Ichiro Yoshida
一郎 吉田
Kazuhiko Yoshida
一彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP4267331A priority Critical patent/JPH06120152A/en
Publication of JPH06120152A publication Critical patent/JPH06120152A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To reduce the optical deterioration of an amorphous semiconductor film by causing at least one of inactive atom having a predetermined kinetic energy, hydrogen atom and the constituent atom of the amorphous semiconductor film to collide with the surface of the amorphus semiconductor film simultaneously with or before hydrogen annealing. CONSTITUTION:A p-layer of a-SiC:H is formed; thereafter, Ar plasma treatment is performed as sputtering process; and hydrogen annealing by hydrogen plasma treatment is performed. Subsequently, an i-layer of a-Si:H is formed; thereafter, the Ar plasma treatment is performed as sputtering process; hydrogen annealing by the hydrogen plasma treatment is performed; and then an n-layer of muc-Si:H is formed. Further, Ar of RF power 20-700W and H2 of RF power 20-800W are preferred. Thus, the Ar plasma treatment and H2 plasma treatment of a film surface are successively performed after film formation so that unstable hydrogen in the film is reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明のは水素ドープ非晶質半導
体膜の製造方法に関する。本発明の水素ドープ非晶質半
導体膜は、アモルファス太陽電池などに採用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a hydrogen-doped amorphous semiconductor film. The hydrogen-doped amorphous semiconductor film of the present invention is used in amorphous solar cells and the like.

【0002】[0002]

【従来の技術】非晶質Si太陽電池は、薄膜で大面積太
陽電池を形成できるという利点を持つが、一方、屋外太
陽光下の使用において非晶質Si膜内のダングリングボ
ンドなどの欠陥が増加し、経時的に出力が低下する(光
劣化)。これは、非晶質Si膜、特にそのi層における
Si−H2 結合量の増大などが原因であると考えられて
いる。
2. Description of the Related Art Amorphous Si solar cells have the advantage of being able to form large-area solar cells with thin films, but on the other hand, defects such as dangling bonds in amorphous Si films when used under outdoor sunlight. Increase and the output decreases over time (photodegradation). It is considered that this is due to an increase in the amount of Si—H 2 bonds in the amorphous Si film, especially in the i layer thereof.

【0003】このため、特開平2ー260662号公報
は、真性(i)層の基板側に隣接する基層の水素濃度を
10%以下に抑制することにより、基層から光電変換に
有効なi層への水素のオートドープを抑止してi層内の
Si−H2 結合量の増大を抑止している。
Therefore, Japanese Patent Laid-Open No. 260662/1990 discloses that the hydrogen concentration of the base layer adjacent to the substrate side of the intrinsic (i) layer is suppressed to 10% or less so that the base layer becomes an i-layer effective for photoelectric conversion. That is, the auto-doping of hydrogen is suppressed to suppress the increase in the amount of Si—H 2 bonds in the i layer.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上記した
公報は、基層からi層への水素オートドープを抑止する
ものの、i層自体で形成される過剰水素の低減という基
本課題に対して解決案とはならない。本発明は上記問題
点に鑑みなされたものであり、アモルファス半導体膜内
の不安定な位置に存在する水素量を低減してその光劣化
を低減することを、その目的としている。
However, although the above-mentioned publication suppresses the auto-doping of hydrogen from the base layer to the i-layer, it is not a solution to the basic problem of reducing excess hydrogen formed in the i-layer itself. I won't. The present invention has been made in view of the above problems, and an object thereof is to reduce the amount of hydrogen existing at an unstable position in an amorphous semiconductor film to reduce its photodegradation.

【0005】[0005]

【課題を解決するための手段】本発明の水素ドープ非晶
質半導体膜の製造方法は、原料ガスを分解して基板上に
水素原子がドープされたアモルファス半導体膜を堆積す
る堆積工程と、堆積された前記アモルファス半導体膜を
水素プラズマ雰囲気に曝して前記アモルファス半導体膜
の表面部の未結合手を低減する水素アニール工程とを有
する水素ドープ非晶質半導体膜の製造方法において、前
記水素アニール工程と同時又はその前に、所定の運動エ
ネルギを有する不活性原子,水素原子,前記アモルファ
ス半導体膜の構成原子の少なくとも一つを前記アモルフ
ァス半導体膜の表面に衝突させて前記アモルファス半導
体膜中の不安定水素濃度を低減するスパッタリング工程
を備えることを特徴としている。
A method of manufacturing a hydrogen-doped amorphous semiconductor film according to the present invention comprises a deposition step of decomposing a source gas to deposit an amorphous semiconductor film doped with hydrogen atoms on a substrate, and a deposition step. A hydrogen annealing step of exposing the formed amorphous semiconductor film to a hydrogen plasma atmosphere to reduce dangling bonds in the surface portion of the amorphous semiconductor film, the hydrogen annealing step comprising: At the same time or before that, at least one of an inert atom having a predetermined kinetic energy, a hydrogen atom, and a constituent atom of the amorphous semiconductor film is made to collide with the surface of the amorphous semiconductor film to cause unstable hydrogen in the amorphous semiconductor film. It is characterized in that a sputtering process for reducing the concentration is provided.

【0006】膜を叩く原子の運動エネルギが小さいと、
膜中の不安定水素を必要距離移動させることができない
ので、必要な最低エネルギレベルは当然存在するが、膜
を叩く原子にはプラズマ化又は電界加速などの手段によ
りこの必要エネルギを付与することができる。
If the kinetic energy of the atom hitting the film is small,
Since the unstable hydrogen in the film cannot be moved by the required distance, the minimum energy level required is naturally present, but it is possible to impart this required energy to the atom hitting the film by means such as plasmaization or electric field acceleration. it can.

【0007】[0007]

【作用】堆積工程で堆積されたアモルファス半導体膜に
はアモルファス半導体原子の未結合手を低減するのに有
効な水素結合だけでなく、膜中の比較的不安定な位置に
例えばSi−H2 結合のような状態で過剰水素が取り込
まれており、この過剰水素が光照射によりダングリング
ボンドなどを増加させて、光電変換効率を低下させ、導
電率を低下させる。
In the amorphous semiconductor film deposited in the deposition process, not only hydrogen bonds effective for reducing dangling bonds of amorphous semiconductor atoms but also Si-H 2 bonds at relatively unstable positions in the film are formed. In such a state, excess hydrogen is taken in, and this excess hydrogen increases dangling bonds and the like due to light irradiation, reduces photoelectric conversion efficiency, and reduces conductivity.

【0008】本発明では、アモルファス半導体膜の表面
を所定の運動エネルギをもつ不活性原子,水素原子,前
記アモルファス半導体膜の構成原子の少なくとも一つで
叩くことにより、上記有効な水素結合よりも小さい結合
エネルギで膜中の隣接原子と結合する(すなわち膜中の
比較的不安定な位置に存在する)水素を、膜外へ叩き出
したり、未結合手の位置に再移動させる。
According to the present invention, the surface of the amorphous semiconductor film is hit with at least one of an inert atom having a predetermined kinetic energy, a hydrogen atom, and a constituent atom of the amorphous semiconductor film, so that the effective hydrogen bond is smaller than the above-mentioned effective hydrogen bond. Hydrogen that binds to an adjacent atom in the film by the binding energy (that is, exists in a relatively unstable position in the film) is knocked out of the film or relocated to the position of an unbonded hand.

【0009】[0009]

【発明の効果】以上説明したように本発明の水素ドープ
非晶質半導体膜の製造方法では、水素アニール工程と同
時又はその前に、所定の運動エネルギを有する不活性原
子,水素原子,アモルファス半導体膜の構成原子の少な
くとも一つをアモルファス半導体膜の表面に衝突させる
スパッタリング工程を備えているので、アモルファス半
導体膜中の不安定位置にある水素を膜外へ叩きだした
り、又は水素と結合していない未結合手の位置に移動さ
せ、それにより光劣化を低減する。
As described above, in the method for producing a hydrogen-doped amorphous semiconductor film of the present invention, an inert atom having a predetermined kinetic energy, a hydrogen atom, and an amorphous semiconductor are provided at the same time as or before the hydrogen annealing step. Since it has a sputtering process in which at least one of the constituent atoms of the film collides with the surface of the amorphous semiconductor film, hydrogen at an unstable position in the amorphous semiconductor film is knocked out of the film or is bonded to hydrogen. Move it to the position of the unbonded hands, which reduces photodegradation.

【0010】なお上記スパッタリング工程において、ア
モルファス半導体膜表面にてアモルファス半導体膜の構
成原子の未結合手との結合位置にある有効な水素原子も
弾かれて未結合手も増加するが、この未結合手はスパッ
タリング工程と同時またはその後に実施される水素アニ
ール工程により水素原子により再結合される。
In the above sputtering process, effective hydrogen atoms at the bonding positions of the constituent atoms of the amorphous semiconductor film with the dangling bonds on the surface of the amorphous semiconductor film are also repelled and the dangling bonds also increase. The hands are recombined with hydrogen atoms by a hydrogen annealing process performed at the same time as or after the sputtering process.

【0011】[0011]

【実施例】(実施例1)本発明の一実施例を非晶質Si
太陽電池に応用した製造工程を図1に示し、作製した非
晶質Si太陽電池を図2に断面図示する。 基本工程 まず、SnO2 からなる透明導電膜102がパターニン
グされて形成されたガラス基板101を真空容器内に配
置し、ここにシラン(SiH4)、ホスフイン(PH
4)、ジボラン(B2H6)、メタン(CH4)、水素
(H2)等のガスを低圧で流し、各流量を調節しつつ高
周波を印加して前記ガスをグロー放電により分解し、ガ
ラス基板101上にp,i,n三層構造の水素ドープ非
晶質Si(aーSi:H)膜103を堆積させる。その
後、例えばアルミニウムからなる電極104を非晶質S
i膜103上にマスク蒸着法又はホトリソ法によりパタ
ーニングして形成する。次に、電極104をマスクと
し、CF4 を用いてドライエッチを行い、非晶質Si膜
103を所定個数の島状領域に分割する。次に、マスク
蒸着法により直列接続電極105を形成し、各島状領域
を直列接続し、次に、エポキシ樹脂からなる保護層10
7をコーティングした後、リード線106を付けて太陽
電池を完成する。
EXAMPLE 1 An example of the present invention is amorphous Si.
The manufacturing process applied to a solar cell is shown in FIG. 1, and the produced amorphous Si solar cell is shown in cross section in FIG. Basic Step First, a glass substrate 101 formed by patterning a transparent conductive film 102 made of SnO2 is placed in a vacuum container, and silane (SiH4) and phosphine (PH) are placed therein.
4), diborane (B2H6), methane (CH4), hydrogen (H2) or the like is caused to flow at a low pressure, high frequency is applied while adjusting each flow rate, and the gas is decomposed by glow discharge, and then is placed on the glass substrate 101. A hydrogen-doped amorphous Si (a-Si: H) film 103 having a three-layer structure of p, i, and n is deposited. After that, the electrode 104 made of, for example, aluminum is formed on the amorphous S.
It is formed by patterning on the i film 103 by a mask vapor deposition method or a photolithography method. Next, using the electrode 104 as a mask, dry etching is performed using CF 4 to divide the amorphous Si film 103 into a predetermined number of island-shaped regions. Next, the serial connection electrode 105 is formed by a mask vapor deposition method, the island regions are connected in series, and then the protective layer 10 made of epoxy resin is formed.
After coating 7, the lead wire 106 is attached to complete the solar cell.

【0012】本実施例の特徴は非晶質Si膜103の成
膜工程にあるので、以下、この成膜工程を説明する。図
1に工程フローを示し、第1表に各工程のプロセスパラ
メータを示す。なお、容器内部の真空度は0.2〜2.
0torrとした。
Since the feature of this embodiment lies in the step of forming the amorphous Si film 103, the film forming step will be described below. FIG. 1 shows a process flow, and Table 1 shows process parameters of each process. The degree of vacuum inside the container is 0.2-2.
It was set to 0 torr.

【0013】[0013]

【表1】 [Table 1]

【0014】まずaーSiC:Hのp層(膜厚約8n
m)を形成し(工程a)、その後、スパッタリング工程
としてAr(アルゴン)のプラズマ処理工程を実施し、
その後、水素プラズマ処理により水素アニール工程を実
施し(工程c)、次にaーSi:Hのi層(膜厚約40
0nm)を形成し(工程b)、その後、スパッタリング
工程としてAr(アルゴン)のプラズマ処理工程を実施
し、その後、水素プラズマ処理により水素アニール工程
を実施し(工程c)、次にμcーSi:H(μcは微結
晶を意味する)のn層(膜厚約15nm)を形成した
(工程d)。
First, an a-SiC: H p layer (film thickness of about 8 n
m) is formed (step a), and then a plasma treatment step of Ar (argon) is performed as a sputtering step.
After that, a hydrogen annealing step is performed by hydrogen plasma treatment (step c), and then an a-Si: H i layer (having a film thickness of about 40) is formed.
0 nm) is formed (step b), then a plasma treatment step of Ar (argon) is performed as a sputtering step, and then a hydrogen annealing step is performed by hydrogen plasma treatment (step c), and then μc-Si: An n layer (film thickness: about 15 nm) of H (μc means microcrystal) was formed (step d).

【0015】すなわちこの実施例では、成膜後、膜表面
をArプラズマ処理、H2プラズマ処理を順次行い、こ
れにより膜中の不安定な水素を低減するとともに、膜表
面の未結合手を低減した。なお、上記Arプラズマ処
理、水素プラズマ処理はp層に対しては成膜後、i層に
対しては20nm成膜する毎に実施した。Arプラズマ
処理と水素プラズマ処理の時間を変えた他は同一条件で
作製した各試料に、光エネルギ−200mW/cm2
100時間照射する光加速試験を行った。その結果を第
2表に示す。なお、サンプル1〜5はArプラズマ処理
を行わない従来例を示すサンプルである。第2表から、
Arプラズマ処理、水素プラズマ処理の実施により、出
力変化すなわち出力電流の低下率が大幅に低下すること
が判明した。
That is, in this embodiment, after the film formation, the film surface is sequentially subjected to Ar plasma treatment and H2 plasma treatment, thereby reducing unstable hydrogen in the film and reducing dangling bonds on the film surface. . The Ar plasma treatment and the hydrogen plasma treatment were carried out after the p layer was formed and then the i layer was formed every 20 nm. A photo-acceleration test was performed in which each sample produced under the same conditions except that the Ar plasma treatment and the hydrogen plasma treatment were changed in time was irradiated with light energy of -200 mW / cm 2 for 100 hours. The results are shown in Table 2. Samples 1 to 5 are conventional samples that do not undergo Ar plasma treatment. From Table 2,
It was found that the output change, that is, the decrease rate of the output current, was significantly reduced by the Ar plasma treatment and the hydrogen plasma treatment.

【0016】[0016]

【表2】 [Table 2]

【0017】更に、いくつかのサンプルのi層中の水素
含有量(at%)を2次イオン質量分析器(SIMS)
で測定した結果も示す。この結果から、i層中の水素含
有量の低下に伴い、出力低下が低減されていることが推
定される。図5に、Arプラズマ処理時間及び水素プラ
ズマ処理時間を種々変えた場合の出力劣化量を示す。こ
の図から、Arプラズマ処理時間は35秒から75秒、
水素プラズマ処理時間は40秒から80秒とすることが
好適であることがわかる。
Furthermore, the hydrogen content (at%) in the i-layer of some samples was measured by a secondary ion mass spectrometer (SIMS).
The results of measurements made in step 1 are also shown. From this result, it is estimated that the output reduction is reduced as the hydrogen content in the i-layer is reduced. FIG. 5 shows the output deterioration amount when the Ar plasma processing time and the hydrogen plasma processing time are variously changed. From this figure, Ar plasma treatment time is 35 seconds to 75 seconds,
It is understood that the hydrogen plasma treatment time is preferably 40 seconds to 80 seconds.

【0018】なお、これら処理時間は流量や真空度など
に応じて変化する。また、両プラズマ処理はオーバーラ
ップしてもよい。図3は、Arプラズマ処理におけるR
FパワーとArガス流量を変えた他は第1表の条件を用
いて作製した多数の試料について、出力低下を調べた結
果を図示する。図3中、適性領域は具体的に説明する
と、以下の条件を満たす領域である。Arガス流量5〜
500sccm、RFパワー20〜700W、チャンバ
圧力0.5〜5torrが好適な条件である。
The processing time varies depending on the flow rate and the degree of vacuum. Also, both plasma treatments may overlap. FIG. 3 shows R in Ar plasma processing.
The results of examining the output reduction are shown for a number of samples prepared under the conditions of Table 1 except that the F power and Ar gas flow rate were changed. Specifically, in FIG. 3, the aptitude region is a region that satisfies the following conditions. Ar gas flow rate 5
500 sccm, RF power 20-700 W, and chamber pressure 0.5-5 torr are suitable conditions.

【0019】図4は、H2 プラズマ処理におけるRFパ
ワーとH2 ガス流量を変えた他は第1表の条件を用いて
作製した多数の試料について、出力低下を調べた結果を
図示する。図4中、適性領域は具体的に説明すると、以
下の条件を満たす領域である。H2 ガス流量5〜700
sccm、RFパワー20〜800W、チャンバ圧力
0.01〜10torrが好適な条件である。
FIG. 4 is a graph showing the results of examining the decrease in output of many samples prepared under the conditions of Table 1 except that the RF power and the H2 gas flow rate in the H2 plasma treatment were changed. To be more specific, the aptitude region in FIG. 4 is a region that satisfies the following conditions. H 2 gas flow rate 5-700
Sccm, RF power of 20 to 800 W, and chamber pressure of 0.01 to 10 torr are preferable conditions.

【0020】ちなみにプラズマ生成条件は、Arガス流
量とRFパワーにより決定される。なお上記実験から、
Ar流量が500sccmをこえると、非晶質Si膜の
導電率が低下するため、Arプラズマ処理条件としては
適切でないこともわかった。また、RFパワーが高い時
も非晶質Si膜の導電率が低下することがわかった。更
に、水素プラズマ処理についても同様の実験結果が得ら
れた。
Incidentally, the plasma generation condition is determined by the Ar gas flow rate and the RF power. From the above experiment,
It was also found that when the Ar flow rate exceeds 500 sccm, the conductivity of the amorphous Si film decreases, so that the Ar plasma processing condition is not appropriate. It was also found that the conductivity of the amorphous Si film was lowered even when the RF power was high. Furthermore, similar experimental results were obtained for hydrogen plasma treatment.

【0021】以下、上記Arプラズマ処理の意味を解析
した結果を説明する。非晶質Si太陽電池は、減圧下で
SiH4 を水素グロー放電により分解して非晶質Siの
PINダイオ−ドを形成することにより製造される。こ
のプロセスにおいて非晶質Si膜中に必要以上に水素が
取り込まれるため、非晶質Siに光が照射されると、光
エネルギ−により励起された電子やホールが、再結合中
心で再結合する。このとき、不安定な状態で結合してい
た水素、あるいは膜中に過剰に取り込まれていた水素
が、局所的に電気的中性条件が壊れることにより移動し
て、新たなトラップ準位が作られ、非晶質Si膜の電気
抵抗が上昇する。この結果、光照射時間が長くなるにつ
れ非晶質Si太陽電池の変換効率は低下する。
The results of analyzing the meaning of the Ar plasma treatment will be described below. Amorphous Si solar cells are manufactured by decomposing SiH4 under reduced pressure by hydrogen glow discharge to form an amorphous Si PIN diode. Since hydrogen is taken into the amorphous Si film more than necessary in this process, when the amorphous Si is irradiated with light, electrons and holes excited by light energy are recombined at recombination centers. . At this time, hydrogen bound in an unstable state or excessively incorporated into the film moves due to local breakdown of the electrically neutral condition, creating a new trap level. As a result, the electric resistance of the amorphous Si film increases. As a result, the conversion efficiency of the amorphous Si solar cell decreases as the light irradiation time increases.

【0022】非晶質Si膜内の水素は、300℃以上の
高温で成膜を行うことにより少なくできることは知られ
ており、高温成膜で形成された太陽電池の光劣化が低減
されることも調べられている。しかし、この方法で作ら
れた太陽電池のエネルギ−変換効率は、従来の成膜温度
200℃から350℃で成膜した太陽電池に比べ低くな
る。すなわち、非晶質Si中の水素が非晶質Siの再結
合中心となる未結合手に結合して再結合中心を低減させ
る働きをもつ。したがって、水素ドープ量を極端に少な
くすると却って非晶質Siの再結合中心が増加し、導電
率が低下し、光電変換効率が低下してしまう。
It is known that hydrogen in the amorphous Si film can be reduced by forming the film at a high temperature of 300 ° C. or higher, and the photodegradation of the solar cell formed by the high temperature film formation can be reduced. Has also been investigated. However, the energy conversion efficiency of the solar cell manufactured by this method is lower than that of a conventional solar cell formed at a film forming temperature of 200 ° C to 350 ° C. That is, hydrogen in the amorphous Si has a function of bonding to dangling bonds which are recombination centers of the amorphous Si and reducing the recombination centers. Therefore, if the hydrogen doping amount is extremely reduced, the recombination centers of the amorphous Si will rather increase, the conductivity will decrease, and the photoelectric conversion efficiency will decrease.

【0023】そこで、水素を非晶質Si中に過不足なく
導入すれば、水素の不安定準位が少ないため、光を照射
されても再結合中心の増加速度を抑えられ、光劣化は小
さくできる筈である。本実施例では、水素ドープアモル
ファス半導体膜としてaーSi:Hを成膜後、膜の表面
を不活性原子で叩いて、弱く結合した水素、成膜中の不
安定な位置に取り込まれた水素を、Arプラズマ中のA
rラジカルを膜表面に当てることにより取り除く。その
後、膜表面の未結合手を水素ラジカルと反応させてaー
Siを過不足なく水素で覆う。
Therefore, if hydrogen is introduced into the amorphous Si without excess or deficiency, the unstable level of hydrogen is small, so that the rate of increase of recombination centers can be suppressed even when irradiated with light, and photodegradation is small. It should be possible. In this embodiment, after a-Si: H is formed as a hydrogen-doped amorphous semiconductor film, the surface of the film is hit with an inert atom to weakly bond hydrogen, hydrogen taken in an unstable position during film formation. In A plasma
The r radical is removed by applying it to the film surface. After that, unbonded hands on the film surface are reacted with hydrogen radicals to cover a-Si with hydrogen without excess or deficiency.

【0024】これにより、良好な導電率及び光電変換効
率を有するaーSi:H膜やaーSiC:H膜などが得
られる。なお、膜の表面部の過剰水素を取り除くために
用いるガスはArに限定するものではなく、必要な運動
エネルギを有する不活性原子,水素原子,アモルファス
半導体膜の構成原子であれば同じ作用が得られる。 (実施例2)他の実施例を説明する。
As a result, an a-Si: H film, an a-SiC: H film or the like having good conductivity and photoelectric conversion efficiency can be obtained. Note that the gas used to remove excess hydrogen on the surface of the film is not limited to Ar, and the same action can be obtained as long as it is an inert atom having a necessary kinetic energy, a hydrogen atom, or a constituent atom of the amorphous semiconductor film. To be (Embodiment 2) Another embodiment will be described.

【0025】実施例1と同様のプロセスでpin太陽電
池を2層積層した太陽電池を準備した。下層の太陽電池
のp層はボロンをドープした膜厚8nmのaーSiC、
そのi層はArプラズマ処理と水素プラズマ処理を用い
た膜厚100nmのi層非晶質Si、そのn層はリンを
ドープした膜厚15nmの微結晶Si膜である。上層の
太陽電池は、p層にボロンをドープした膜厚8nmのa
ーSiC、そのi層はArプラズマ処理と水素プラズマ
処理を用いた膜厚400nmのi層非晶質Si、n層は
リンをドープした膜厚15nmの微結晶Si膜である。
上記2つの層を積層した膜を用いて、図2と同じ構造に
て所定個数直列接続し、保護層を被覆し、試験サンプル
を作成した。
A solar cell in which two layers of pin solar cells were laminated was prepared by the same process as in Example 1. The p layer of the lower solar cell is a boron-doped a-SiC film with a thickness of 8 nm,
The i-layer is an i-layer amorphous Si having a film thickness of 100 nm using Ar plasma treatment and hydrogen plasma treatment, and the n-layer is a microcrystalline Si film having a film thickness of 15 nm doped with phosphorus. The upper layer solar cell has an a
-SiC, the i-layer is an i-layer amorphous Si having a thickness of 400 nm using Ar plasma treatment and hydrogen plasma treatment, and the n-layer is a microcrystalline Si film having a thickness of 15 nm doped with phosphorus.
A test sample was prepared by using a film obtained by stacking the above two layers, connecting a predetermined number of them in series with the same structure as in FIG. 2 and coating a protective layer.

【0026】この試験サンプルを,光エネルギ−200
mW/cm2 で100時間照射して、出力変化を調べた
結果、変化率は4%となった。このことから、本実施例
の積層太陽電池は極めて優れた耐光劣化特性を有するこ
とがわかった。
This test sample was converted into light energy-200
Irradiation with mW / cm 2 was performed for 100 hours, and the change in output was examined. As a result, the rate of change was 4%. From this, it was found that the laminated solar cell of this example had extremely excellent light deterioration resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用した太陽電池の製造プロセスを示
す成膜工程図である。
FIG. 1 is a film forming process diagram showing a manufacturing process of a solar cell to which the present invention is applied.

【図2】図1の工程で作製された太陽電池の断面図。FIG. 2 is a cross-sectional view of the solar cell manufactured in the process of FIG.

【図3】Arプラズマ処理の可能領域及び適性領域を示
す図である。
FIG. 3 is a diagram showing a possible region and an appropriate region of Ar plasma processing.

【図4】水素プラズマ処理の可能領域及び適性領域を示
す図である。
FIG. 4 is a diagram showing a feasible region and an appropriate region for hydrogen plasma processing.

【図5】Arプラズマ処理時間及び水素プラズマ処理時
間を種々変えた場合の出力劣化量を示す図である。
FIG. 5 is a diagram showing an output deterioration amount when the Ar plasma processing time and the hydrogen plasma processing time are variously changed.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 原料ガスを分解して基板上に水素原子
がドープされたアモルファス半導体膜を堆積する堆積工
程と、堆積された前記アモルファス半導体膜を水素プラ
ズマ雰囲気に曝して前記アモルファス半導体膜の表面部
の未結合手を低減する水素アニール工程とを有する水素
ドープ非晶質半導体膜の製造方法において、 前記水素アニール工程と同時又はその前に、所定の運動
エネルギを有する不活性原子,水素原子,前記アモルフ
ァス半導体膜の構成原子の少なくとも一つを前記アモル
ファス半導体膜の表面に衝突させて前記アモルファス半
導体膜中の不安定水素濃度を低減するスパッタリング工
程を備えることを特徴とする水素ドープ非晶質半導体膜
の製造方法。
1. A deposition step of decomposing a source gas to deposit a hydrogen atom-doped amorphous semiconductor film on a substrate, and exposing the deposited amorphous semiconductor film to a hydrogen plasma atmosphere to form a surface of the amorphous semiconductor film. In the method for producing a hydrogen-doped amorphous semiconductor film, which comprises a hydrogen annealing step of reducing dangling bonds of a portion, at the same time as or before the hydrogen annealing step, an inert atom having a predetermined kinetic energy, a hydrogen atom, A hydrogen-doped amorphous semiconductor, comprising a sputtering step of colliding at least one of constituent atoms of the amorphous semiconductor film with a surface of the amorphous semiconductor film to reduce an unstable hydrogen concentration in the amorphous semiconductor film. Membrane manufacturing method.
JP4267331A 1992-10-06 1992-10-06 Manufacture of hydrogen-doped amorphous semiconductor film Pending JPH06120152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4267331A JPH06120152A (en) 1992-10-06 1992-10-06 Manufacture of hydrogen-doped amorphous semiconductor film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4267331A JPH06120152A (en) 1992-10-06 1992-10-06 Manufacture of hydrogen-doped amorphous semiconductor film

Publications (1)

Publication Number Publication Date
JPH06120152A true JPH06120152A (en) 1994-04-28

Family

ID=17443337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4267331A Pending JPH06120152A (en) 1992-10-06 1992-10-06 Manufacture of hydrogen-doped amorphous semiconductor film

Country Status (1)

Country Link
JP (1) JPH06120152A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5624873A (en) * 1993-11-12 1997-04-29 The Penn State Research Foundation Enhanced crystallization of amorphous films
EP0818560A3 (en) * 1996-07-09 2001-01-03 Applied Materials, Inc. Construction of a film on a semiconductor wafer
JP2001060584A (en) * 1999-06-18 2001-03-06 Applied Materials Inc Plasma treatment to enhance adhesion of carbon-containing layers and minimize oxidation
WO2002054473A1 (en) * 2000-12-28 2002-07-11 Tadahiro Ohmi Semiconductor device and its manufacturing method
JP2010157687A (en) * 2008-12-29 2010-07-15 Jusung Engineering Co Ltd Thin film type solar cell and method of manufacturing the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5624873A (en) * 1993-11-12 1997-04-29 The Penn State Research Foundation Enhanced crystallization of amorphous films
US6251758B1 (en) 1994-11-14 2001-06-26 Applied Materials, Inc. Construction of a film on a semiconductor wafer
US6500742B1 (en) 1994-11-14 2002-12-31 Applied Materials, Inc. Construction of a film on a semiconductor wafer
EP0818560A3 (en) * 1996-07-09 2001-01-03 Applied Materials, Inc. Construction of a film on a semiconductor wafer
JP2001060584A (en) * 1999-06-18 2001-03-06 Applied Materials Inc Plasma treatment to enhance adhesion of carbon-containing layers and minimize oxidation
WO2002054473A1 (en) * 2000-12-28 2002-07-11 Tadahiro Ohmi Semiconductor device and its manufacturing method
JP2002261091A (en) * 2000-12-28 2002-09-13 Tadahiro Omi Semiconductor device and method of manufacturing the same
AU2002217545B2 (en) * 2000-12-28 2005-03-17 Tadahiro Ohmi Semiconductor device and its manufacturing method
US6975018B2 (en) 2000-12-28 2005-12-13 Tadahiro Ohmi Semiconductor device
CN100352016C (en) * 2000-12-28 2007-11-28 大见忠弘 Semiconductor device and its manufacturing method
JP2010157687A (en) * 2008-12-29 2010-07-15 Jusung Engineering Co Ltd Thin film type solar cell and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US6339013B1 (en) Method of doping silicon, metal doped silicon, method of making solar cells, and solar cells
US5977476A (en) High efficiency photovoltaic device
JPH11354820A (en) Photoelectric conversion element and method for manufacturing the same
WO2021004525A1 (en) Heterojunction battery layerwise hydrogen passivation method and passivation device, battery, battery assembly, and solar power station
JP2009512214A (en) Method for manufacturing n-type polycrystalline silicon solar cell
JP2001267611A (en) Thin film solar cell and method of manufacturing the same
JP2003017724A (en) Photovoltaic element
US20150136210A1 (en) Silicon-based solar cells with improved resistance to light-induced degradation
JP2004014812A (en) Photovoltaic element
JP2918345B2 (en) Photovoltaic element
US6452087B2 (en) Photovoltaic device and method of fabricating the same
JPH06120152A (en) Manufacture of hydrogen-doped amorphous semiconductor film
Duan et al. Enhancing the selectivity and transparency of the electron contact in silicon heterojunction solar cells by phosphorus catalytic doping
JP3325793B2 (en) Amorphous semiconductor, method for manufacturing the same, and photovoltaic device
JPH065765B2 (en) Photoelectric conversion device
JPH0715025A (en) Manufacture of photovoltaic device
JP3623520B2 (en) Thin film solar cell manufacturing method
Schicho Amorphous and microcrystalline silicon applied in very thin tandem solar cells
US6242687B1 (en) Amorphous silicon photovoltaic devices and method of making same
CN102741451A (en) Method for manufacturing a solar panel
CN118380510B (en) Method for preparing laminated alumina film layer based on ALD (atomic layer deposition) process
JP2757896B2 (en) Photovoltaic device
JP3753556B2 (en) Photoelectric conversion element and manufacturing method thereof
TW201131802A (en) Cleaning optimization of PECVD solar films
JP4471963B2 (en) Method for manufacturing photoelectric conversion element