[go: up one dir, main page]

JPH06116658A - High quality method of goethite iron ore for sinter - Google Patents

High quality method of goethite iron ore for sinter

Info

Publication number
JPH06116658A
JPH06116658A JP29094092A JP29094092A JPH06116658A JP H06116658 A JPH06116658 A JP H06116658A JP 29094092 A JP29094092 A JP 29094092A JP 29094092 A JP29094092 A JP 29094092A JP H06116658 A JPH06116658 A JP H06116658A
Authority
JP
Japan
Prior art keywords
iron ore
goethite
phosphorus
powder
sinter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP29094092A
Other languages
Japanese (ja)
Inventor
Yukihiro Hida
行博 肥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP29094092A priority Critical patent/JPH06116658A/en
Publication of JPH06116658A publication Critical patent/JPH06116658A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

(57)【要約】 【目的】 本発明は、含ゲーサイト鉄鉱石中のりん,ア
ルミナを低減し、製銑原料として活用を図る高品位化法
を提供する。 【構成】 2.4%以上の結合水を有する含ゲーサイト
鉄鉱石粉、あるいはそのうちの1mm以下の含ゲーサイ
ト鉄鉱石微粉部を500℃以上,1200℃以下に加熱
後、1規定度(N)以上の硫酸あるいは塩酸水溶液と接
触させて、不純物を溶出させる含ゲーサイト鉄鉱石の高
品位化法である。 【効果】 焼結原料として高りんの含ゲーサイト鉄鉱石
粉の使用が可能となるほか、廃液の利用も可能となり、
資源の有効活用,コスト低減を図り得る。
(57) [Summary] [Object] The present invention provides a high-grade process for reducing phosphorus and alumina in goethite-containing iron ore and utilizing it as a raw material for pig iron production. [Structure] Goethite iron ore powder containing 2.4% or more of bound water, or fine powder part of goethite iron ore containing 1 mm or less thereof is heated to 500 ° C. or more and 1200 ° C. or less, and 1 normality (N) This is a method for improving the quality of a goethite-containing iron ore, which is brought into contact with the sulfuric acid or hydrochloric acid aqueous solution to elute impurities. [Effect] In addition to using high phosphorus-containing goethite iron ore powder as a sintering raw material, it is also possible to use waste liquid.
Effective use of resources and cost reduction can be achieved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、含ゲーサイト鉄鉱石中
のりん,アルミナを低減して、高炉製銑法の原料の品位
を向上させる高品位化法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for improving the quality of raw materials used in a blast furnace ironmaking process by reducing phosphorus and alumina in a goethite iron ore.

【0002】[0002]

【従来の技術】高炉製銑法では、原料中のりんは溶銑中
に残留する。そのため高りんの鉄鉱石はできるだけ使用
しないようにしている。また一方原料中のアルミナは、
高炉内では還元されずにスラグとなる。スラグ量が多い
と、高炉下部の通気性が悪化して高炉操業の安定維持は
難しくなるので、原料中のアルミナは少ない方が望まし
い。
2. Description of the Related Art In the blast furnace ironmaking method, phosphorus in the raw material remains in the hot metal. Therefore, we try not to use high phosphorus iron ore as much as possible. On the other hand, the alumina in the raw material is
It is not reduced in the blast furnace and becomes slag. If the amount of slag is large, the air permeability in the lower part of the blast furnace deteriorates and it becomes difficult to maintain stable operation of the blast furnace. Therefore, it is desirable that the amount of alumina in the raw material is small.

【0003】従って特に高りん鉄鉱床は、現採掘鉱山の
ごく近傍にありながら放置されたままになっている。ま
た世界の鉄鉱石資源をみると、これまでの良質なヘマタ
イト(Fe2 3 )鉱石は枯渇の方向にあり、新らしい
鉱床の開発が進められている。従ってこの高りん鉱床が
利用できれば、経済的に大きな意義がある。
Therefore, in particular, the high-phosphorus iron deposit remains in the vicinity of the present mining mine and is left unattended. Looking at the world's iron ore resources, the high-quality hematite (Fe 2 O 3 ) ores that have been produced up to now are in the direction of depletion, and the development of new ore deposits is underway. Therefore, if this high phosphorus deposit can be used, it has great economic significance.

【0004】[0004]

【発明が解決しようとする課題】鉄鉱床の生成過程で
は、りん分,アルミナ分はきわめて微細な粒子として、
ゲーサイト(Fe2 3 ・H2 O)部に沈澱するのが一
般的である。すなわちこれらは、ゲーサイトに取り囲ま
れている。
[Problems to be Solved by the Invention] In the process of forming an iron deposit, phosphorus and alumina are formed as extremely fine particles,
It is generally precipitated in the goethite (Fe 2 O 3 .H 2 O) part. That is, they are surrounded by game sites.

【0005】また鉄鉱石中のゲーサイト部は非常に緻密
であり、さらにりん分は動物の死骸であり、すなわち骨
の成分であるので、極めて安定している。従って鉄鉱石
のまま酸処理をしても、りん,アルミナを低減させるこ
とは極めて難しい。
Further, the goethite part in iron ore is extremely dense, and the phosphorus content is a carcass of an animal, that is, a bone component, so that it is extremely stable. Therefore, even if the iron ore is treated with acid, it is extremely difficult to reduce phosphorus and alumina.

【0006】本発明は、上記課題に鑑みなされたもの
で、高りん鉄鉱石粉等の活用を図る含ゲーサイト鉄鉱石
の高品位化法を提供する。
The present invention has been made in view of the above problems, and provides a method for enhancing the quality of goethite iron ore containing iron, which utilizes high phosphorus iron ore powder or the like.

【0007】[0007]

【課題を解決するための手段】本発明者は、先にゲーサ
イト部は250℃前後で分解し、その分解に伴って多数
の亀裂を発生して多孔質化することを見出した。そこで
この多孔質化現象と、さらにりん化合物の加熱変化を考
慮した含ゲーサイト鉱石の不純物除去促進条件を研究
し、予備加熱した後に酸洗処理する本方法を発明した。
The inventor of the present invention has previously found that the goethite part decomposes at around 250 ° C., and a large number of cracks are generated along with the decomposition to become porous. Therefore, the present inventors invented the present method of pre-heating and then pickling treatment, by studying the conditions for promoting the removal of impurities in goethite ores containing this phenomenon of porosity and the change in heating of phosphorus compounds.

【0008】即ち本発明は、高炉用焼結原料のうち、
2.4%以上の結合水を有する含ゲーサイト(Fe2
3 ・H2 O)鉄鉱石粉を500℃以上,1200℃以下
に加熱後、1規定度(N)以上の硫酸あるいは塩酸水溶
液と接触させて、不純物を溶出させることを特徴とする
焼結鉱用含ゲーサイト鉄鉱石の高品位化法である。
That is, the present invention is, among the sintering raw materials for blast furnace,
Goethite-containing (Fe 2 O) containing 2.4% or more of bound water
3・ H 2 O) Iron ore powder is heated to 500 ° C. or higher and 1200 ° C. or lower, and is then contacted with sulfuric acid or hydrochloric acid aqueous solution of 1 normality (N) or higher to elute impurities, and for sinter ore This is a method for improving the quality of goethite-containing iron ore.

【0009】また上記の高品位化法において、含ゲーサ
イト鉄鉱石粉を1mm以下の含ゲーサイト鉄鉱石微粉部
とするものである。
Further, in the above-described high-grade process, the goethite iron ore powder containing fine particles of goethite iron ore containing 1 mm or less is used.

【0010】さらにまた上記のそれぞれの高品位化法に
おいて、不純物を溶出させた硫酸あるいは塩酸水溶液の
酸処理廃液を、フェライト粉末製造の原料として再利用
するものである。
Further, in each of the above-mentioned high-quality methods, the acid treatment waste solution of the sulfuric acid or hydrochloric acid aqueous solution in which impurities are eluted is reused as a raw material for producing ferrite powder.

【0011】[0011]

【作用】以下作用とともに、発明の経過について詳細に
説明する。
The operation and the process of the invention will be described in detail below.

【0012】本発明法の第一の特長は、りん分,アルミ
ナ分の酸溶出促進最適条件を規定したことである。鉄鉱
石としては高りん,低りんの鉱床が隣接する豪州のハマ
スレイ鉱石(ブロックマン鉄鉱石累層)を代表として選
んだ。
The first feature of the method of the present invention is that the optimum conditions for acid elution of phosphorus and alumina are defined. As the iron ore, the Hamasley ore (Brockman iron ore formation) in Australia, which is adjacent to high and low phosphorus deposits, was selected as a representative.

【0013】粉鉱(10mm以下)中の結合水は2.4
1〜2.43%で、鉄分は62〜63%、アルミナ分は
2.0〜2.3%であった。またりん分は、低りんの鉱
山のものは0.06%,高りんの鉱床からのものは0.
15%であった。
The bound water in the powder ore (10 mm or less) is 2.4.
The iron content was 62 to 63% and the alumina content was 2.0 to 2.3%. Phosphorus content was 0.06% in low phosphorus mines and 0,6 in high phosphorus deposits.
It was 15%.

【0014】先ずゲーサイトの分解開始温度を調査し、
210℃より開始することを確認した。そこで300℃
より100℃おきに熱処理し、例えばその温度まで20
0℃/minにて急速に昇温し、所定温度に到達後、大
気中に放冷する。
First, the decomposition start temperature of goethite was investigated,
It was confirmed to start from 210 ° C. There 300 ° C
Heat treatment every 100 ° C, for example, up to 20
The temperature is rapidly raised at 0 ° C./min, and after reaching a predetermined temperature, it is left to cool in the atmosphere.

【0015】次いで分子量/(2・密度)の硫酸(ミリ
リッター)に純水を加えて1リッターとした溶液,即ち
1Nの硫酸、あるいは分子量/密度の塩酸(ミリリッタ
ー)に純水を加えて1リッターとした塩酸水溶液中に入
れ、30min後取り出し、鉄鉱石の分析を行った。
Next, pure water was added to sulfuric acid (milliliter) having a molecular weight / (2.density) to make 1 liter, that is, 1N sulfuric acid, or pure water was added to hydrochloric acid (milliliter) having a molecular weight / density. It was put in a hydrochloric acid solution of 1 liter and taken out after 30 minutes, and iron ore was analyzed.

【0016】図1にその結果を示す。これより、適正温
度としては、500℃−1200℃,さらに望ましい温
度としては800−1200℃といえる。500℃以下
ではりん化合物の分解は起こらず、1200℃以上では
ゲーサイト部の緻密化が起こるためにこのような適正範
囲となったものと考えられる。
The results are shown in FIG. From this, it can be said that the proper temperature is 500 ° C to 1200 ° C, and the more preferable temperature is 800 to 1200 ° C. It is considered that such an appropriate range is achieved because decomposition of the phosphorus compound does not occur at 500 ° C or lower and densification of the goethite part occurs at 1200 ° C or higher.

【0017】さらにこれよりも結合水の多い、即ちゲー
サイトの多いマラマンバ鉄鉱石累層からの鉱石(結合
水:5−7%),ピソライト鉱石(6−10%)につい
ても同様の試験を行い、500−1200℃が適正温度
範囲であることを確認した。また酸水溶液中浸漬時間
は、長いほど不純物の溶出量は多くなり、1時間でほぼ
飽和したが、この適正温度範囲は変わらなかった。
Further, the same test is conducted on ores (bound water: 5-7%) and pisolite ores (6-10%) from the Maramanba iron ore formation having more bound water, that is, more goethite. , 500-1200 ° C was confirmed to be in the proper temperature range. Further, the longer the immersion time in the acid aqueous solution, the more the amount of impurities eluted, and it was almost saturated in 1 hour, but the appropriate temperature range did not change.

【0018】次に、酸の濃度を0.5Nから0.5Nご
とに5Nまで変えて適正濃度を調査した。代表的結果を
前記図1に併記した。酸濃度が高いほど不純物の溶出量
は増大したが、0.5Nでのりん分の低減は僅かであ
り、1N以上にする必要のあることが判った。従ってこ
れが、本発明において1規定度(N)以上と限定した理
由である。
Next, the proper concentration was investigated by changing the acid concentration from 0.5N to 5N in 0.5N increments. Representative results are also shown in FIG. Although the elution amount of impurities increased as the acid concentration increased, the reduction of phosphorus content at 0.5N was slight, and it was found that it was necessary to make it 1N or more. Therefore, this is the reason why the present invention limits the normality to 1 or more.

【0019】近年の焼結鉱用の粉鉱石は、上述のように
ヘマタイト鉱床の枯渇化が進み、このように含ゲーサイ
ト鉄鉱石が増加してきており、この含ゲーサイト鉱石全
量を処理すると処理量は莫大となる可能性がある。粒度
別にりん分,アルミナ分を調査したところ、ゲーサイト
部は脆弱で粉化しやすく、細流部ほど高くなる傾向が認
められた。
As for the powdered ore for sinter in recent years, the hematite deposit has been depleted as described above, and thus the content of goethite-containing iron ore has been increasing. The amount can be huge. When the phosphorus content and the alumina content were examined according to the particle size, the goethite part was brittle and was easily pulverized, and the tendency was higher in the trickle part.

【0020】ここで表1に示すように、1mmで分級す
ると1mm以下の微粉にそれらの不純物は濃縮すること
が判る。また表1には、図1で使用したりん含有率0.
062%の鉄鉱石(−10mm)をそのまま本発明の方
法で処理した場合と、1mmで分級して篩下を処理した
場合を比較した。なお表1は、1N硫酸水溶液による鉄
鉱石の高品位化結果を示すものである。
As shown in Table 1, it can be seen that when the particles are classified by 1 mm, the impurities are concentrated in fine powder of 1 mm or less. Further, in Table 1, the phosphorus content of 0.
A comparison was made between the case where 062% of iron ore (-10 mm) was directly treated by the method of the present invention and the case where it was classified by 1 mm and treated under the sieve. In addition, Table 1 shows the results of upgrading the quality of iron ore with a 1N sulfuric acid aqueous solution.

【0021】なおここでは、予備加熱温度は1000℃
とし、1Nの硫酸水溶液を用い、鉱石/酸水溶液の質量
比は1とした。表1より、1mm以下の微粉について本
発明の方法による処理を行うと、粉鉱石全体処理後と同
一のりん含有量となり、脱りん率が向上することが明瞭
である。これが本発明において1mm以下の微粉部につ
いて前記処理を行うこととした理由である。
Here, the preheating temperature is 1000 ° C.
The 1 / N sulfuric acid aqueous solution was used, and the mass ratio of the ore / acid aqueous solution was 1. From Table 1, it is clear that when the fine powder of 1 mm or less is treated by the method of the present invention, the phosphorus content becomes the same as that after the whole treatment of the powder ore, and the dephosphorization rate is improved. This is the reason why the above-mentioned treatment is applied to the fine powder portion of 1 mm or less in the present invention.

【0022】[0022]

【表1】 [Table 1]

【0023】一方製鉄所の鋼板の酸洗処理後の溶液か
ら、磁性材料あるいは顔料としてのフェライト粉末を製
造していることはよく知られている。本処理後の廃液中
には鉄イオンが200−2000ppm含有されてお
り、一般のフェライト粉末製造の原料として十分利用で
きることが確認できた。
On the other hand, it is well known that a ferrite powder as a magnetic material or a pigment is produced from a solution obtained by pickling a steel sheet at an iron mill. It was confirmed that the waste liquid after this treatment contained iron ions in an amount of 200 to 2000 ppm and could be sufficiently used as a raw material for the production of general ferrite powder.

【0024】[0024]

【実施例】以下に実施例を示して本発明の効果を説明す
る。
EXAMPLES The effects of the present invention will be described below with reference to examples.

【0025】実施例1として:表2は本発明法による含
ゲーサイト鉱石の高品位化結果を示し、代表的な結合水
2.4%以上の含ゲーサイト鉱石を処理した場合の、り
ん,アルミナの低減量を示す。本発明法によって50%
以上の脱りんが可能となる。またアルミナも、りん分の
低減量と同程度抜けている。
As Example 1: Table 2 shows the results of upgrading the quality of the goethite ore according to the present invention. Phosphorus in the case of treating a typical goethite ore containing 2.4% or more of bound water is The amount of reduction of alumina is shown. 50% by the method of the present invention
The above phosphorus removal is possible. Alumina is also missing as much as the reduced amount of phosphorus.

【0026】[0026]

【表2】 [Table 2]

【0027】実施例2として:表3は表2の鉱石の1m
m以下の部分の含ゲーサイト鉱石を本発明法で処理した
高品位化結果を示す。1mm以下とすることによってり
ん及びアルミナの除去率の上昇することは明瞭である。
As Example 2: Table 3 shows 1 m of the ore of Table 2
The quality improvement result of processing the goethite ore in the portion of m or less by the method of the present invention is shown. It is clear that the removal rate of phosphorus and alumina increases when the thickness is 1 mm or less.

【0028】[0028]

【表3】 [Table 3]

【0029】実施例3として:図2は製鉄所における本
発明の実施態様としてのフェライト粉末製造の原料処理
フローである。表4に表2中の鉄鉱石B使用時の物質バ
ランスを示す。このように鉄鉱石の高品位化とフェライ
ト粉末の製造が同時に可能である。
As Example 3: FIG. 2 is a raw material processing flow of ferrite powder production as an embodiment of the present invention in an iron mill. Table 4 shows the material balance when iron ore B in Table 2 is used. Thus, it is possible to improve the quality of iron ore and produce ferrite powder at the same time.

【0030】[0030]

【表4】 [Table 4]

【0031】[0031]

【発明の効果】以上説明したように本発明によれば、こ
れまでに焼結鉱原料として不向きであった高りんの含ゲ
ーサイト鉄鉱石粉の使用が可能となるほかに、廃液から
フェライト粉末の製造も可能となり、資源の有効活用,
さらには鉄鋼生産のコスト低減に大きく寄与することが
できる。
As described above, according to the present invention, it becomes possible to use goethite iron ore powder containing high phosphorus, which has been unsuitable as a raw material for sinter, up to now. Manufacturing is also possible, effective use of resources,
Furthermore, it can greatly contribute to the cost reduction of steel production.

【図面の簡単な説明】[Brief description of drawings]

【図1】鉱石と酸水溶液の質量比を1とした場合の、含
ゲーサイト鉄鉱石の加熱予備処理温度及び酸の濃度と酸
洗処理後の鉄鉱石中りん及びアルミナ含有量の関係を示
す図面である。
FIG. 1 shows the relationship between the heating pretreatment temperature and the acid concentration of the goethite iron ore containing iron and the phosphorus and alumina contents in the iron ore after the pickling treatment when the mass ratio of the ore and the acid aqueous solution is 1. It is a drawing.

【図2】本発明の実施態様としてのフェライト粉末製造
の原料処理フローの例を示す図面である。
FIG. 2 is a drawing showing an example of a raw material processing flow for producing a ferrite powder as an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 焼結鉱用の含ゲーサイト鉄鉱石粉 2 篩 3 1mm以下の鉄鉱石粉 4 篩い上の鉄鉱石粉 5 加熱装置 6 酸洗処理設備 7 高品位化された粉鉱石 8 酸洗処理廃液 9 焼結工場 10 フェライト粉製造装置 11 フェライト粉 12 中和液またはHCl 1 Goethite iron ore powder for sinter 2 Sieve 3 Iron ore powder of 1 mm or less 4 Iron ore powder on sieve 5 Heating device 6 Pickling treatment equipment 7 High-grade powdered ore 8 Pickling waste liquid 9 Sintering plant 10 Ferrite powder manufacturing equipment 11 Ferrite powder 12 Neutralizing solution or HCl

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高炉用焼結原料のうち、2.4%以上の
結合水を有する含ゲーサイト鉄鉱石粉を500℃以上,
1200℃以下に加熱後、1規定度(N)以上の硫酸あ
るいは塩酸水溶液と接触させて、不純物を溶出させるこ
とを特徴とする焼結鉱用含ゲーサイト鉄鉱石の高品位化
法。
1. A goethite iron ore powder containing 2.4% or more of bound water among sinter raw materials for blast furnace of 500 ° C. or more,
A method for improving the quality of a goethite iron ore containing sinter, which comprises heating to 1,200 ° C. or lower and contacting it with an aqueous solution of sulfuric acid or hydrochloric acid having a normality (N) or higher to elute impurities.
【請求項2】 含ゲーサイト鉄鉱石粉を1mm以下の含
ゲーサイト鉄鉱石微粉部とした請求項1記載の焼結鉱用
含ゲーサイト鉄鉱石の高品位化法。
2. The method for improving the quality of a goethite iron ore containing sinter according to claim 1, wherein the goethite iron ore containing powder is a fine powder portion of the goethite containing iron ore containing 1 mm or less.
【請求項3】 不純物を溶出させた硫酸あるいは塩酸水
溶液の酸処理廃液をフェライト粉末製造の原料として利
用する請求項1又は請求項2記載の焼結鉱用含ゲーサイ
ト鉄鉱石の高品位化法。
3. A method for enhancing the quality of a goethite iron ore containing sinter according to claim 1 or 2, wherein an acid treatment waste solution of an aqueous solution of sulfuric acid or hydrochloric acid in which impurities are eluted is used as a raw material for producing ferrite powder. .
JP29094092A 1992-10-06 1992-10-06 High quality method of goethite iron ore for sinter Withdrawn JPH06116658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29094092A JPH06116658A (en) 1992-10-06 1992-10-06 High quality method of goethite iron ore for sinter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29094092A JPH06116658A (en) 1992-10-06 1992-10-06 High quality method of goethite iron ore for sinter

Publications (1)

Publication Number Publication Date
JPH06116658A true JPH06116658A (en) 1994-04-26

Family

ID=17762466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29094092A Withdrawn JPH06116658A (en) 1992-10-06 1992-10-06 High quality method of goethite iron ore for sinter

Country Status (1)

Country Link
JP (1) JPH06116658A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006038539A1 (en) * 2004-10-01 2006-04-13 Jfe Steel Corporation Method for producing sintered ore
JP2020020010A (en) * 2018-08-02 2020-02-06 日本製鉄株式会社 Reduction method of high-phosphorus iron ore

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006038539A1 (en) * 2004-10-01 2006-04-13 Jfe Steel Corporation Method for producing sintered ore
JP2020020010A (en) * 2018-08-02 2020-02-06 日本製鉄株式会社 Reduction method of high-phosphorus iron ore

Similar Documents

Publication Publication Date Title
CA1076368A (en) Upgrading the nickel content from low grade nickel lateritic iron ores by a combined process of segregation and magnetic separation or flotation
JP6794842B2 (en) How to elute calcium from steelmaking slag and how to recover calcium from steelmaking slag
JP7099149B2 (en) Reduction method of high-phosphorus iron ore
CN102051491B (en) Method for concentrating gold from pyrite inclusion-type gold ore
CN104212929B (en) The iron smelting method of gas-based shaft kiln directly reduced-magnetic separation separating treatment height phosphorus ore
CN108531740A (en) Process for recovering lead, zinc, carbon, silver and iron from zinc smelting leaching slag
CN104630461B (en) Titanium ore pellet and preparation method thereof
WO2015114703A1 (en) Phosphorus and calcium collection method, and mixture produced by said collection method
CN107082429A (en) A kind of method that utilization Dust of Iron And Steel Works prepares cementite
US3975182A (en) Pellets useful in shaft furnace direct reduction and method of making same
FI69645C (en) FOERFARANDE FOER ANRIKNING AV TITANHALTIGT MATERIAL
Fu et al. Stepwise recovery of magnesium from low-grade ludwigite ore based on innovative and clean technological route
CN111321262A (en) Converter steel slag treatment and separation method
JPH06116658A (en) High quality method of goethite iron ore for sinter
Kuldeyev et al. Promising ways to increase raw material base of the chrome industry of the metallurgical industry of the Kazakhstan
CN107082428A (en) A kind of method that cementite is prepared using many metal sulfate slags
JP2835467B2 (en) Method for producing alumina cement from electric furnace slag
CN104195327A (en) A method for manufacturing weakly magnetic iron ore reduction roasting raw pellets wrapped with an oxygen barrier layer
JP2000008128A (en) Hydrometallugy of ore containing iron group metal
CA1180902A (en) Process for recovering metals
CN107574299B (en) A kind of low-grade Ferromanganese Ore pyrogenic process beneficiation method
CN115786620B (en) Methods for regulating the morphology of iron particles in coal-based direct reduction products of refractory iron resources
US4465510A (en) Agglomeration of iron ores and concentrates
US3238039A (en) Process for separating non-molten slag from nickel chromium-containing iron ores
CN113755693B (en) Method for co-processing roasting cyanidation tailings by utilizing acid making flue gas

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000104