JPH0611338A - Weldability evaluation method for electrical steel sheets for laminated cores - Google Patents
Weldability evaluation method for electrical steel sheets for laminated coresInfo
- Publication number
- JPH0611338A JPH0611338A JP13871292A JP13871292A JPH0611338A JP H0611338 A JPH0611338 A JP H0611338A JP 13871292 A JP13871292 A JP 13871292A JP 13871292 A JP13871292 A JP 13871292A JP H0611338 A JPH0611338 A JP H0611338A
- Authority
- JP
- Japan
- Prior art keywords
- weldability
- steel sheet
- probability density
- density distribution
- steel sheets
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Length Measuring Devices With Unspecified Measuring Means (AREA)
- Arc Welding In General (AREA)
- Soft Magnetic Materials (AREA)
Abstract
(57)【要約】
【目的】 積層電磁鋼板のTIG溶接時におけるガス逃
散性すなわち溶接性を的確に評価して、積層溶接におけ
る信頼性を向上させる。
【構成】 電磁鋼板表面の断面曲線から振幅確率密度分
布曲線を求め、得られた振幅確率密度分布曲線のピーク
を通り板面に平行な平面から下の谷の体積を指標とし
て、該鋼板の溶接性を評価する。
(57) [Abstract] [Purpose] To improve the reliability in laminated welding by accurately evaluating gas escape properties, that is, weldability, during TIG welding of laminated electrical steel sheets. [Structure] An amplitude probability density distribution curve is obtained from a sectional curve of the surface of an electromagnetic steel sheet, and the welding of the steel sheet is performed by using the volume of a valley below a plane passing through a peak of the obtained amplitude probability density distribution curve and parallel to the plate surface as an index. Evaluate sex.
Description
【0001】[0001]
【産業上の利用分野】この発明は、積層鉄心用電磁鋼板
の溶接性評価法に関し、とくに鋼板の表面状態を的確に
把握することにより、該鋼板の積層溶接時における溶接
性すなわち発生ガスの逃散性を評価しようとするもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating the weldability of electromagnetic steel sheets for laminated iron cores, and in particular, by accurately grasping the surface condition of the steel sheets, the weldability during the laminated welding of the steel sheets, that is, the escape of generated gas It tries to evaluate sex.
【0002】[0002]
【従来の技術】占積率や磁気特性を劣化させることなし
に、積層電磁鋼板をTIG溶接するには、該鋼板の表面
性状の影響が大きいため、従来から、種々の鋼板表面評
価法が開発されている(例えば特公昭49−6744号公報,
特開昭54−134043号公報)。しかしながら上記の技術は
いずれも、中心線平均粗さRa や最大高さRmax 等鋼板
表面の振幅レベルのみを評価する手法であり、かかる手
法では、今回問題とした溶接時の鋼板間におけるガス逃
散に対しては有効な結果を得ることができなかった。す
なわち、積層鉄心用電磁鋼板においては、鉄心としての
占積率を確保しつつ併せて通気性も良くするという二律
背反の要求があり、これらの要求を満たすために、表面
形状に微妙な工夫を加えている。ところが、通気性に差
のある鋼板の表面性状を従来の評価指数で比較しても、
明瞭な差異が認められないという事例がしばしば経験さ
れた。2. Description of the Related Art In TIG welding of laminated electromagnetic steel sheets without deteriorating the space factor and magnetic properties, the surface properties of the steel sheets have a great influence. Therefore, various steel sheet surface evaluation methods have been conventionally developed. (For example, Japanese Patent Publication No. 49-6744,
JP-A-54-134043). However, each of the above techniques is a method of evaluating only the amplitude level of the steel plate surface such as the center line average roughness Ra and the maximum height Rmax. On the other hand, we could not obtain valid results. That is, in the electromagnetic steel sheet for laminated iron core, there is a trade-off between securing the space factor as the iron core and improving the air permeability as well, and in order to meet these requirements, the surface shape must be subtly modified. ing. However, comparing the surface properties of steel sheets with different air permeability with the conventional evaluation index,
Often there were cases where no clear difference was observed.
【0003】[0003]
【発明が解決しようとする課題】上述したとおり、溶接
時の鋼板間のガス逃散に関する表面性状評価としては、
振幅レベルのみを評価する従来法では問題があった。こ
の発明は、上記の問題を有利に解決するもので、積層電
磁鋼板のTIG溶接時におけるガス逃散性を的確に把握
することができる鋼板の溶接性評価法を提案することを
目的とする。As described above, as the surface texture evaluation regarding gas escape between steel plates during welding,
There is a problem in the conventional method that evaluates only the amplitude level. The present invention advantageously solves the above problems, and an object of the present invention is to propose a steel plate weldability evaluation method capable of accurately grasping gas escape properties during TIG welding of laminated electromagnetic steel plates.
【0004】[0004]
【課題を解決するための手段】さて発明者らは、占積率
と通気性を併せ持つ表面性状とは、隙間の形状と大きさ
に相関があるとの考えに立脚して、種々の表面性状評価
法について検討を重ねた。その結果、鋼板表面の体積評
価技術を利用すれば、所期した目的が有利に達成される
ことの知見を得た。この発明は、上記の知見に立脚する
ものである。Means for Solving the Problems Now, the inventors have found that the surface texture having both the space factor and the air permeability has a correlation with the shape and size of the gap. The evaluation method was repeatedly examined. As a result, it was found that the intended purpose can be advantageously achieved by using the volume evaluation technique of the steel sheet surface. The present invention is based on the above findings.
【0005】すなわちこの発明は、積層鉄心用電磁鋼板
表面の断面曲線から振幅確率密度分布曲線を求め、得ら
れた該振幅確率密度分布曲線のピークを通り板面に平行
な平面から下の谷の体積を指標として、該鋼板の溶接性
を評価することを特徴とする積層鉄心用電磁鋼板の溶接
性評価法である。That is, according to the present invention, an amplitude probability density distribution curve is obtained from a sectional curve of a surface of a magnetic steel sheet for laminated iron cores, and a valley below a plane passing through a peak of the obtained amplitude probability density distribution curve and parallel to the plate surface is obtained. A weldability evaluation method for electromagnetic steel sheets for laminated cores, characterized in that the weldability of the steel sheet is evaluated using the volume as an index.
【0006】[0006]
【作用】この発明ではまず、電磁鋼板の表面性状を接触
式又は非接触式粗さ計で測定し、断面曲線を抽出する。
この測定は、一定の面積について平行線走査を行って3
次元情報を採取するものである(図1(a)参照)。次
に、この断面曲線から図1(b)に示すような振幅確率
密度分布曲線を求める。ここに振幅確率密度分布曲線と
は、抽出した断面曲線において、最高山頂から最低谷底
までの切断レベルをとったとき、抽出曲線がその切断レ
ベルと等しくなる確率をグラフに表したものである。例
えば、図2(a)に示すように、測定長さ:L、Z軸分
割数:20とした場合において、所定のサンプリングピッ
チで振幅確率密度を求めると、図2(b)のようにな
る。そして、振幅確率密度分布曲線の平均のピーク位置
を求め、このピーク位置を通り板面に平行な平面から下
の谷の体積を3次元情報から算出する。換言すれば、ピ
ーク位置を通る水平面で切断して得られた谷間の容積を
求め、この体積値によって溶接性、すなわち溶接時の通
気性を評価するのである。In the present invention, first, the surface texture of the electromagnetic steel sheet is measured by a contact type or non-contact type roughness meter to extract a sectional curve.
This measurement was performed by performing parallel line scanning on a certain area.
The dimensional information is collected (see FIG. 1 (a)). Next, an amplitude probability density distribution curve as shown in FIG. 1B is obtained from this sectional curve. Here, the amplitude probability density distribution curve is a graph showing the probability that the extraction curve becomes equal to the cutting level when the cutting level from the highest peak to the lowest valley is taken in the extracted sectional curve. For example, as shown in FIG. 2A, when the measurement length is L and the number of Z-axis divisions is 20, when the amplitude probability density is obtained at a predetermined sampling pitch, it becomes as shown in FIG. . Then, the average peak position of the amplitude probability density distribution curve is obtained, and the volume of the valley below the plane passing through this peak position and parallel to the plate surface is calculated from the three-dimensional information. In other words, the volume of the valley obtained by cutting on the horizontal plane passing through the peak position is obtained, and the weldability, that is, the air permeability at the time of welding is evaluated by this volume value.
【0007】[0007]
【実施例】以下、実施例に基づき、この発明を具体的に
説明する。Si:0.35%、板厚:0.5 mmで最終の仕上げ処
理のみを変更した同一製法になる電磁鋼板4種類に、有
機質絶縁被膜(以下単にAlコートという)処理を施し、
内径:120 mm, 外径:400 mmのドーナツ状に打ち抜い
た。ついで積層した後、 100kgf/cm2 で押圧しつつ、積
層端面に対し板面に垂直な方向に幅:5mmのビードを形
成するTIG溶接を施した。表1に溶接結果を示した
が、同表から明らかなように、試料Cに不良が認められ
た他は、良好であった。EXAMPLES The present invention will be specifically described below based on examples. Si: 0.35%, thickness: 0.5 mm, 4 types of electrical steel sheets with the same manufacturing method except for the final finishing treatment were treated with an organic insulating coating (hereinafter simply referred to as Al coating),
It was punched into a donut shape with an inner diameter of 120 mm and an outer diameter of 400 mm. Then, after laminating, while pressing at 100 kgf / cm 2 , TIG welding was performed to form a bead having a width of 5 mm with respect to the laminating end face in a direction perpendicular to the plate surface. The welding results are shown in Table 1. As is clear from the table, the results were good except that Sample C had a defect.
【0008】[0008]
【表1】 [Table 1]
【0009】さて、各試料について、測定面積:1.9 mm
×1.0 mmに対して接触式3次元表面粗さ計を走査し、3
次元の表面形状データを採取した。得られた3次元デー
タから、振幅確率密度分布曲線及び表面粗さを求めると
共に、断面曲線の周波数分析を行った。得られた結果
を、表1及び図3〜4に示す。Now, for each sample, measurement area: 1.9 mm
Scan a contact type 3D surface roughness meter against × 1.0 mm and
Three-dimensional surface shape data was collected. From the obtained three-dimensional data, the amplitude probability density distribution curve and the surface roughness were obtained, and the frequency of the cross section curve was analyzed. The obtained results are shown in Table 1 and FIGS.
【0010】同表及び図3から明らかなように、表面粗
さレベルについては、試料A,Bは同C,Dに比べて大
きく、かかる試料A,Bの粗さレベルであれば、溶接性
に何ら支障はなく、試料C,Dレベルの粗さにおいて通
気性が問題となると考えられる。そこで試料C,Dを比
較すると、振幅確率密度分布曲線から求めたピーク下の
体積Vに明瞭な差異が認められた。As is clear from the table and FIG. 3, the surface roughness levels of Samples A and B are larger than those of Samples C and D, and if the roughness level of Samples A and B is high, weldability is improved. It is considered that the air permeability becomes a problem in the roughness of the samples C and D levels. Therefore, when the samples C and D were compared, a clear difference was found in the volume V under the peak obtained from the amplitude probability density distribution curve.
【0011】この現象は、以下のメカニズムによるもの
と考えられる。すなわち、前掲図1に示したとおり、ピ
ーク位置とは表面が最も多く位置する高さであり、積層
して圧力を付加した場合、ピーク位置より上の部分はほ
とんど圧潰されて体積を失い、ピーク位置より下のみに
空隙が残る。従って、溶接時に発生するガスの通路はこ
のピーク位置の下の部分となり、この体積が大であれば
通気性は高くなると考えられる。This phenomenon is considered to be due to the following mechanism. That is, as shown in FIG. 1 above, the peak position is the height where the surface is most located, and when pressure is applied by stacking, the part above the peak position is almost crushed and loses its volume. A void remains only below the position. Therefore, the passage of gas generated during welding is located below this peak position, and it is considered that if this volume is large, the air permeability will be high.
【0012】なお、表面形状の特徴を調べる有用な手段
とされる周波数分析によっても調査した。すなわち図5
に示すような、断面曲線をフーリエ変換して得られた周
波数分布曲線について、特定波長範囲の成分(PS和:
パワースペクトル和)を求めて溶接性との比較を行った
が、明瞭な相関は認められなかった。この理由は、周波
数分析は本来、山谷の周期の長短を見ているので、谷部
分の有効な体積の評価には直接結びつかないものと考え
られる。[0012] The investigation was also conducted by frequency analysis, which is a useful means for investigating the characteristics of the surface shape. That is, FIG.
In the frequency distribution curve obtained by Fourier-transforming the cross-section curve as shown in, the component in the specific wavelength range (PS sum:
The sum of power spectra) was calculated and compared with the weldability, but no clear correlation was observed. The reason for this is that the frequency analysis originally looks at the length of the period of the peaks and valleys, so it is considered that it is not directly linked to the evaluation of the effective volume of the valleys.
【0013】表1に示した結果から明らかなように、溶
接性が好ましくない鋼種Cは谷部の体積が 0.244 mm3と
低いのに対し、良好な溶接性がもたらされた鋼種A,B
及びDはいずれも、谷部の体積は 0.608, 0.720, 0.478
mm3と格段に高く、従って谷部の体積により効果的に溶
接性を評価することができるわけである。As is clear from the results shown in Table 1, the steel type C, which has poor weldability, has a low valley volume of 0.244 mm 3 , while the steel types A and B which have good weldability.
For both and D, the volume of the valley is 0.608, 0.720, 0.478
mm 3 is remarkably high, and therefore the weldability can be effectively evaluated by the volume of the valley.
【0014】[0014]
【発明の効果】かくしてこの発明によれば、従来に比
べ、積層鉄心用電磁鋼板の溶接性を的確に評価すること
ができ、かかる積層溶接における信頼性を格段に向上さ
せることができる。As described above, according to the present invention, the weldability of the electromagnetic steel sheet for laminated core can be evaluated more accurately than before, and the reliability in such laminated welding can be remarkably improved.
【図1】電磁鋼板表面の断面曲線及び振幅確率密度分布
曲線を示したグラフである。FIG. 1 is a graph showing a sectional curve and an amplitude probability density distribution curve on a surface of an electromagnetic steel sheet.
【図2】電磁鋼板表面の断面曲線から振幅確率密度分布
曲線を求める要領を示した図である。FIG. 2 is a diagram showing a procedure for obtaining an amplitude probability density distribution curve from a sectional curve of a surface of an electromagnetic steel sheet.
【図3】各鋼種の三次元表面粗さパラメータ比較図であ
る。FIG. 3 is a comparison diagram of three-dimensional surface roughness parameters of each steel type.
【図4】特定波長域におけるパワースペクトル和を比較
して示したグラフである。FIG. 4 is a graph showing a comparison of power spectrum sums in specific wavelength regions.
【図5】パワースペクトル和の算出要領の説明図であ
る。FIG. 5 is an explanatory diagram of a calculation procedure of a power spectrum sum.
Claims (1)
振幅確率密度分布曲線を求め、得られた該振幅確率密度
分布曲線のピークを通り板面に平行な平面から下の谷の
体積を指標として、該鋼板の溶接性を評価することを特
徴とする積層鉄心用電磁鋼板の溶接性評価法。1. An amplitude probability density distribution curve is obtained from a sectional curve of a surface of an electromagnetic steel sheet for a laminated iron core, and a volume of a valley below a plane passing through a peak of the obtained amplitude probability density distribution curve and parallel to a plate surface is used as an index. As a method for evaluating the weldability of a magnetic steel sheet for laminated core, the weldability of the steel sheet is evaluated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13871292A JP3091790B2 (en) | 1992-05-29 | 1992-05-29 | Evaluation method of weldability of electrical steel sheet for laminated iron core |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13871292A JP3091790B2 (en) | 1992-05-29 | 1992-05-29 | Evaluation method of weldability of electrical steel sheet for laminated iron core |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0611338A true JPH0611338A (en) | 1994-01-21 |
JP3091790B2 JP3091790B2 (en) | 2000-09-25 |
Family
ID=15228368
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13871292A Expired - Fee Related JP3091790B2 (en) | 1992-05-29 | 1992-05-29 | Evaluation method of weldability of electrical steel sheet for laminated iron core |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3091790B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104880171A (en) * | 2015-06-04 | 2015-09-02 | 深圳市商德先进陶瓷有限公司 | System, method and device for detecting surface roughness of porous ceramic |
CN109506615A (en) * | 2018-10-31 | 2019-03-22 | 同济大学 | Long term monitoring methods based on beam bridge cross section neutral axis safety index |
CN113618267A (en) * | 2021-10-08 | 2021-11-09 | 季华实验室 | Robot automatic welding control method and device, electronic equipment and storage medium |
-
1992
- 1992-05-29 JP JP13871292A patent/JP3091790B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104880171A (en) * | 2015-06-04 | 2015-09-02 | 深圳市商德先进陶瓷有限公司 | System, method and device for detecting surface roughness of porous ceramic |
CN109506615A (en) * | 2018-10-31 | 2019-03-22 | 同济大学 | Long term monitoring methods based on beam bridge cross section neutral axis safety index |
CN113618267A (en) * | 2021-10-08 | 2021-11-09 | 季华实验室 | Robot automatic welding control method and device, electronic equipment and storage medium |
CN113618267B (en) * | 2021-10-08 | 2021-12-14 | 季华实验室 | Robot automatic welding control method and device, electronic equipment and storage medium |
Also Published As
Publication number | Publication date |
---|---|
JP3091790B2 (en) | 2000-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mulhearn | The deformation of metals by Vickers-type pyramidal indenters | |
CN111948279B (en) | Quantitative evaluation method for detecting crack defects of paramagnetic metal material by weak magnetism | |
Tian et al. | Wavelet-based PCA defect classification and quantification for pulsed eddy current NDT | |
CN103149348B (en) | Method for evaluating damage of grinding surface of advanced ceramics based on wavelet multi-scale analysis | |
CN107328868A (en) | A kind of Analysis of Acoustic Emission Signal method of quick identification ceramic coating failure type | |
CN115047162B (en) | Defect detection method and system for heat treatment of steel pipe | |
CN115166026A (en) | System and method for identifying and classifying structural damage of carbon fiber composite board | |
US20230366855A1 (en) | Method for predicting surface quality of burnishing workpiece | |
Marshall | Measuring copper surface roughness for high speed applications | |
JPH0611338A (en) | Weldability evaluation method for electrical steel sheets for laminated cores | |
CN110599425A (en) | Wavelet parameter selection method suitable for ACFM signal wavelet denoising | |
Moulder et al. | Inductance of a coil on a thick ferromagnetic metal plate | |
Qiu et al. | Defect classification by pulsed eddy-current technique based on power spectral density analysis combined with wavelet transform | |
CN1609591A (en) | In-Situ Statistical Analysis Method of Inclusion Particle Size in Metal Materials | |
Vieira et al. | Fluctuation analyses for pattern classification in nondestructive materials inspection | |
CN116698896A (en) | A Banded Tissue Segregation and Quantitative Characterization Method | |
JP2017020911A (en) | Railway rail correction management method and correction management apparatus | |
CN111400883A (en) | Magnetoacoustic emission signal feature extraction method based on frequency spectrum compression | |
CN111650017A (en) | Method for detecting content of residual austenite in high-alloy tool steel | |
CN105841657A (en) | Method for suppressing edge effect during metal surface morphology gauss filtering process | |
JP2000214142A (en) | Evaluation method of cleanliness of metallic materials by ultrasonic flaw detection | |
Wang | An investigation of initial fatigue quality | |
US20040088139A1 (en) | Method of predicting motor performance based on CRML material properties | |
CN116399960B (en) | Actual measurement method of broadband laser ultrasonic Lamb wave attenuation coefficient in metal sheet | |
CN115201326B (en) | A multi-parameter identification method of defect burial depth based on near and far field eddy currents |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |