[go: up one dir, main page]

JPH06117432A - Two-way dynamic pressure fluid bearing - Google Patents

Two-way dynamic pressure fluid bearing

Info

Publication number
JPH06117432A
JPH06117432A JP4286742A JP28674292A JPH06117432A JP H06117432 A JPH06117432 A JP H06117432A JP 4286742 A JP4286742 A JP 4286742A JP 28674292 A JP28674292 A JP 28674292A JP H06117432 A JPH06117432 A JP H06117432A
Authority
JP
Japan
Prior art keywords
rotating ring
spiral groove
hydrodynamic bearing
sliding surface
dynamic pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4286742A
Other languages
Japanese (ja)
Inventor
Naoyuki Kitamura
直之 北村
Hiromichi Kikukawa
弘道 菊川
Masahide Nakano
政英 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON JOHN KUREEN KK
Original Assignee
NIPPON JOHN KUREEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON JOHN KUREEN KK filed Critical NIPPON JOHN KUREEN KK
Priority to JP4286742A priority Critical patent/JPH06117432A/en
Publication of JPH06117432A publication Critical patent/JPH06117432A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • F16C17/045Sliding-contact bearings for exclusively rotary movement for axial load only with grooves in the bearing surface to generate hydrodynamic pressure, e.g. spiral groove thrust bearings

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE:To provide a two-way dynamic pressure fluid bearing capable of being used as a bearing for supporting the rotary shaft of a precision rotating device like a gas turbine, a compressor, an inertial guiding high-precision gyroscope or the like under high peripheral speed condition, and forsupporting a rotary shaft rotatably in the non-touching state even if the rotational sdirection of the rotary shaft is the normal direction or the riverse direction. CONSTITUTION:Spiral grooves 10, 11 extending from the external circumferential edges on the internal circumferential edges of sliding surfaces 5, 6 as base ends and closing their ends and having the approximately mirror image relationship are respectively providing on both mutually opposing and connected sliding surfaces 5, 6 between a rotary ring 3 fixed to a rotary shaft 2 and a non-rotary ring 4 fixed to housing 1 and dynamic pressure is generated by the spiral grooves on one sliding surface in accordance with the normal directional rotation of the rotary shaft, while the dynamic pressure is generated by the spiral grooves on the other sliding surface in accordance with the reverse directional rotation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、動圧流体軸受の改良に
係わり、更に詳しくはガスタービンやコンプレッサ等又
は慣性誘導用超精密ジャイロ等の精密回転装置の回転軸
を支持する軸受として高周速条件下で使用することが可
能な双方向動圧流体軸受に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of a hydrodynamic bearing, and more particularly, to a high-performance bearing for supporting a rotary shaft of a precision rotating device such as a gas turbine, a compressor or an ultra-precision gyro for inertia induction. The present invention relates to a bidirectional hydrodynamic bearing that can be used under high speed conditions.

【0002】[0002]

【従来の技術】従来、慣性誘導用超精密ジャイロ等の精
密回転装置における回転軸を支持する軸受として、動圧
気体軸受が用いられている。この動圧気体軸受は、回転
軸に固定した回転リングとハウジングに固定した非回転
リングとの対面する各摺動面の何れか一方の摺動面に、
相対的回転方向に対して前進角を有する同一長さの多数
の螺旋溝を円周方向に一定間隔で設け、この螺旋溝によ
って気体を摺動面間に圧送し、両摺動面間に微小ギャッ
プを形成して回転支持するものであり、両摺動面は非接
触状態になるので、高速回転、即ち高周速条件において
も摺動面の摩耗、摩擦抵抗が少なく、焼き付き等が発生
しないのである。
2. Description of the Related Art Conventionally, a dynamic pressure gas bearing has been used as a bearing for supporting a rotating shaft in a precision rotating device such as an inertial super-precision gyro. This dynamic pressure gas bearing has one of the sliding surfaces facing each other of the rotating ring fixed to the rotating shaft and the non-rotating ring fixed to the housing,
A large number of spiral grooves of the same length that have an advancing angle with respect to the relative rotation direction are provided at regular intervals in the circumferential direction, and gas is pressure-fed between the sliding surfaces by these spiral grooves, and a minute amount is provided between both sliding surfaces. Since it forms a gap and is rotatably supported, both sliding surfaces are in non-contact state, so even under high-speed rotation, that is, high peripheral speed conditions, there is little wear and friction resistance on the sliding surface, and seizure does not occur. Of.

【0003】しかし、従来の動圧気体軸受は、非回転リ
ングに対する回転リングの特定順方向の回転時にのみ前
述の非接触状態を作り出すのであって、それと逆方向の
回転時には逆に摺動面間から流体が排出されて圧力が下
がり、真空状態となって両摺動面が固く接触するのであ
る。
However, in the conventional dynamic pressure gas bearing, the above-mentioned non-contact state is created only when the rotating ring rotates in a specific forward direction with respect to the non-rotating ring. The fluid is discharged from the chamber, the pressure drops, and a vacuum state is established, so that both sliding surfaces are in firm contact with each other.

【0004】回転軸が順方向のみに回転する回転装置で
は、前述の問題は起こらないが、コンプレーサー等にお
いてはその実際の運転の際に、通常は設定された順方向
に回転リングが回転しているが、回転初期又は停止直前
において逆回転することがしばしば生じる。その場合に
は、両摺動面間が強く接触するので、摺動面の磨耗が多
くなるとともに、摩擦熱が発生してその面の特性を損な
いかねない。
Although the above-mentioned problem does not occur in the rotating device in which the rotating shaft rotates only in the forward direction, in the actual operation of the compressor or the like, the rotating ring normally rotates in the set forward direction. However, reverse rotation often occurs at the initial stage of rotation or immediately before stopping. In that case, since the two sliding surfaces are in strong contact with each other, the sliding surfaces are often worn and frictional heat is generated, which may impair the characteristics of the surfaces.

【0005】一方、順方向にのみ回転する場合であって
も、ハウジングを貫通させた回転軸の両端部を支持する
には、回転軸の軸方向における回転リングと非回転リン
グの配置は逆になるため、前記摺動面に形成する螺旋溝
も逆方向に前進角を有するように形成しなければならな
い。これは、二種類の対称な動圧気体軸受が必要である
ことを意味し、コストの上昇につながるものである。
On the other hand, even in the case of rotating only in the forward direction, in order to support both ends of the rotating shaft which penetrates the housing, the arrangement of the rotating ring and the non-rotating ring in the axial direction of the rotating shaft is reversed. Therefore, the spiral groove formed on the sliding surface must be formed to have an advancing angle in the opposite direction. This means that two kinds of symmetrical dynamic pressure gas bearings are required, which leads to an increase in cost.

【0006】尚、摺動面に形成した螺旋溝が本来の動圧
発生機能を発揮するのは、一定以上の高速回転条件下で
あり、低速の場合には、十分な動圧が発生しないので両
摺動面は接触したままである。
It is to be noted that the spiral groove formed on the sliding surface exerts its original dynamic pressure generating function under high speed rotation conditions above a certain level, and at low speed, sufficient dynamic pressure is not generated. Both sliding surfaces remain in contact.

【0007】[0007]

【発明が解決しようとする課題】本発明が前述の状況に
鑑み、解決しようとするところは、非回転リングに対す
る回転リングの回転方向が、順方向又は逆方向の何れの
方向になった場合でも、摺動面に形成された螺旋溝によ
って摺動面間に動圧を発生し、両摺動面が非接触状態で
回転支持することが可能な双方向動圧流体軸受を提供す
るとともに、併せて低速回転条件下でも回転摩擦抵抗が
少ない双方向動圧流体軸受を提供する点にある。
SUMMARY OF THE INVENTION In view of the above-mentioned situation, the present invention is to solve the problems regardless of whether the rotating direction of the rotating ring with respect to the non-rotating ring is the forward direction or the reverse direction. In addition to providing a bidirectional hydrodynamic bearing that can generate dynamic pressure between the sliding surfaces by the spiral groove formed on the sliding surfaces and can rotatably support both sliding surfaces in a non-contact state, Thus, the present invention provides a bidirectional hydrodynamic bearing that has low rotational friction resistance even under low-speed rotation conditions.

【0008】[0008]

【課題を解決するための手段】本発明は、前述の課題解
決のために、第一発明として、回転軸に固定した回転リ
ングとハウジングに固定した非回転リングとの対接する
両摺動面に、その外周縁又は内周縁を基端として延び、
その終端を閉止した互いに略鏡像関係にある螺旋溝をそ
れぞれ設け、前記回転軸の順方向回転に伴い一方の摺動
面の螺旋溝で動圧を発生させ、逆方向回転に伴い他方の
摺動面の螺旋溝で動圧を発生させてなる双方向動圧流体
軸受を構成した。
In order to solve the above-mentioned problems, the present invention provides, as a first invention, a pair of sliding surfaces on which a rotating ring fixed to a rotating shaft and a non-rotating ring fixed to a housing are in contact with each other. , Extending with its outer peripheral edge or inner peripheral edge as the base end,
Spiral grooves that are close to each other and have a substantially mirror image relationship are provided, and dynamic pressure is generated in the spiral groove of one sliding surface with forward rotation of the rotating shaft, and the other slides with reverse rotation. A bidirectional hydrodynamic bearing was constructed by generating dynamic pressure in the spiral groove of the surface.

【0009】また、前記螺旋溝のダム巾比を約0.2〜
0.8に設定した。そして、通常は予め設定された順方
向にのみ回転する回転軸とハウジング間を密封するに
は、前記回転軸の順方向回転による相対的回転方向に対
して前進角を有する螺旋溝の本数を他方より多く設定す
るか又はその幅を他方より広く設定するか又はその深さ
を他方より深く設定した。また、順方向又は逆方向の何
れの方向にも回転する回転軸とハウジング間を密封する
には、前記両摺動面に形成する螺旋溝を、完全な鏡像関
係となした。
The dam width ratio of the spiral groove is about 0.2 to.
It was set to 0.8. And, in order to seal between the rotary shaft that normally rotates only in the forward direction and the housing, the number of spiral grooves having an advance angle with respect to the relative rotation direction due to the forward rotation of the rotary shaft is set to the other. Either more was set or its width was set wider than the other or its depth was set deeper than the other. Further, in order to seal between the rotary shaft that rotates in either the forward direction or the reverse direction and the housing, the spiral grooves formed on the both sliding surfaces have a perfect mirror image relationship.

【0010】また、第二発明として、回転軸に固定した
回転リングとハウジングに固定した非回転リングとの対
接する両摺動面に、その外周縁又は内周縁を基端として
延び、その終端を閉止した互いに略鏡像関係にある螺旋
溝をそれぞれ設け、前記回転軸の順方向回転に伴い一方
の摺動面の螺旋溝で動圧を発生させ、逆方向回転に伴い
他方の摺動面の螺旋溝で動圧を発生させてなる双方向動
圧流体軸受であって、前記非回転リングの外周端面に形
成した二条のOリング溝間に開設した複数の導入口と摺
動面に開設した複数の噴出口を非回転リング内に形成し
た導通路にて連通し、前記Oリング溝にOリングを嵌着
してハウジングの内壁に密封固定した際に、非回転リン
グの外周端面の外側に前記各導入口に連通する環状密封
空間を形成すべく両Oリング間に対応する前記内壁に環
状溝を形成し、更に該環状溝に高圧流体を供給する流体
供給路をハウジング内に連通形成してなる双方向動圧流
体軸受を構成した。
As a second aspect of the invention, the sliding surfaces of the rotating ring fixed to the rotating shaft and the non-rotating ring fixed to the housing are opposed to each other and extend with the outer peripheral edge or the inner peripheral edge as the base end, and the terminal ends thereof. Providing closed spiral grooves that are substantially mirror images of each other, dynamic pressure is generated in the spiral groove of one sliding surface with forward rotation of the rotary shaft, and spiral of the other sliding surface with reverse rotation. A bidirectional hydrodynamic bearing that generates dynamic pressure in a groove, wherein a plurality of inlets provided between two O-ring grooves formed on the outer peripheral end surface of the non-rotating ring and a plurality of inlets provided on a sliding surface are provided. Of the non-rotating ring are connected to each other through a conduction path formed in the non-rotating ring, and when the O-ring is fitted into the O-ring groove and hermetically fixed to the inner wall of the housing, the above-mentioned outer side of the outer peripheral end surface of the non-rotating ring is To form an annular sealed space that communicates with each inlet O-ring an annular groove formed in the inner wall corresponding to between, to constitute a further bidirectional hydrodynamic bearing fluid supply path for supplying obtained by forming communication in a housing of the high pressure fluid to the annular groove.

【0011】そして、前記噴出口を摺動面であって螺旋
溝を形成していない平坦面に開設することが好ましく、
また前記噴出口を摺動面であって各螺旋溝と交叉し且つ
螺旋溝の深さより深く形成した環状流路に開設してなる
ことも可能である。
It is preferable that the jet outlet is formed on a flat surface which is a sliding surface and does not form a spiral groove.
Further, it is also possible to open the jet port in a circular flow path which is a sliding surface and intersects each spiral groove and is formed deeper than the depth of the spiral groove.

【0012】また、第三発明として、回転軸に固定した
回転リングを間に挟んでハウジングの内壁に第一非回転
リングと第二非回転リングを密封状態で取付け、前記回
転リングと各非回転リングとのそれぞれ対接する両摺動
面に、その外周縁を基端として延び、その終端を閉止し
た互いに略鏡像関係にある螺旋溝をそれぞれ設け、前記
回転軸の順方向回転に伴い回転リングの両面に形成した
摺動面又は各非回転リングの一面に形成した摺動面の一
方の摺動面の螺旋溝で動圧を発生させ、逆方向回転に伴
い他方の摺動面の螺旋溝で動圧を発生させてなる双方向
動圧流体軸受であって、前記回転リングの外周端面と各
非回転リング及び前記内壁とで囲まれる空間に高圧流体
を供給する流体供給路をハウジング内に連通形成してな
る双方向動圧流体軸受を構成した。
As a third aspect of the invention, a first non-rotating ring and a second non-rotating ring are hermetically attached to the inner wall of the housing with a rotating ring fixed to the rotating shaft interposed between the rotating ring and each non-rotating ring. Spiral grooves extending from the outer peripheral edge as a base end and closed at their ends are provided respectively on both sliding surfaces that are in contact with the ring. Dynamic pressure is generated in the spiral groove of one sliding surface of the sliding surface formed on both sides or one surface of each non-rotating ring, and in the spiral groove of the other sliding surface due to reverse rotation. A bidirectional hydrodynamic bearing for generating dynamic pressure, wherein a fluid supply path for supplying high-pressure fluid to a space surrounded by the outer peripheral end surface of the rotating ring, each non-rotating ring and the inner wall is communicated with the housing. Bi-directional hydrodynamic fluid formed You configure the receive.

【0013】そして、前記ハウジングの内方に位置する
第一非回転リングを内壁に設けた段部に当止するととも
に、外方に位置する第二非回転リングを内方へ押圧すべ
く板ばねからなる押圧金具を第二非回転リングの外方周
縁に介在させて環状固定具にてハウジングに取付けてな
ることが好ましい。
Then, the first non-rotating ring located inside the housing is stopped by the stepped portion provided on the inner wall, and the second non-rotating ring located outside is pressed inward. It is preferable to interpose a pressing metal member made of ???

【0014】[0014]

【作用】以上の如き内容からなる本発明の双方向動圧流
体軸受は、回転軸の摺動面と非回転リングの摺動面に、
その外周縁若しくは内周縁を基端として延び、その終端
を閉止した互いに略鏡像関係にある螺旋溝をそれぞれ設
けたことにより、順方向回転に伴い一方の摺動面に形成
した螺旋溝による流体輸送作用によって流体を摺動面間
に圧送し、また逆方向回転に伴い他方の摺動面に形成し
た螺旋溝による流体輸送作用によって同様に流体を摺動
面間に圧送し、回転軸が順方向又は逆方向に回転した場
合でも、両摺動面を非接触状態で回転支持するものであ
る。
The bidirectional hydrodynamic bearing of the present invention having the above-mentioned contents has the sliding surface of the rotating shaft and the sliding surface of the non-rotating ring,
Fluid transport by the spiral groove formed on one sliding surface with forward rotation by providing spiral grooves that extend from the outer peripheral edge or the inner peripheral edge as a base end and close the end and are in a substantially mirror image relationship with each other. By the action, the fluid is pumped between the sliding faces, and by the fluid transport action by the spiral groove formed on the other sliding face with the reverse rotation, the fluid is also pumped between the sliding faces by the action of the rotating shaft in the forward direction. Alternatively, even if the sliding surfaces rotate in opposite directions, both sliding surfaces are rotatably supported in a non-contact state.

【0015】また、前記回転軸の順方向回転による相対
的回転方向に対して前進角を有する螺旋溝の本数を他方
より多く設定するか又はその幅を他方より広く設定する
か又はその深さを他方より深く設定することにより、回
転軸が順方向に回転している場合の動圧発生性能を高
め、回転軸が停止する際に逆方向の回転が生じた場合に
は、両摺動面が固く接触しない程度に非接触状態を維持
するのである。
Further, the number of spiral grooves having an advancing angle with respect to the relative rotation direction due to the forward rotation of the rotary shaft is set larger than the other, the width thereof is set wider than the other, or the depth thereof is set. By setting it deeper than the other, the dynamic pressure generation performance is improved when the rotating shaft is rotating in the forward direction, and when the rotating shaft rotates in the opposite direction when the rotating shaft stops, both sliding surfaces are The non-contact state is maintained to the extent that it does not come into solid contact.

【0016】そして、両摺動面に形成する螺旋溝を、完
全な鏡像関係となした場合には、回転軸の回転方向が順
方向であっても、逆方向であっても略同様な動圧発生性
能を有するのである。
When the spiral grooves formed on both the sliding surfaces have a perfect mirror image relationship, substantially the same movement is achieved regardless of whether the rotating shaft rotates in the forward direction or in the reverse direction. It has pressure generation performance.

【0017】また、前述の双方向動圧流体軸受におい
て、前記非回転リングの外周端面に形成した二条のOリ
ング溝間に開設した複数の導入口と摺動面に開設した複
数の噴出口を非回転リング内に形成した導通路にて連通
し、前記Oリング溝にOリングを嵌着してハウジングの
内壁に密封固定した際に、非回転リングの外周端面の外
側に前記各導入口に連通する環状密封空間を形成すべく
両Oリング間に対応する前記内壁に環状溝を形成し、更
に該環状溝に高圧流体を供給する流体供給路をハウジン
グ内に連通形成してなることで、両摺動面間に流体を強
制的に流入させて、螺旋溝による動圧発生性能が低い低
速回転時にも両摺動面間の非接触状態を維持し、あるい
は接触摩擦抵抗を十分に減少させることが可能である。
Further, in the above-described bidirectional hydrodynamic bearing, a plurality of inlets formed between two O-ring grooves formed on the outer peripheral end surface of the non-rotating ring and a plurality of jet outlets formed on the sliding surface are provided. When the O-ring is fitted into the non-rotating ring and the O-ring is fitted into the O-ring groove and is hermetically fixed to the inner wall of the housing, the introduction port is provided outside the outer peripheral end face of the non-rotating ring. By forming an annular groove in the inner wall corresponding to both O-rings to form an annular sealed space that communicates with each other, and further by forming a fluid supply path for supplying a high-pressure fluid to the annular groove in the housing, The fluid is forced to flow between both sliding surfaces to maintain the non-contact state between both sliding surfaces even at low speed rotation where the dynamic pressure generation performance due to the spiral groove is low, or to sufficiently reduce the contact friction resistance. It is possible.

【0018】この場合、前記噴出口を摺動面であって螺
旋溝を形成していない平坦面に開設すると、噴出口から
噴出する高圧流体によって効率よく両摺動面間に流体膜
を形成でき、また前記噴出口を摺動面であって各螺旋溝
と交叉し且つ螺旋溝の深さより深く形成した環状流路に
開設すると、環状流路から螺旋溝を通して摺動面間に一
様に高圧流体を流入させることができる。
In this case, if the jet outlet is formed on a flat surface which is a sliding surface and does not form a spiral groove, a high pressure fluid jetted from the jet outlet can efficiently form a fluid film between the sliding surfaces. Further, when the jet outlet is formed in the annular flow passage which is a sliding surface and intersects with each spiral groove and is formed deeper than the depth of the spiral groove, a high pressure is uniformly applied between the sliding surface through the spiral groove from the annular flow path. Fluid can flow in.

【0019】また、回転軸に固定した回転リングを間に
挟んでハウジングの内壁に第一非回転リングと第二非回
転リングを密封状態で取付け、前記回転リングと各非回
転リングとのそれぞれ対接する両摺動面に、その外周縁
を基端として延び、その終端を閉止した互いに略鏡像関
係にある螺旋溝をそれぞれ設け、前記回転リングの外周
端面と各非回転リング及び前記内壁とで囲まれる空間に
高圧流体を供給する流体供給路をハウジング内に連通形
成してなることで、螺旋溝の外周端側から二対の両摺動
面間に流体を強制的に流入させ、前記同様に低速回転時
にも適用できるようになしている。
Further, the first non-rotating ring and the second non-rotating ring are hermetically attached to the inner wall of the housing with the rotating ring fixed to the rotating shaft interposed therebetween, and the rotating ring and each non-rotating ring are paired with each other. Spiral grooves, which extend from the outer peripheral edge as a base end and are closed at their ends, are provided in the sliding surfaces in contact with each other and are in a substantially mirror image relationship, and are surrounded by the outer peripheral end surface of the rotating ring, each non-rotating ring and the inner wall. The fluid supply path for supplying high-pressure fluid to the space to be communicated is formed in the housing, so that the fluid is forced to flow between the two pairs of sliding surfaces from the outer peripheral end side of the spiral groove, and the same as above. It is designed to be applicable even at low speed rotation.

【0020】この場合、前記ハウジングの内方に位置す
る第一非回転リングを内壁に設けた段部に当止するとと
もに、外方に位置する第二非回転リングを内方へ押圧す
べく板ばねからなる押圧金具を第二非回転リングの外方
周縁に介在させて環状固定具にてハウジングに取付けて
なることで、二対の両摺動面間の間隔の調整を自動的に
行えるのである。
In this case, the first non-rotating ring located inside the housing is stopped by the stepped portion provided on the inner wall, and the second non-rotating ring located outside is pressed inward. By interposing a pressing metal fitting consisting of a spring on the outer peripheral edge of the second non-rotating ring and mounting it on the housing with an annular fixing tool, the gap between the two sliding surfaces can be automatically adjusted. is there.

【0021】[0021]

【実施例】次に添付図面に示した実施例に基づき更に本
発明の詳細を説明する。図1は第一発明に係る双方向動
圧流体軸受Hの全体構造を示し、ハウジング1と、該ハ
ウジング1の開放端を貫通する回転軸2との間に設けて
いる。尚、本発明における「流体」としては、通常は空
気が利用されるが、他の種類の気体若しくは液体も利用
し得る。
The present invention will be described in more detail with reference to the embodiments shown in the accompanying drawings. FIG. 1 shows the overall structure of a bidirectional hydrodynamic bearing H according to the first invention, which is provided between a housing 1 and a rotary shaft 2 penetrating an open end of the housing 1. As the "fluid" in the present invention, air is usually used, but other types of gas or liquid can also be used.

【0022】第一発明の双方向動圧流体軸受Hは、前記
回転軸2に固定した回転リング3と、前記ハウジング1
に固定した非回転リング4を備え、該回転リング3と非
回転リング4の互いの摺動面5,6を対接させている。
ここで、前記非回転リング4は、回転リング3の中心孔
7より内径の大きな中心孔8を有するとともに、回転リ
ング3と対面する外周縁には同心円状の段部9を形成し
ている。そして、この段部9の内縁と回転リング3の外
縁が略一致するように寸法設定し、回転リング3と非回
転リング4の重合する共通面を前述の摺動面5,6とな
している。
The bidirectional hydrodynamic bearing H of the first invention comprises a rotating ring 3 fixed to the rotating shaft 2 and the housing 1.
The non-rotating ring 4 fixed to the above is provided, and the sliding surfaces 5 and 6 of the rotating ring 3 and the non-rotating ring 4 are in contact with each other.
Here, the non-rotating ring 4 has a central hole 8 having a larger inner diameter than the central hole 7 of the rotating ring 3, and a concentric step portion 9 is formed on the outer peripheral edge facing the rotating ring 3. The dimension is set so that the inner edge of the stepped portion 9 and the outer edge of the rotating ring 3 are substantially coincident with each other, and the common surface where the rotating ring 3 and the non-rotating ring 4 overlap is used as the sliding surfaces 5 and 6 described above. .

【0023】そして、図2に示す如く前記回転リング3
の摺動面5には、その外周縁から内方へ延び、特定の回
転方向(順方向)に対して前進角を有する螺線溝10を
円周方向に一定間隔毎に多数設けている。一方、図3に
示す如く前記非回転リング4の摺動面6には、その外周
縁から内方へ延び、前記順方向の回転に対する相対的回
転方向に対して後退角を有する螺線溝11を円周方向に
一定間隔毎に多数設けている。即ち、前記螺線溝10と
螺線溝11は、その両摺動面5,6を対接した場合に互
いに略鏡像関係になるように形成されている。ここで、
前記螺線溝10及11の内方終端は閉止し、即ち摺動面
5及び6の平坦面12及び13と面一となしている。
尚、前記螺線溝10と11の相対的回転方向に対する前
進角、後進角の関係は逆にしてもよい。
Then, as shown in FIG. 2, the rotating ring 3
The sliding surface 5 is provided with a large number of spiral grooves 10 extending inward from the outer peripheral edge thereof and having an advance angle with respect to a specific rotation direction (forward direction) in the circumferential direction at regular intervals. On the other hand, as shown in FIG. 3, on the sliding surface 6 of the non-rotating ring 4, a spiral groove 11 extending inward from its outer peripheral edge and having a receding angle with respect to the relative rotation direction with respect to the forward rotation. Are provided in the circumferential direction at regular intervals. That is, the spiral groove 10 and the spiral groove 11 are formed so as to have a substantially mirror image relationship with each other when both sliding surfaces 5 and 6 are in contact with each other. here,
The inner ends of the spiral grooves 10 and 11 are closed, i.e. flush with the flat surfaces 12 and 13 of the sliding surfaces 5 and 6.
The relationship between the advancing angle and the advancing angle with respect to the relative rotation direction of the spiral grooves 10 and 11 may be reversed.

【0024】前記回転リング3の回転軸2への固定は、
回転軸2に形成した環状段部14にその中心孔7を嵌合
当止し、軸方向の外側から同軸外挿した固定スリーブ1
5を介して締着具16を回転軸2に形成したネジ部17
に螺合することで締付けて行っている。尚、前記固定ス
リーブ15と締着具16は、前記非回転リング4の中心
孔8の半径方向内方に位置している。しかし、回転リン
グ3の固定手段は、本実施例に限定されるものではな
い。
The fixing of the rotary ring 3 to the rotary shaft 2 is as follows.
A fixed sleeve 1 in which a center hole 7 is fitted and stopped in an annular step portion 14 formed on the rotary shaft 2 and coaxially externally inserted from the outside in the axial direction.
Screw part 17 in which the fastener 16 is formed on the rotary shaft 2 through
It is tightened by screwing on. The fixed sleeve 15 and the fastener 16 are located radially inward of the central hole 8 of the non-rotating ring 4. However, the fixing means of the rotating ring 3 is not limited to this embodiment.

【0025】前記非回転リング4のハウジング1への固
定は、ハウジング1の円筒状の内壁18に非回転リング
4の外周端面20を嵌合するとともに、該内壁18に形
成した環状段部19に非回転リング4の段部9を当止し
た状態で、ハウジング1の端面21に環状固定具22を
ボルト23にて締着することで、該環状固定具22の内
周部に突設した環状フランジ部24で非回転リング4の
外方周縁25を押圧して行っている。しかし、非回転リ
ング4の固定手段は、本実施例に限定されるものではな
い。
The non-rotating ring 4 is fixed to the housing 1 by fitting the outer peripheral end surface 20 of the non-rotating ring 4 to the cylindrical inner wall 18 of the housing 1 and at the annular step portion 19 formed on the inner wall 18. While the step portion 9 of the non-rotating ring 4 is stopped, the annular fixing member 22 is fastened to the end surface 21 of the housing 1 with the bolt 23, so that the annular fixing member 22 is projected on the inner peripheral portion of the annular fixing member 22. The outer peripheral edge 25 of the non-rotating ring 4 is pressed by the flange portion 24. However, the fixing means of the non-rotating ring 4 is not limited to this embodiment.

【0026】図2及び図3は本発明の回転リング3及び
非回転リング4の摺動面5及び6に形成した螺線溝10
及び11のパターンの一例をそれぞれ示し、図示したも
のは両螺線溝10,11を完全な鏡像関係に形成したも
のである。次に、ダム巾比を次式により定義する。
2 and 3 show a spiral groove 10 formed on the sliding surfaces 5 and 6 of the rotating ring 3 and the non-rotating ring 4 of the present invention.
An example of the patterns of Nos. 11 and 11 is shown, respectively, and the one shown in the figure is one in which both spiral grooves 10 and 11 are formed in a perfect mirror image relationship. Next, the dam width ratio is defined by the following equation.

【数1】ダム巾比=(GD−ID)/(OD−ID)[Equation 1] Dam width ratio = (GD-ID) / (OD-ID)

【数2】ダム巾比=(OD−GD)/(OD−ID) ここで、ODは摺動面5,6の共通部分の外径、IDは
内径、GDは螺線溝の溝領域と平坦領域との境界で形成
される輪郭円の直径である。数1は螺線溝を摺動面の外
周側を基端として形成した場合に適用する式であり、数
2内周側を基端として形成した場合に適用する式であ
り、本発明においては螺線溝10,11のダム巾比を約
0.2〜0.8に設定している。このダム巾比の最適値
は、他のパラメータ、例えば介在流体の種類、回転数等
によって変化するが、より好ましい値としてはダム巾比
は約0.3〜0.6である。尚、回転リング3と非回転
リング4とでそのダム巾比を変えることも可能である。
## EQU00002 ## Dam width ratio = (OD-GD) / (OD-ID) where OD is the outer diameter of the common part of the sliding surfaces 5 and 6, ID is the inner diameter, and GD is the groove area of the spiral groove. It is the diameter of the contour circle formed at the boundary with the flat region. Formula 1 is a formula applied when the spiral groove is formed with the outer peripheral side of the sliding surface as the base end, and Formula 2 is a formula applied when the inner peripheral side is formed with the base end, and in the present invention, The dam width ratio of the spiral grooves 10 and 11 is set to about 0.2 to 0.8. The optimum value of the dam width ratio varies depending on other parameters, for example, the type of intervening fluid, the rotation speed, etc., but a more preferable value is the dam width ratio of about 0.3 to 0.6. The dam width ratio can be changed between the rotating ring 3 and the non-rotating ring 4.

【0027】ここで、本発明における螺線溝は、約2〜
15μmの深さを有し、その巾及び前進角の角度は介在
流体の種類及び回転数等によって決定される。尚、本実
施例では回転リング3の摺動面5には前進角を有する螺
線溝10を形成し、非回転リング4の摺動面6には後退
角を有する螺線溝11を形成したが、逆の関係に形成す
ることも可能である。
Here, the spiral groove in the present invention is about 2 to
It has a depth of 15 μm, and its width and angle of advancing angle are determined by the type of intervening fluid and the number of revolutions. In this embodiment, a spiral groove 10 having an advancing angle is formed on the sliding surface 5 of the rotating ring 3, and a spiral groove 11 having a receding angle is formed on the sliding surface 6 of the non-rotating ring 4. However, it is also possible to form the opposite relationship.

【0028】また、螺線溝のパターンは、図2及び図3
に示したものに限定されず、各種のパターンを採用し得
る。図示しないが、前記回転軸2の通常の回転方向であ
る順方向回転に対し、相対的回転方向に対して前進角を
有する螺旋溝10又は11の本数を他方より多く設定す
るか又はその幅を他方より広く設定するか又はその深さ
を他方より深く設定して、摺動面5,6間に流体を圧送
する流量より、相対的回転方向に対して後退角を有する
螺線溝11又は10によって逆に排出される流量を少な
く設定し、摺動面5,6間の圧力を軸受まわりの圧力
(通常は大気圧)よりも十分高くなるように設定してい
る。尚、螺線溝10と11を完全な鏡像関係に形成した
場合でも、本実施例の如く、螺線溝の平面形状において
その開放端の溝巾より内方の終端の溝巾を狭くすること
により、相対的回転方向に対して前進角を有する螺線溝
によって摺動面5,6間に圧送する流量より後退角を有
する螺線溝によって排出する流量が少なくなることが実
験的に確かめられている。
The pattern of the spiral groove is shown in FIGS.
The pattern is not limited to the one shown in FIG. Although not shown, the number of spiral grooves 10 or 11 having an advancing angle with respect to the relative rotation direction is set to be larger than that of the other in the forward rotation which is the normal rotation direction of the rotation shaft 2, or the width thereof is set. The spiral groove 11 or 10 having a receding angle with respect to the relative rotation direction is set to be wider than the other or deeper than the other so as to have a receding angle with respect to the relative rotation direction depending on the flow rate of pumping fluid between the sliding surfaces 5 and 6. On the contrary, the flow rate discharged is set to be small, and the pressure between the sliding surfaces 5 and 6 is set to be sufficiently higher than the pressure around the bearing (usually atmospheric pressure). Even when the spiral grooves 10 and 11 are formed in a perfect mirror image relationship, as in the present embodiment, in the planar shape of the spiral groove, the groove width at the inner end is narrower than the groove width at the open end. It was confirmed experimentally that the spiral groove having the advancing angle with respect to the relative rotation direction discharges less than the flow rate pumped between the sliding surfaces 5 and 6 by the spiral groove having the receding angle. ing.

【0029】そして、当該螺線溝を摺動面の表面に形成
する方法は、炭化タングステン、炭化珪素、窒化珪素、
アルミナセラミックや超硬合金等の材料で所定形状に回
転リング3及び非回転リング4を成形した後、摺動面と
なる面に螺線溝を化学的、物理的若しくは電気化学的な
手法を用いて形成する。例えば、化学的な手法としてエ
ッチング、物理的な手法として粉末を吹きつけるショッ
トブラスト及び電気化学的な手法として各種めっき処理
によって形成することができる。
The method of forming the spiral groove on the surface of the sliding surface is as follows: tungsten carbide, silicon carbide, silicon nitride,
After forming the rotating ring 3 and the non-rotating ring 4 into a predetermined shape with a material such as alumina ceramic or cemented carbide, a spiral groove is chemically, physically or electrochemically formed on the sliding surface. To form. For example, it can be formed by etching as a chemical method, shot blasting by spraying powder as a physical method, and various plating treatments as an electrochemical method.

【0030】次に、図4及び図5に基づき第二発明につ
いて説明する。本発明は、前述の第一発明の構成に加え
て、両摺動面5,6間に強制的に流体を供給して、低速
回転時においても十分な低摩擦性を有するようになした
ものである。従って、前述の構成と同一構成には同一符
号を付してその説明は省略する。
Next, the second invention will be described with reference to FIGS. 4 and 5. The present invention, in addition to the configuration of the first invention described above, is such that a fluid is forcibly supplied between the sliding surfaces 5 and 6 so as to have a sufficiently low friction property even at low speed rotation. Is. Therefore, the same components as those described above are designated by the same reference numerals and the description thereof will be omitted.

【0031】本発明に係る非回転リング4は、その外周
端面20に形成した二条のOリング溝26,26間に開
設した複数の導入口27,…と摺動面6に開設した複数
の噴出口28,…を非回転リング内に形成した導通路2
9,…にて連通し、前記Oリング溝26にOリング30
を嵌着してハウジング1の内壁18に密封固定できるよ
うになしたものである。そして、前記非回転リング4の
外周端面20の外側に前記各導入口27,…に連通する
環状密封空間を形成すべく両Oリング30,30間に対
応する前記ハウジング1の内壁18に環状溝31を形成
し、更に該環状溝31に高圧流体を供給する流体供給路
32をハウジング1内に連通形成している。
The non-rotating ring 4 according to the present invention has a plurality of inlets 27 formed between the two O-ring grooves 26 formed on the outer peripheral end surface 20 thereof and a plurality of jets formed on the sliding surface 6. Conductor 2 having outlets 28, ... Formed in the non-rotating ring
The O-ring 30 is communicated with the O-ring groove 26 and the O-ring 30
Is fitted and can be hermetically fixed to the inner wall 18 of the housing 1. An annular groove is formed in the inner wall 18 of the housing 1 between the O-rings 30 to form an annular sealed space communicating with the inlets 27, ... Outside the outer peripheral end surface 20 of the non-rotating ring 4. 31 is formed, and a fluid supply path 32 for supplying a high-pressure fluid to the annular groove 31 is formed in communication with the housing 1.

【0032】ここで、前記噴出口28,…は、図5に示
す如く非回転リング4の摺動面6であって螺線溝11を
形成していない平坦面13に開設することが最も好まし
い。その理由は、前記流体供給路32から環状溝31に
供給された高圧流体は、各導入口27から導通路29を
通して各噴出口28より噴出されるが、前記回転リング
3の摺動面5との間隔が狭い程、その流体の圧力作用が
大きくなるためである。また、前記噴出口28,…は、
図6に示す如く非回転リング4の摺動面6であって各螺
線溝11,…と交叉し且つ螺線溝11の溝の深さより深
く形成した環状流路33の底面部に開設してもよい。こ
の場合、前記噴出口28から噴出された高圧流体は、環
状流路33を通って摺動面6の前面に一様に供給され
る。
Here, it is most preferable that the jet ports 28, ... Are opened on the flat surface 13 which is the sliding surface 6 of the non-rotating ring 4 and in which the spiral groove 11 is not formed, as shown in FIG. . The reason is that the high-pressure fluid supplied from the fluid supply path 32 to the annular groove 31 is ejected from each inlet 27 through each conduit 28 through the passage 29. This is because the pressure action of the fluid becomes larger as the distance between the two becomes smaller. Further, the jet ports 28, ...
As shown in FIG. 6, the sliding surface 6 of the non-rotating ring 4 is provided on the bottom surface of the annular flow path 33 which is formed deeper than the depth of the spiral groove 11 so as to intersect with the spiral groove 11. May be. In this case, the high-pressure fluid ejected from the ejection port 28 is uniformly supplied to the front surface of the sliding surface 6 through the annular flow path 33.

【0033】次に、図7に基づき第三発明について説明
するが、本発明も前述の第一発明の構成に加えて、両摺
動面5,6間に強制的に流体を供給して、低速回転時に
おいても十分な低摩擦性を有するようになしたものであ
る。従って、前述の構成と同一構成には同一符号を付し
てその説明は省略する。
Next, the third invention will be described with reference to FIG. 7. In the present invention, in addition to the structure of the first invention described above, a fluid is forcibly supplied between the sliding surfaces 5 and 6, It has a sufficiently low friction property even at low speed rotation. Therefore, the same components as those described above are designated by the same reference numerals and the description thereof will be omitted.

【0034】本発明は、回転軸2に固定した回転リング
3を間に挟んでハウジング1の内壁18に、第一非回転
リング4aと、該第一非回転リング4aと完全に鏡像関
係にある第二非回転リング4bとを密封状態で取付けた
基本構造を有するものである。ここで、第一非回転リン
グ4aに対応する構成には符号の後にaを付し、第二非
回転リング4bに対応する構成には符号の後にbを付し
て区別する。
According to the present invention, the first non-rotating ring 4a and the first non-rotating ring 4a are completely in a mirror image relationship on the inner wall 18 of the housing 1 with the rotating ring 3 fixed to the rotating shaft 2 interposed therebetween. It has a basic structure in which the second non-rotating ring 4b is attached in a sealed state. Here, the configuration corresponding to the first non-rotating ring 4a is denoted by a after the reference numeral, and the configuration corresponding to the second non-rotating ring 4b is denoted by a b after the reference numeral for distinction.

【0035】更に詳しくは、前記回転リング3と各非回
転リング4a,4bとのそれぞれ対接する二対の両摺動
面5a,6aと5b,6bに、その外周縁を基端として
内方へ延び、その終端を閉止した互いに略鏡像関係にあ
る螺旋溝10a,11aと10b,11bをそれぞれ設
け、前記回転軸2の順方向回転に伴い回転リング3の両
面に形成した摺動面5a,5b又は各非回転リング4
a,4bの一面に形成した摺動面6a,6bの一方の摺
動面の螺旋溝で動圧を発生させ、逆方向回転に伴い他方
の摺動面の螺旋溝で動圧を発生させてなるものである。
本実施例では、回転リング3の両面に、その順方向回転
に対して前進角を有する螺線溝10a,10bを形成
し、その回転方向とは逆の相対的回転方向を持つ第一非
回転リング4aと第二非回転リング4bには相対的回転
方向に対して後進角を有する螺線溝11a,11bを形
成している。
More specifically, two pairs of sliding surfaces 5a, 6a and 5b, 6b, which are in contact with the rotating ring 3 and the non-rotating rings 4a, 4b, respectively, are inwardly formed with their outer peripheral edges as base ends. Sliding surfaces 5a, 5b formed on both sides of the rotary ring 3 as the rotary shaft 2 rotates in the forward direction are provided with spiral grooves 10a, 11a and 10b, 11b which extend and are closed at their ends and which are substantially mirror images of each other. Or each non-rotating ring 4
The dynamic pressure is generated in the spiral groove of one of the sliding surfaces 6a, 6b formed on one surface of a, 4b, and the dynamic pressure is generated in the spiral groove of the other sliding surface with the reverse rotation. It will be.
In this embodiment, spiral grooves 10a and 10b having an advance angle with respect to the forward direction rotation are formed on both surfaces of the rotating ring 3, and the first non-rotating direction having a relative rotating direction opposite to the rotating direction is formed. The ring 4a and the second non-rotating ring 4b are formed with spiral grooves 11a and 11b having a backward angle with respect to the relative rotation direction.

【0036】また、前記回転リング3の外周端面33と
各非回転リング4a,4bの段部9a,9b及び前記内
壁18とで囲まれる環状の空間34に高圧流体を供給す
る流体供給路35をハウジング内に連通形成している。
即ち、前記流体供給路35から供給された高圧流体は、
前記空間34内に充満した後、摺動面5a,6a間及び
摺動面5b,6b間に圧送される。ここで、各非回転リ
ング4a,4bをハウジング1に密封状態で取付けるに
は、各非回転リング4a,4bの外周端面20a,20
bにそれぞれOリング溝36a,36bを形成し、該O
リング溝36a,36bにOリング37a,37bを嵌
合した状態で、内壁18に密封嵌合するとともに、ハウ
ジング1の内方に位置する第一非回転リング4aの外方
周縁25aを環状段部19に当止し且つ外方に位置する
第二非回転リング4bの外方周縁25bを板ばねからな
る押圧金具38を介在させて、環状固定具22の環状フ
ランジ部24にて締付けることで行っている。
A fluid supply passage 35 for supplying a high-pressure fluid is provided in an annular space 34 surrounded by the outer peripheral end surface 33 of the rotating ring 3, the step portions 9a and 9b of the non-rotating rings 4a and 4b, and the inner wall 18. It communicates with the inside of the housing.
That is, the high-pressure fluid supplied from the fluid supply passage 35 is
After the space 34 is filled, it is pumped between the sliding surfaces 5a and 6a and between the sliding surfaces 5b and 6b. Here, in order to attach the non-rotating rings 4a and 4b to the housing 1 in a sealed state, the outer peripheral end surfaces 20a and 20 of the non-rotating rings 4a and 4b are attached.
b, O-ring grooves 36a and 36b are formed in the
With the O-rings 37a and 37b fitted in the ring grooves 36a and 36b, the O-rings 37a and 37b are hermetically fitted to the inner wall 18 and the outer peripheral edge 25a of the first non-rotating ring 4a located inside the housing 1 is annularly stepped. The outer peripheral edge 25b of the second non-rotating ring 4b, which rests at 19 and is located outwardly, is clamped by the annular flange portion 24 of the annular fixture 22 with the pressing metal fitting 38 made of a leaf spring interposed. ing.

【0037】最後に、本発明の共通の基本的構成である
第一発明について、前記回転軸2の特定の順方向の回転
方向に対して回転リング3の摺動面5に前進角を有する
螺線溝10を形成し、非回転リング4の摺動面6には後
退角を有する螺線溝11を形成するとともに、両螺線溝
10,11を完全な鏡像関係に形成した場合について、
その具体的な動作を以下に述べる。
Finally, regarding the first invention, which is the common basic constitution of the present invention, a screw having an advancing angle on the sliding surface 5 of the rotary ring 3 with respect to the specific forward rotation direction of the rotary shaft 2. In the case where the wire groove 10 is formed, the spiral groove 11 having a receding angle is formed on the sliding surface 6 of the non-rotating ring 4, and both the spiral grooves 10 and 11 are formed in a perfect mirror image relationship,
The specific operation will be described below.

【0038】先ず、前記回転軸2が図8に示す如く、順
方向に高速回転すると、その摺動面5に形成された螺線
溝10により流体を摺動面5,6間に圧送し、それによ
り該摺動面の半径方向の内部(螺線溝10の終端近傍)
において摺動面外部より高い動圧PO1が発生し、一方、
非回転リング4の摺動面6に形成された螺線溝11は該
非回転リング4の相対的回転方向に対して後退角を有す
るので、該螺線溝11により摺動面5,6間に存在する
流体を半径方向外周側へ排出し、摺動面5,6間の圧力
を減少させ、その結果、前記動圧PO1は図示したように
O に変更されるが、この動圧PO のピーク値は十分高
いので、両摺動面5,6間を非接触状態に維持できる。
First, as shown in FIG. 8, when the rotary shaft 2 rotates in the forward direction at a high speed, the spiral groove 10 formed on the sliding surface 5 pumps the fluid between the sliding surfaces 5 and 6, Thereby, the inside of the sliding surface in the radial direction (near the end of the spiral groove 10)
, A dynamic pressure P O1 is generated higher than the outside of the sliding surface, while
Since the spiral groove 11 formed on the sliding surface 6 of the non-rotating ring 4 has a receding angle with respect to the relative rotation direction of the non-rotating ring 4, the spiral groove 11 causes a gap between the sliding surfaces 5 and 6. The existing fluid is discharged to the outer peripheral side in the radial direction to reduce the pressure between the sliding surfaces 5 and 6, and as a result, the dynamic pressure P O1 is changed to P O as shown in the figure. Since the peak value of O is sufficiently high, it is possible to maintain a non-contact state between the sliding surfaces 5 and 6.

【0039】次に、前記回転軸2が図9に示す如く、逆
方向に高速回転すると、その非回転リング4の摺動面6
に形成された螺線溝11は該非回転リング4の相対的回
転方向に対して前進角を有するので、該螺線溝11によ
り流体を摺動面5,6間に圧送し、それにより該摺動面
の半径方向の内部(螺線溝11の終端近傍)において摺
動面外部より高い動圧PI1が発生し、一方、回転リング
3の摺動面5に形成された螺線溝10は該回転リング3
の回転方向に対して後退角を有するので、該螺線溝10
により摺動面5,6間に存在する流体を半径方向外周側
へ排出し、摺動面5,6間の圧力を減少させ、その結
果、前記動圧PI1は図示したようにPI に変更される
が、この動圧PI のピーク値は十分高いので、両摺動面
5,6間を非接触状態に維持できる。
Next, when the rotating shaft 2 is rotated at a high speed in the opposite direction as shown in FIG. 9, the sliding surface 6 of the non-rotating ring 4 is rotated.
Since the spiral groove 11 formed at the front has an advancing angle with respect to the relative rotation direction of the non-rotating ring 4, the spiral groove 11 pumps the fluid between the sliding surfaces 5 and 6, thereby causing the sliding movement. A dynamic pressure P I1 is generated inside the moving surface in the radial direction (near the end of the spiral groove 11) than outside the sliding surface, while the spiral groove 10 formed on the sliding surface 5 of the rotating ring 3 is The rotating ring 3
Since it has a receding angle with respect to the rotation direction of the
The fluid present between the sliding surface 5, 6 and discharged to the outer peripheral side in the radial direction, reducing the pressure between the sliding surface 5, 6, as a result, the dynamic pressure P I1 to P I as illustrated by Although changed, the peak value of the dynamic pressure P I is sufficiently high, so that the sliding surfaces 5 and 6 can be maintained in a non-contact state.

【0040】以上述べた動作は、回転軸2の順方向回転
又は逆方向回転において、十分な速さの回転速度に達し
た運転時の場合であるが、回転数が低い始動初期又は停
止直前の動圧が低い場合には、第二発明又は第三発明の
如く、両摺動面5,6間に流体を強制的に供給すること
で、摩擦抵抗の増加の問題は解決できる。また、本発明
の双方向動圧流体軸受Hを順方向にのみ回転する装置に
組み込んで使用した場合、始動初期又は停止直前におい
て異常な逆回転が生じた場合でも、互いの摺動面5,6
間に流体が圧送されるので、いかなる場合でも両摺動面
5,6が固く固着することがなく、摺動面5,6の磨耗
や摩擦熱による変質等が生じることがないのである。
The operation described above is for the case where the rotating shaft 2 is in the forward rotation or the reverse rotation at the time of operation in which the rotating speed has reached a sufficiently high speed, but the rotating speed is low at the initial stage of starting or immediately before stopping. When the dynamic pressure is low, the problem of increased frictional resistance can be solved by forcibly supplying the fluid between the sliding surfaces 5 and 6 as in the second or third invention. Further, when the bidirectional hydrodynamic bearing H of the present invention is used by incorporating it into a device that rotates only in the forward direction, even if abnormal reverse rotation occurs at the initial stage of start or immediately before stop, the sliding surfaces 5, 5 6
Since the fluid is pressure-fed between them, the sliding surfaces 5 and 6 are not firmly fixed in any case, and the sliding surfaces 5 and 6 are not worn or deteriorated due to frictional heat.

【0041】また、本発明の双方向動圧流体軸受Hを装
着する回転装置が、原理上の運転に際してその回転軸2
の回転方向が順方向の回転のみであるものである場合、
その動圧性能を高めるためには、相対的回転方向に対し
て前進角を有する螺線溝による動圧が可能な限り高いこ
とが望ましい。その場合には、通常の回転方向に対して
前進角を有する螺線溝10又は11の本数を他方より多
く設定するか又はその幅を他方より広く設定するか又は
その深さを他方より深く設定すれば、順方向回転時に優
れた密封性を持たせることが可能である。
In addition, the rotating device equipped with the bidirectional dynamic pressure fluid bearing H of the present invention has a rotating shaft 2 at the time of operation in principle.
If the rotation direction of is only forward rotation,
In order to improve the dynamic pressure performance, it is desirable that the dynamic pressure by the spiral groove having an advance angle with respect to the relative rotation direction be as high as possible. In that case, the number of spiral grooves 10 or 11 having an advance angle with respect to the normal rotation direction is set larger than the other, the width thereof is set wider than the other, or the depth thereof is set deeper than the other. By doing so, it is possible to provide excellent sealing performance during forward rotation.

【0042】一方、回転軸2をハウジング1に対して貫
通状態で配し、その両端部に本発明の双方向動圧流体軸
受H,Hを対向させて装着する場合のように、特定の回
転方向における軸受性能と、それとは逆方向の回転に対
する軸受性能を略一致させたい場合がある。それには、
前記螺線溝10及び11を互いに完全な鏡像関係になる
ように形成することも考えられるが、その螺線溝の形状
によっては完全な鏡像関係に形成しても、順、逆方向の
回転に対して同一の動圧性能が得られないことがあるこ
とは、前述の通りである。その場合には、螺線溝の平面
形状を調節するか若しくは前述の如く溝の本数、溝巾、
溝深さ、溝長さ等を調節して完全な鏡像関係から若干変
化を持たせれば、原理的に可能である。
On the other hand, as in the case where the rotary shaft 2 is arranged in a penetrating state with respect to the housing 1 and the two-way hydrodynamic bearings H, H of the present invention are mounted facing each other at both ends thereof, a specific rotation is performed. In some cases, it is desired to make the bearing performance in the direction substantially the same as the bearing performance for rotation in the opposite direction. It has
It is conceivable to form the spiral grooves 10 and 11 so as to have a perfect mirror image relationship with each other, but depending on the shape of the spiral groove, even if they are formed in a perfect mirror image relationship, they can be rotated in forward and reverse directions. As described above, the same dynamic pressure performance may not be obtained in some cases. In that case, the plane shape of the spiral groove should be adjusted, or the number of grooves, groove width, and
It is possible in principle if the groove depth, groove length, etc. are adjusted to give a slight change from the perfect mirror image relationship.

【0043】[0043]

【発明の効果】以上にしてなる第一発明の双方向動圧流
体軸受によれば、回転軸に固定した回転リングとハウジ
ングに固定した非回転リングとの対接する両摺動面に、
その外周縁又は内周縁を基端として延び、その終端を閉
止した互いに略鏡像関係にある螺旋溝をそれぞれ設けて
なるので、回転軸の順方向回転に伴い一方の摺動面に形
成した相対的回転方向に対して前進角を有する螺旋溝に
よる流体輸送作用によって流体を摺動面間に圧送して、
その摺動面間の圧力を十分に高くして両摺動面間の摩擦
抵抗を減少させることができるとともに、また回転軸の
逆方向回転に伴い他方の摺動面に形成した相対的回転方
向に対して前進角を有する螺旋溝による流体輸送作用に
よって同様に流体を摺動面間に圧送して動圧を発生さ
せ、それにより回転軸が順方向又は逆方向に回転した場
合でも、両摺動面を非接触状態に維持して回転軸を支持
することができる。従って、回転軸の回転初期又は停止
直前において逆回転が生じても、従来の動圧気体軸受の
ように、両摺動面間が強く接触することによって該摺動
面の磨耗が増加し、摩擦熱が発生してその面の特性を損
なうといった問題が全く生じないのである。また、ハウ
ジングを貫通させた回転軸の両端部を支持するには、回
転軸の軸方向における回転リングと非回転リングの配置
は逆になるため、従来は互いに逆方向の回転を順方向に
設定した動圧気体軸受を用いていたが、本発明によれば
同一の双方向動圧流体軸受を回転軸の両端部に対向装着
しても、一方の螺線溝が相対的回転方向に対して前進角
を有するので、両方とも良好な軸受性能を有するのであ
り、コストの低減化を図ることかできる。
According to the bidirectional hydrodynamic bearing of the first aspect of the invention as described above, the sliding surfaces of the rotating ring fixed to the rotating shaft and the non-rotating ring fixed to the housing are in contact with each other.
The outer peripheral edge or the inner peripheral edge extends at the base end, and the spiral grooves that are close to each other and close to each other in a substantially mirror image relationship are provided, so that the relative rotation formed on one sliding surface as the rotating shaft rotates in the forward direction. Fluid is pumped between the sliding surfaces by the fluid transport action of the spiral groove having an advancing angle with respect to the rotation direction,
The pressure between the sliding surfaces can be increased sufficiently to reduce the frictional resistance between both sliding surfaces, and the relative rotation direction formed on the other sliding surface due to the reverse rotation of the rotating shaft. Similarly, due to the fluid transport action of the spiral groove having the advancing angle, the fluid is similarly forced between the sliding surfaces to generate dynamic pressure, and even when the rotation shaft rotates in the forward direction or the reverse direction, The rotating shaft can be supported by keeping the moving surface in a non-contact state. Therefore, even if reverse rotation occurs at the initial stage of rotation of the rotary shaft or immediately before stopping, the friction between the sliding faces increases due to the strong contact between the sliding faces, as in the conventional dynamic pressure gas bearing. There is no problem that heat is generated and the characteristics of the surface are impaired. Also, in order to support both ends of the rotating shaft that penetrates the housing, the arrangement of the rotating ring and the non-rotating ring in the axial direction of the rotating shaft is reversed, so conventionally, rotation in opposite directions is set to the forward direction. However, according to the present invention, even if the same bidirectional hydrodynamic bearing is mounted opposite to both ends of the rotary shaft, one spiral groove is formed relative to the relative rotational direction. Since they have the advancing angle, both of them have good bearing performance, and the cost can be reduced.

【0044】更に、前記回転軸の順方向回転による相対
的回転方向に対して前進角を有する螺旋溝の本数を他方
より多く設定するか又はその幅を他方より広く設定する
か又はその深さを他方より深く設定することにより、通
常の運転時に回転軸が順方向にのみ回転する場合におい
て、その軸受性能を高めることができ、回転軸に逆方向
の回転が生じた場合にも、両摺動面が固く接触しない程
度に非接触状態を維持させることができるのである。そ
して、両摺動面に形成する螺旋溝を、完全な鏡像関係と
なした場合には、回転軸の回転方向が順方向であって
も、逆方向であっても略同様な非接触状態の軸受性能を
有するように設定可能であり、また螺線溝の加工が容易
になり、コストの低減化を図ることができる。
Further, the number of spiral grooves having an advance angle with respect to the relative rotation direction due to the forward rotation of the rotary shaft is set larger than the other, the width thereof is set wider than the other, or the depth thereof is set. By setting it deeper than the other, the bearing performance can be improved when the rotating shaft rotates only in the forward direction during normal operation, and even if the rotating shaft rotates in the opposite direction, both sliding The non-contact state can be maintained to such an extent that the surfaces do not come into solid contact with each other. When the spiral grooves formed on both the sliding surfaces are in a perfect mirror image relationship, a substantially similar non-contact state is obtained regardless of whether the rotating shaft rotates in the forward direction or in the reverse direction. It can be set so as to have bearing performance, the spiral groove can be easily processed, and the cost can be reduced.

【0045】そして、第二発明の双方向動圧流体軸受に
よれば、第二発明の構成に加え、前記非回転リングの外
周端面に形成した二条のOリング溝間に開設した複数の
導入口と摺動面に開設した複数の噴出口を非回転リング
内に形成した導通路にて連通し、前記Oリング溝にOリ
ングを嵌着してハウジングの内壁に密封固定した際に、
非回転リングの外周端面の外側に前記各導入口に連通す
る環状密封空間を形成すべく両Oリング間に対応する前
記内壁に環状溝を形成し、更に該環状溝に高圧流体を供
給する流体供給路をハウジング内に連通形成してなるの
で、両摺動面間に流体を強制的に流入させて、螺旋溝に
よる動圧発生性能が低い低速回転時にも両摺動面間の非
接触状態を維持し、あるいは接触摩擦抵抗を十分に減少
させることが可能で、高速回転、低速回転を問わず優れ
た軸受性能を有するのである。
According to the bidirectional hydrodynamic bearing of the second invention, in addition to the structure of the second invention, a plurality of inlets formed between two O-ring grooves formed on the outer peripheral end surface of the non-rotating ring. And a plurality of ejection openings opened on the sliding surface are communicated with each other through a conduction path formed in the non-rotating ring, and when the O ring is fitted into the O ring groove and hermetically fixed to the inner wall of the housing,
An annular groove is formed in the inner wall corresponding to both O-rings so as to form an annular sealed space communicating with each of the introduction ports outside the outer peripheral end surface of the non-rotating ring, and a fluid for supplying high-pressure fluid to the annular groove. Since the supply passage is formed to communicate with the inside of the housing, the fluid is forced to flow between both sliding surfaces, and the dynamic pressure generation performance due to the spiral groove is low. Can be maintained or the contact frictional resistance can be sufficiently reduced, and excellent bearing performance is achieved regardless of high speed rotation and low speed rotation.

【0046】この場合、前記噴出口を摺動面であって螺
旋溝を形成していない平坦面に開設すると、噴出口から
噴出する高圧流体によって効率よく両摺動面間に流体膜
を形成でき、また前記噴出口を摺動面であって各螺旋溝
と交叉し且つ螺旋溝の深さより深く形成した環状流路に
開設すると、環状流路から螺旋溝を通して摺動面間に一
様に高圧流体を流入させることができる。
In this case, if the jet outlet is formed on a flat surface which is a sliding surface and does not form a spiral groove, a high pressure fluid jetted from the jet outlet can efficiently form a fluid film between the sliding surfaces. Further, when the jet outlet is formed in the annular flow passage which is a sliding surface and intersects with each spiral groove and is formed deeper than the depth of the spiral groove, a high pressure is uniformly applied between the sliding surface through the spiral groove from the annular flow path. Fluid can flow in.

【0047】また、第三発明の双方向動圧流体軸受によ
れば、回転軸に固定した回転リングを間に挟んでハウジ
ングの内壁に第一非回転リングと第二非回転リングを密
封状態で取付け、前記回転リングと各非回転リングとの
それぞれ対接する両摺動面に、その外周縁を基端として
延び、その終端を閉止した互いに略鏡像関係にある螺旋
溝をそれぞれ設け、前記回転リングの外周端面と各非回
転リング及び前記内壁とで囲まれる空間に高圧流体を供
給する流体供給路をハウジング内に連通形成してなるの
で、螺旋溝の外周端側から二対の両摺動面間に流体を強
制的に流入させ、前記同様に低速回転時にも適用できる
のである。
According to the bidirectional hydrodynamic bearing of the third invention, the first non-rotating ring and the second non-rotating ring are sealed in the inner wall of the housing with the rotating ring fixed to the rotating shaft interposed therebetween. The rotating ring is provided with spiral grooves, which extend from the outer peripheral edge as a base end and are closed at their ends, on both sliding surfaces of the rotating ring and the non-rotating rings that are in contact with each other. Since a fluid supply path for supplying high-pressure fluid to the space surrounded by the outer peripheral end face of each non-rotating ring and the inner wall is formed in communication with the housing, two pairs of both sliding surfaces from the outer peripheral end side of the spiral groove are formed. The fluid can be forced to flow in between, and it can be applied during low-speed rotation as described above.

【0048】この場合、前記ハウジングの内方に位置す
る第一非回転リングを内壁に設けた段部に当止するとと
もに、外方に位置する第二非回転リングを内方へ押圧す
べく板ばねからなる押圧金具を第二非回転リングの外方
周縁に介在させて環状固定具にてハウジングに取付けて
なることで、二対の両摺動面間の間隔の調整を自動的に
行えるのである。
In this case, the first non-rotating ring located inside the housing is stopped by the stepped portion provided on the inner wall, and the second non-rotating ring located outside is pressed inward. By interposing a pressing metal fitting consisting of a spring on the outer peripheral edge of the second non-rotating ring and mounting it on the housing with an annular fixing tool, the gap between the two sliding surfaces can be automatically adjusted. is there.

【図面の簡単な説明】[Brief description of drawings]

【図1】第一発明の双方向動圧流体軸受の装着状態を示
す要部断面図
FIG. 1 is a sectional view of an essential part showing a mounted state of a bidirectional hydrodynamic bearing of the first invention.

【図2】第一発明に用いた回転リングの摺動面に形成し
た螺線溝のパターンの一例を示す平面図
FIG. 2 is a plan view showing an example of a spiral groove pattern formed on the sliding surface of the rotating ring used in the first invention.

【図3】同じく非回転リングの摺動面に形成した螺線溝
のパターンの一例を示す平面図
FIG. 3 is a plan view showing an example of a spiral groove pattern similarly formed on the sliding surface of the non-rotating ring.

【図4】第二発明の双方向動圧流体軸受の装着状態を示
す要部断面図
FIG. 4 is a sectional view of an essential part showing a mounted state of a bidirectional hydrodynamic bearing of the second invention.

【図5】第二発明に用いた非回転リングの平面図FIG. 5 is a plan view of a non-rotating ring used in the second invention.

【図6】同じく他の構造の非回転リングの平面図FIG. 6 is a plan view of a non-rotating ring having another structure.

【図7】第三発明の双方向動圧流体軸受の装着状態を示
す要部断面図
FIG. 7 is a cross-sectional view of essential parts showing a mounted state of a bidirectional hydrodynamic bearing of the third invention.

【図8】順方向回転時の摺動面間の圧力分布図[Fig. 8] Pressure distribution diagram between sliding surfaces during forward rotation

【図9】逆方向回転時の摺動面間の圧力分布図FIG. 9 is a pressure distribution diagram between sliding surfaces during reverse rotation.

【符号の説明】[Explanation of symbols]

H 双方向動圧流体軸受 1 ハウジング 2 回転軸 3 回転リング 4 非回転リング 4a 第一非回転リング 4b 第二非回転リ
ング 5 摺動面 6 摺動面 7 中心孔 8 中心孔 9 段部 10 螺線溝 11 螺線溝 12 平坦面 13 平坦面 14 環状段部 15 固定スリーブ 16 締着具 17 ネジ部 18 内壁 19 環状段部 20 外周端面 21 端面 22 環状固定具 23 ボルト 24 環状フランジ
部 25 外方周縁 26 Oリング溝 27 導入口 28 噴出口 29 導通路 30 Oリング 31 環状溝 32 流体供給路 33 環状流路 34 空間 35 流体供給路 36 Oリング溝 37 Oリング 38 押圧金具 PO1 順方向回転における前進角を有する螺線溝による
動圧 PO 順方向回転における全動圧 PI1 逆方向回転における前進角を有する螺線溝による
動圧 PI 逆方向回転における全動圧
H bidirectional hydrodynamic bearing 1 housing 2 rotating shaft 3 rotating ring 4 non-rotating ring 4a first non-rotating ring 4b second non-rotating ring 5 sliding surface 6 sliding surface 7 center hole 8 center hole 9 step 10 screw Wire groove 11 Spiral groove 12 Flat surface 13 Flat surface 14 Annular step portion 15 Fixing sleeve 16 Fastening tool 17 Screw portion 18 Inner wall 19 Annular step portion 20 Outer peripheral end surface 21 End surface 22 Annular fixing tool 23 Bolt 24 Annular flange portion 25 Outer Edge 26 O-ring groove 27 Inlet port 28 Jet port 29 Conducting path 30 O-ring 31 Annular groove 32 Fluid supply path 33 Annular flow path 34 Space 35 Fluid supply path 36 O-ring groove 37 O-ring 38 Press fitting P O1 in forward rotation dynamic pressure by spiral groove having a forward angle in Zendo圧P I1 reverse rotation in the dynamic pressure P O forward rotation by spiral groove having a forward angle Zendo圧in I reverse rotation

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 回転軸に固定した回転リングとハウジン
グに固定した非回転リングとの対接する両摺動面に、そ
の外周縁又は内周縁を基端として延び、その終端を閉止
した互いに略鏡像関係にある螺旋溝をそれぞれ設け、前
記回転軸の順方向回転に伴い一方の摺動面の螺旋溝で動
圧を発生させ、逆方向回転に伴い他方の摺動面の螺旋溝
で動圧を発生させてなることを特徴とする双方向動圧流
体軸受。
1. A substantially mirror image in which both outer peripheral edges or inner peripheral edges of the rotary ring fixed to a rotary shaft and a non-rotating ring fixed to a housing are in contact with each other and the ends thereof are closed. Related spiral grooves are provided respectively, and dynamic pressure is generated in the spiral groove of one sliding surface with forward rotation of the rotary shaft, and dynamic pressure is generated in the spiral groove of the other sliding surface with reverse rotation. A bidirectional hydrodynamic bearing characterized by being generated.
【請求項2】 前記螺旋溝のダム巾比を約0.2〜0.
8に設定してなる請求項1記載の双方向動圧流体軸受。
2. The dam width ratio of the spiral groove is about 0.2-0.
8. The bidirectional hydrodynamic bearing according to claim 1, wherein the hydrodynamic bearing is set to 8.
【請求項3】 前記回転軸の順方向回転による相対的回
転方向に対して前進角を有する螺旋溝の本数を他方より
多く設定してなる請求項1又は2記載の双方向動圧流体
軸受。
3. The bidirectional hydrodynamic bearing according to claim 1, wherein the number of spiral grooves having an advancing angle with respect to a relative rotation direction due to forward rotation of the rotation shaft is set to be larger than the other.
【請求項4】 前記回転軸の順方向回転による相対的回
転方向に対して前進角を有する螺旋溝の幅を他方より広
く設定してなる請求項1又は2記載の双方向動圧流体軸
受。
4. The bidirectional hydrodynamic bearing according to claim 1, wherein the width of the spiral groove having an advancing angle with respect to the relative rotation direction due to the forward rotation of the rotary shaft is set wider than the other.
【請求項5】 前記回転軸の順方向回転による相対的回
転方向に対して前進角を有する螺旋溝の深さを他方より
深く設定してなる請求項1又は2記載の双方向動圧流体
軸受。
5. The bidirectional hydrodynamic bearing according to claim 1, wherein the depth of the spiral groove having an advancing angle with respect to the relative rotation direction due to the forward rotation of the rotary shaft is set deeper than the other. .
【請求項6】 前記両摺動面に形成する螺旋溝を、完全
な鏡像関係となした請求項1又は2記載の双方向動圧流
体軸受。
6. The bidirectional hydrodynamic bearing according to claim 1, wherein the spiral grooves formed on the both sliding surfaces have a perfect mirror image relationship.
【請求項7】 回転軸に固定した回転リングとハウジン
グに固定した非回転リングとの対接する両摺動面に、そ
の外周縁又は内周縁を基端として延び、その終端を閉止
した互いに略鏡像関係にある螺旋溝をそれぞれ設け、前
記回転軸の順方向回転に伴い一方の摺動面の螺旋溝で動
圧を発生させ、逆方向回転に伴い他方の摺動面の螺旋溝
で動圧を発生させてなる双方向動圧流体軸受であって、
前記非回転リングの外周端面に形成した二条のOリング
溝間に開設した複数の導入口と摺動面に開設した複数の
噴出口を非回転リング内に形成した導通路にて連通し、
前記Oリング溝にOリングを嵌着してハウジングの内壁
に密封固定した際に、非回転リングの外周端面の外側に
前記各導入口に連通する環状密封空間を形成すべく両O
リング間に対応する前記内壁に環状溝を形成し、更に該
環状溝に高圧流体を供給する流体供給路をハウジング内
に連通形成してなることを特徴とする双方向動圧流体軸
受。
7. A substantially mirror image in which the outer peripheral edge or the inner peripheral edge extends toward the two sliding surfaces of the rotary ring fixed to the rotary shaft and the non-rotating ring fixed to the housing, which are opposed to each other, and the end ends are closed. Related spiral grooves are provided respectively, and dynamic pressure is generated in the spiral groove of one sliding surface with forward rotation of the rotary shaft, and dynamic pressure is generated in the spiral groove of the other sliding surface with reverse rotation. A bidirectional hydrodynamic bearing generated by
A plurality of inlets formed between two O-ring grooves formed on the outer peripheral end surface of the non-rotating ring and a plurality of jet outlets formed on the sliding surface communicate with each other through a conduction path formed in the non-rotating ring;
When the O-ring is fitted into the O-ring groove and hermetically fixed to the inner wall of the housing, both O-rings are formed outside the outer peripheral end surface of the non-rotating ring so as to form an annular sealed space communicating with the inlets.
A bidirectional hydrodynamic bearing characterized in that an annular groove is formed in the inner wall corresponding to the space between the rings, and a fluid supply path for supplying a high-pressure fluid to the annular groove is formed in communication with the housing.
【請求項8】 前記噴出口を摺動面であって螺旋溝を形
成していない平坦面に開設してなる請求項7記載の双方
向動圧流体軸受。
8. The bidirectional hydrodynamic bearing according to claim 7, wherein the jet outlet is formed on a flat surface which is a sliding surface and does not have a spiral groove formed therein.
【請求項9】 前記噴出口を摺動面であって各螺旋溝と
交叉し且つ螺旋溝の深さより深く形成した環状流路に開
設してなる請求項7記載の双方向動圧流体軸受。
9. The bidirectional hydrodynamic bearing according to claim 7, wherein the jet outlet is provided in an annular flow path which is a sliding surface, intersects with each spiral groove, and is formed deeper than the depth of the spiral groove.
【請求項10】 回転軸に固定した回転リングを間に挟ん
でハウジングの内壁に第一非回転リングと第二非回転リ
ングを密封状態で取付け、前記回転リングと各非回転リ
ングとのそれぞれ対接する両摺動面に、その外周縁を基
端として延び、その終端を閉止した互いに略鏡像関係に
ある螺旋溝をそれぞれ設け、前記回転軸の順方向回転に
伴い回転リングの両面に形成した摺動面又は各非回転リ
ングの一面に形成した摺動面の一方の摺動面の螺旋溝で
動圧を発生させ、逆方向回転に伴い他方の摺動面の螺旋
溝で動圧を発生させてなる双方向動圧流体軸受であっ
て、前記回転リングの外周端面と各非回転リング及び前
記内壁とで囲まれる空間に高圧流体を供給する流体供給
路をハウジング内に連通形成してなることを特徴とする
双方向動圧流体軸受。
10. A first non-rotating ring and a second non-rotating ring are hermetically attached to the inner wall of the housing with a rotating ring fixed to the rotating shaft interposed therebetween, and the rotating ring and each non-rotating ring are paired with each other. The two sliding surfaces that contact each other are provided with spiral grooves that extend from the outer peripheral edge as a base end and are closed at their ends and that are in a substantially mirror image relationship with each other, and are formed on both sides of the rotating ring as the rotating shaft rotates in the forward direction. Dynamic pressure is generated in the spiral groove of one sliding surface of the dynamic surface or the sliding surface formed on one surface of each non-rotating ring, and dynamic pressure is generated in the spiral groove of the other sliding surface with reverse rotation. A bidirectional hydrodynamic bearing comprising: a fluid supply passage communicating with the housing, the fluid supply passage supplying high-pressure fluid to a space surrounded by the outer peripheral end surface of the rotating ring, each non-rotating ring, and the inner wall. A bidirectional hydrodynamic bearing.
【請求項11】 前記ハウジングの内方に位置する第一非
回転リングを内壁に設けた段部に当止するとともに、外
方に位置する第二非回転リングを内方へ押圧すべく板ば
ねからなる押圧金具を第二非回転リングの外方周縁に介
在させて環状固定具にてハウジングに取付けてなる請求
項10記載の双方向動圧流体軸受。
11. A leaf spring for stopping a first non-rotating ring located inside the housing against a step portion provided on an inner wall and pressing a second non-rotating ring located outside inward. 11. The bidirectional hydrodynamic bearing according to claim 10, wherein a pressing metal fitting made of is interposed in the outer peripheral edge of the second non-rotating ring and is attached to the housing by an annular fixing tool.
JP4286742A 1992-09-30 1992-09-30 Two-way dynamic pressure fluid bearing Pending JPH06117432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4286742A JPH06117432A (en) 1992-09-30 1992-09-30 Two-way dynamic pressure fluid bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4286742A JPH06117432A (en) 1992-09-30 1992-09-30 Two-way dynamic pressure fluid bearing

Publications (1)

Publication Number Publication Date
JPH06117432A true JPH06117432A (en) 1994-04-26

Family

ID=17708445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4286742A Pending JPH06117432A (en) 1992-09-30 1992-09-30 Two-way dynamic pressure fluid bearing

Country Status (1)

Country Link
JP (1) JPH06117432A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001006149A1 (en) * 1999-07-19 2001-01-25 Koyo Seiko Co., Ltd. Assembly of one-way clutch and bearing
JP2011501082A (en) * 2007-10-31 2011-01-06 コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツング Thrust bearings especially for turbochargers
WO2012056961A1 (en) * 2010-10-26 2012-05-03 株式会社Ihi Spiral-grooved thrust bearing
JP2016121599A (en) * 2014-12-24 2016-07-07 マツダ株式会社 engine
CN108869749A (en) * 2018-07-23 2018-11-23 浙江工业大学 Open ellipse wire casing end face bidirectional rotation mechanical seal structure
WO2022029056A1 (en) * 2020-08-04 2022-02-10 Dürr Systems Ag Bearing system for a rotary atomizer
CN114198406A (en) * 2021-12-01 2022-03-18 青岛理工大学 A three-dimensional comb-shaped groove array surface for bearing and preparation method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001006149A1 (en) * 1999-07-19 2001-01-25 Koyo Seiko Co., Ltd. Assembly of one-way clutch and bearing
US6711895B1 (en) 1999-07-19 2004-03-30 Koyo Seiko Co., Ltd. Assembly of a one-way clutch and a bearing
JP2011501082A (en) * 2007-10-31 2011-01-06 コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツング Thrust bearings especially for turbochargers
WO2012056961A1 (en) * 2010-10-26 2012-05-03 株式会社Ihi Spiral-grooved thrust bearing
JP5516748B2 (en) * 2010-10-26 2014-06-11 株式会社Ihi Spiral groove thrust bearing
US8764296B2 (en) 2010-10-26 2014-07-01 Ihi Corporation Spiral-grooved thrust bearing
JP2016121599A (en) * 2014-12-24 2016-07-07 マツダ株式会社 engine
CN108869749A (en) * 2018-07-23 2018-11-23 浙江工业大学 Open ellipse wire casing end face bidirectional rotation mechanical seal structure
CN108869749B (en) * 2018-07-23 2024-04-09 浙江工业大学 Bidirectional rotary mechanical sealing structure for end face of open elliptic wire slot
WO2022029056A1 (en) * 2020-08-04 2022-02-10 Dürr Systems Ag Bearing system for a rotary atomizer
CN114198406A (en) * 2021-12-01 2022-03-18 青岛理工大学 A three-dimensional comb-shaped groove array surface for bearing and preparation method thereof

Similar Documents

Publication Publication Date Title
US7044470B2 (en) Rotary face seal assembly
CN100480557C (en) Gas seal assembly
JP2003056719A (en) Dynamic pressure seal device and rotary joint device using the same
KR20050039660A (en) Radial rotary transfer assembly
JPH078948Y2 (en) Fluid supply rotary joint
JPH06117432A (en) Two-way dynamic pressure fluid bearing
JPH0248753B2 (en)
JPH0331569A (en) Hydraulic peripheral pump
US6270324B1 (en) Positive displacement pump and thrust bearing assembly
US5494416A (en) Magnetically driven positive displacement pump and thrust bearing assembly
JPS6020594B2 (en) vane pump
JP3068432B2 (en) mechanical seal
JP3263529B2 (en) Fluid supply fitting
JP3079562B2 (en) Two-way non-contact mechanical seal
JP2001113439A (en) Air turbine spindle
JPS59141795A (en) Regenerating pump
JPH09273636A (en) Mechanical seal
JP2510397Y2 (en) Seal device
JPH07317679A (en) Seal device for vane pump
JPH0446147Y2 (en)
JPS5943266A (en) Hybrid shaft seal
JPH11311254A (en) Bearing device having lubricating mechanism
CA1156202A (en) Rotary piston machine
KR200156410Y1 (en) Hemisphere Bearing Aeration
JPS6242153Y2 (en)