[go: up one dir, main page]

JPH0611312B2 - Percutaneous implant body - Google Patents

Percutaneous implant body

Info

Publication number
JPH0611312B2
JPH0611312B2 JP59235138A JP23513884A JPH0611312B2 JP H0611312 B2 JPH0611312 B2 JP H0611312B2 JP 59235138 A JP59235138 A JP 59235138A JP 23513884 A JP23513884 A JP 23513884A JP H0611312 B2 JPH0611312 B2 JP H0611312B2
Authority
JP
Japan
Prior art keywords
terminal
hollow fiber
skin tissue
drug
microporous hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59235138A
Other languages
Japanese (ja)
Other versions
JPS61115568A (en
Inventor
秀希 青木
隆之 辻
達男 戸川
勝 赤尾
美治 秦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advance KK
Original Assignee
Advance KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advance KK filed Critical Advance KK
Priority to JP59235138A priority Critical patent/JPH0611312B2/en
Publication of JPS61115568A publication Critical patent/JPS61115568A/en
Publication of JPH0611312B2 publication Critical patent/JPH0611312B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Materials For Medical Uses (AREA)

Description

【発明の詳細な説明】 本発明は親和性部材を装着したミクロポーラスホローフ
ァイバより成る経皮インプラント体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a percutaneous implant body comprising a microporous hollow fiber fitted with an affinity member.

従来のcannula(挿管)といった生体用端子はそ
の一端が生体皮膚上にあり他端が皮下に埋設されて、そ
の貫通孔を介して輸液、各種薬液等の注入又は入工腎臓
透析等のための血流の取り出し・注入口等として使用さ
れるものであり、主としてシリコーンゴム、ふっ素樹脂
等の所謂生体不活性材より形成されたものが既に提案さ
れている。
A conventional biomedical terminal, such as a cannula (intubation), has one end on the skin of the living body and the other end buried under the skin, and is used for infusion or injection of various medicinal solutions or the like through the through hole for renal dialysis. It is used as a blood flow extraction / injection port, etc., and it has already been proposed that it is mainly made of a so-called bio-inert material such as silicone rubber or fluororesin.

しかし乍らこれらは生体にとってはあくまでも異物に他
ならずその生体装着部位は一種の外傷を受けた状態に置
かれるものとなるので両者の間隙からの細菌感染等によ
り長時間の使用には到底耐え得ないものであるのみなら
ず、生体固定性に劣るため例えば揺動による出血の心配
等、幾つかの問題を有するものであるため未だ充分に普
及し得ないものとなっている。
However, since these are nothing but foreign substances to the living body, the living body attachment site is left in a state of some kind of trauma, so it can withstand long-term use due to bacterial infection from the gap between the two. Not only can it not be obtained, but it also has some problems such as fear of bleeding due to rocking due to poor bio-fixability, so it has not yet been sufficiently spread.

例えば人工膵臓等の近時その発展が著るしい所謂薬物治
療(ドラッグ・デリバリ)システム(クラウス・ヘイル
マン著「薬物治療システム」昭和58年医菌薬出版発行
等、参照)にあっては、インスリン等の薬物の注入経路
及び極微量定量注入法等の問題が未解決であり(医器学
誌昭和58年53巻第2号第90頁以下参照)、薬物注
入口として半恒久的且つ安全に使用し得る生体端子への
希求は今日一段と高まっているものと云えよう。
For example, in the so-called drug treatment (drug delivery) system whose development is remarkable recently, such as in artificial pancreas (see "Drug Delivery System" by Klaus Haleman, published by Ikuyakuyaku Publishing Co., Ltd. in 1983), insulin Problems such as drug injection route and ultra-quantitative injection method have not been solved (see Journal of Medical Device, 1983, Vol. 53, No. 2, pp. 90 et seq.), And it is semi-permanent and safe as a drug injection port. It can be said that the demand for biometric terminals that can be used is increasing more and more today.

他方、近時ハイドロキシアパタイト焼結体等のアパタイ
ト系材及びリン酸カルシウム化合物焼結体等のセラミッ
ク系材よりなる皮膚組織親和性部材の優れた生体親和
性、更に骨誘導性が解明されると共にその焼結体による
人工歯根、人工骨への利用が提案、実用されつつある
が、同焼結体の皮膚組織との生理学的反応性については
先行技術に於いて全然未解明である。
On the other hand, recently, the excellent biocompatibility and further osteoinductivity of a skin tissue-affinity member composed of an apatite-based material such as a hydroxyapatite sintered body and a ceramic-based material such as a calcium phosphate compound sintered body have been elucidated, and its burning has been revealed. Although the use of a sintered body for artificial tooth roots and artificial bones has been proposed and put to practical use, the physiological reactivity of the sintered body with skin tissue has not been clarified at all in the prior art.

上記に鑑み本発明者らは鋭意研究の結果、上述したよう
な皮膚組織親和性部材は皮膚組織に対し単に親和性を有
するのみならずこれら組織と緊密且つ一体的に接合する
という事実並びに前記定量注入は薬物の自然拡散を可及
的に阻止する生体組織と接したバリヤ層によって構成さ
れたミクロポーラスホローファイバの配設により容易に
解決されることを知見し、本発明に到達したものであ
る。
In view of the above, as a result of intensive studies by the present inventors, the fact that the above-mentioned skin tissue-affinity member not only has affinity for skin tissues but also tightly and integrally joins these tissues and the quantitative determination The present inventors have found that the injection can be easily solved by arranging a microporous hollow fiber constituted by a barrier layer in contact with a biological tissue, which inhibits spontaneous diffusion of a drug as much as possible, and arrived at the present invention. .

以下、本発明生体端子の皮膚組織親和性部材及びミクロ
ポーラスホローファイバにつきその材料組成及び製法、
形状乃至構造、使用の態様等につき詳細に分説する。
Hereinafter, the material composition and manufacturing method of the skin tissue affinity member and the microporous hollow fiber of the biological terminal of the present invention,
The shape and structure, the mode of use, etc. will be explained in detail.

材料組成・製法 1.本発明に於ける皮膚組織親和性部材を“アパタイト
系材”及び“セラミック系材”に区別し、各々の材料組
成製法を記述する。
Material composition and manufacturing method 1. The skin tissue affinity member in the present invention is classified into "apatite-based material" and "ceramic-based material", and the respective material composition manufacturing methods are described.

(a)本発明に於ける“アパタイト系材”とはその化学組
成がCa10(PO4)6(OH)2で表わされるハイドロキシアパタ
イトのみならず、OHイオンのかわりに1〜10%のカ
ーボネート(CO3)イオンやフッソ,塩素イオン或いはそ
のCaの代わりにMg等を含むこともあるその各種イオン置
換体、或いはこれらを主成分とするも焼結性、強度、細
孔度等を向上すべくこれにCa3(PO4)2, Ca4O(PO4)2, Mg
O, Na2O, K2O, CaF2, Al2O3, SiO2, CaO, Fe2O3, MnO,
MnO2,ZnO, C, SrO, PbO, BaO, TiO2, ZrO2又は各種高分
子材等々の周知各種添加剤を添加混合したものをも包含
する。
(a) the at "apatitic material" in the present invention not only hydroxyapatite its chemical composition is represented by Ca 10 (PO 4) 6 ( OH) 2, 1~10% of the carbonate in place of OH ions (CO 3 ) ion, fluorine ion, chlorine ion or its various ion-substituted compounds which may contain Mg instead of Ca, or whose main component is to improve sinterability, strength, porosity, etc. to which the Ca 3 (PO 4) 2, Ca 4 O (PO 4) 2, Mg
O, Na 2 O, K 2 O, CaF 2 , Al 2 O 3 , SiO 2 , CaO, Fe 2 O 3 , MnO,
It also includes a mixture of well-known various additives such as MnO 2 , ZnO, C, SrO, PbO, BaO, TiO 2 , ZrO 2 or various polymer materials.

ここで、高分子との複合剤とする場合は、比較的毒性の
少ないポリエチレン,ポリプロピレン,ポリメチルメタ
クリレート,ポリウレタン,ポリエステル,ABS樹
脂,フッ素樹脂,ポリカーボネート,ポリスルホン,エ
ポキシ樹脂,シリコン樹脂,ジアリルフタレート樹脂,
フラン樹脂等の樹脂を選ぶことができる。
Here, when it is used as a composite agent with a polymer, polyethylene, polypropylene, polymethylmethacrylate, polyurethane, polyester, ABS resin, fluorine resin, polycarbonate, polysulfone, epoxy resin, silicone resin, diallyl phthalate resin, which is relatively less toxic ,
A resin such as furan resin can be selected.

他方、その製造法としては単位或いは金属等の基材上で
の所謂焼結法を始めとして金属等の基材へのプラズマ溶
射法等を例示し得、例えばその単独焼結体は一般にハイ
ドキシアパタイト粉末を金型又はラバープレス等により
500〜3,000kg/cm2程度の圧力下、所謂の形状に
圧縮成形し、次いでこれを700〜1,300℃程度の
温度で焼結処理して得られるものであるが、その他の製
法及び組成を含めてより詳細は下記公知技術が参照され
る。すなわち、特開昭51−40400、同52−64
199、同52−82893、同52−142707、
同52−147606、同52−149895、同53
−28997、同53−75209、同53−1110
00、同53−118411、同53−141494、
同53−110999、同54−158099、同55
−51751、同55−130854、同55−140
756、同56−45814、同56−166843、
特公昭57−40776及び同57−40803号各公
報。
On the other hand, examples of the manufacturing method include a so-called sintering method on a base material such as a unit or a metal, and a plasma spraying method on a base material such as a metal. Apatite powder is compression-molded into a so-called shape under a pressure of about 500 to 3,000 kg / cm 2 by a mold or a rubber press, and then sintered at a temperature of about 700 to 1,300 ° C. However, the following known techniques are referred to for more details including other production methods and compositions. That is, JP-A-51-40400 and JP-A-52-64
199, the same 52-82893, the same 52-142707,
52-147606, 52-149895, 53
-28997, ibid 53-75209, ibid 53-1110.
00, same 53-118411, same 53-141494,
53-1110999, 54-158099, 55
-51751, 55-130854, 55-140.
756, the same 56-45814, the same 56-166843,
JP-B-57-40776 and JP-A-57-40803.

尚、皮膚組織との接合性という観点から本発明に於いて
特に有用な焼結体の相対密度(ハイドロキシアパタイト
単結晶の密度を基準)は、60〜99.5%、より好ま
しくは85〜95%程度である。
The relative density (based on the density of the hydroxyapatite single crystal) of the sintered body that is particularly useful in the present invention from the viewpoint of the bondability with the skin tissue is 60 to 99.5%, more preferably 85 to 95%. %.

(b)本発明に於ける“セラミック材”とは、リン酸三カ
ルシウム及び/又はリン酸四カルシウムを主原料とする
焼結体、或いは金属、セラミック等の支持体をこれで溶
射乃至焼結被覆して成る被覆材であり、その焼結性、強
度、細孔度等を向上すべく、これにMgO, Na2O, K2O, Ca
F2, Al2O3, SiO2, CaO, Fe2O3, MnO, MnO2, ZnO, C, Sr
O, PbO, BaO, TiO2,ZrO2等の各種添加剤を添加混合した
ものを包含する。
(b) In the present invention, the "ceramic material" means a sintered body containing tricalcium phosphate and / or tetracalcium phosphate as a main raw material, or a support such as metal or ceramic, which is sprayed or sintered. It is a coating material formed by coating with MgO, Na 2 O, K 2 O, Ca in order to improve its sinterability, strength, porosity, etc.
F 2, Al 2 O 3, SiO 2, CaO, Fe 2 O 3, MnO, MnO 2, ZnO, C, Sr
It includes a mixture of various additives such as O, PbO, BaO, TiO 2 and ZrO 2 .

他方、その製造法としては単体或いは金属等の基材上で
の所謂焼結法を始めとして金属等の基材へのプラズマ溶
射法等を例示し得、例えばその単独焼結体は一般にリン
酸三カルシウム又はリン酸四カルシウムより成る原料を
金型又はラバープレス等により500〜3,000kg/c
m2程度の圧力下、所望の形状に圧縮成形し、次いでこれ
を700〜1,300℃程度の温度で焼結処理して得ら
れるものであるが、その他の製法及び組成を含めてより
詳細は下記公知技術が参照される。
On the other hand, examples of the manufacturing method include a so-called sintering method on a base material such as a single substance or a metal, and a plasma spraying method on a base material such as a metal. For example, the single sintered body is generally phosphoric acid. A raw material consisting of tricalcium or tetracalcium phosphate is 500-3,000 kg / c by a mold or rubber press.
It is obtained by compression molding into a desired shape under a pressure of about m 2 and then sintering this at a temperature of about 700 to 1,300 ° C., but more detailed including other manufacturing methods and compositions. The following known techniques are referred to.

すなわち、 特開昭55−140756,同55−42240 同 55−56062,同54−94512 同 56−18864,同56−143156 同 56−166843,同53−28997 同 53−75209,特公昭58−39533号 各公報 尚、皮膚組織との接合性という観点から本発明に於いて
特に有用な焼結体,被覆材の相対密度(リン酸三カルシ
ウムの密度を基準)は、60〜99.5%、より好まし
くは85〜95%程度である。
That is, JP-A-55-140756, JP-A-55-42240, 55-56062, 54-94512, 56-18864, 56-143156, 56-166843, 53-28997, 53-75209, and JP-B-58-39533. Incidentally, the relative density (based on the density of tricalcium phosphate) of the sintered body and the covering material which are particularly useful in the present invention from the viewpoint of the bondability with the skin tissue is 60 to 99.5%, More preferably, it is about 85 to 95%.

2.本発明に於けるミクロポーラスホローファイバは、
薬液導通路への生体組織の侵入並びに薬物の自然濃度拡
散に対するバリヤ層として機能し、又体液の抽出を行な
う機能を有するもので更には、生体内の各所に対し、選
択的な体液の抽入及び指向的な薬物の投与などが行なわ
れるためのミクロポーラスホローファイバの柔軟性など
種々な機能,形能を有する。ミクロポーラスホローファ
イバを形成する材料は、平均孔径を再生セルロース,ポ
リプロピレン,PVA(ポリビニルアルコール)等0.
007μ〜0.2μの範囲内とする多孔性部材を使用す
るのが好ましいが一般にはインプラント部位、深度及び
使用薬物及び抽出する体液の分子量、濃度、更には薬物
注入に用いるエネルギー形態,生体内の使用目的各所等
々により変更自在である。
2. The microporous hollow fiber in the present invention is
It functions as a barrier layer against invasion of living tissue into the drug solution passage and diffusion of natural concentration of drug, and also has a function of extracting body fluid. Furthermore, selective extraction of body fluid to various places in the body is performed. In addition, it has various functions and functions such as flexibility of the microporous hollow fiber for directional drug administration. The material forming the microporous hollow fiber has an average pore size of regenerated cellulose, polypropylene, PVA (polyvinyl alcohol), etc.
It is preferable to use a porous member having a size within the range of 007 μ to 0.2 μ, but generally, the implant site, the depth and the molecular weight and concentration of the drug used and the body fluid to be extracted, as well as the energy form used for drug injection, in vivo It can be changed depending on the purpose of use.

以上詳述の通り本発明、皮膚組織親和性部材を皮膚組織
との接触部分に形成したミクロポーラスホローファイバ
の形態は使用目的に応じて所望のものとなし得るが、そ
の典型例につき添付図面を参照して詳述すれば、次の通
りである。
As described above in detail, the present invention, the form of the microporous hollow fiber in which the skin tissue affinity member is formed in the contact portion with the skin tissue can be made as desired depending on the purpose of use, and the typical drawings thereof will be referred to in the accompanying drawings. The details will be described with reference to FIG.

すなわち、第1図は本発明生体端子の1例を示す断面図
であり、図中、薬物注入口として使用される生体端子1
は共に皮膚組織親和性部材より成る端子頭部2と同底部
3とを一体的に結合して成るものであり、その内部乃至
端部に例えば0.2μの孔径を有する例えばPVA(ポ
リビニルアルコール)等の多孔性部材により形成された
ミクロポーラスホローファイバ4を装着しミクロポーラ
スホローファイバ4の先端部には、例えばミクロポーラ
スホローファイバ4と同質の多孔性部材5を結合して成
るものであり、そのミクロポーラスホローファイバ4を
介して所望の薬物が生体内に注入され、又、種々なセン
サ素子が導入される。
That is, FIG. 1 is a cross-sectional view showing an example of the biomedical terminal of the present invention, in which biomedical terminal 1 used as a drug injection port.
Is integrally formed with a terminal head portion 2 and a bottom portion 3 both made of a skin tissue affinity member, and has a pore diameter of, for example, 0.2 μm inside or at the end portion thereof, such as PVA (polyvinyl alcohol). A microporous hollow fiber 4 formed of a porous member such as, and a porous member 5 of the same quality as the microporous hollow fiber 4 is bonded to the tip of the microporous hollow fiber 4, for example. A desired drug is injected into the living body through the microporous hollow fiber 4, and various sensor elements are introduced.

第2図は本発明生体端子の第二の実施例を示す断面図で
ある。これは所望薬物の種類によって汚染のしやすさ並
びに効果の低下が速いものなどに対し、常に薬物の循環
を行なうかあるいは抗生物質によるフラッシングなどが
行なえるように構成したものである。図中、薬物注入口
9に更に薬物注出口10を設けた生体端子IIは第1図と
同様に皮膚組織親和性部材より成る端子頭部6と同底部
7とを一体的に結合して成るものであり、その内部及び
至端部に例えば、前記第一の実施例と同様の部材を用い
たミクロポーラスホローファイバ8を装着し、そのミク
ロポーラスホローファイバ8を介して所望薬物が生体内
に注入され、この薬物が生体内を循環した後、生体外へ
取り出される。以上第1図第2図に示した実施例におい
て皮膚組織親和性部材及びミクロポーラスホローファイ
バよりなる生体端子はミクロポーラスホローファイバの
みの交換が可能であり、長期的使用に耐え得るものであ
る。
FIG. 2 is a sectional view showing a second embodiment of the biological terminal of the present invention. This is configured such that, depending on the type of desired drug, the drug is likely to be contaminated and the effect is rapidly reduced, and the drug can be constantly circulated or flushed with an antibiotic. In the figure, a living body terminal II in which a drug injection port 9 is further provided at a drug injection port 9 is formed by integrally connecting a terminal head portion 6 and a bottom portion 7 made of a skin tissue affinity member, as in FIG. For example, a microporous hollow fiber 8 using a member similar to that of the first embodiment is mounted inside and at the extreme end of the microporous hollow fiber 8, and the desired drug enters the living body through the microporous hollow fiber 8. After being injected, the drug circulates in the body and is taken out of the body. In the embodiment shown in FIG. 1 and FIG. 2 above, only the microporous hollow fiber can be replaced in the biomedical terminal composed of the skin tissue compatibility member and the microporous hollow fiber, and it is possible to endure long-term use.

尚、皮膚組織親和性部材よりなる生体端子においては、
薬物注入口と薬物注出口が一体成形されているが、薬物
投与面積の拡張など使用目的に応じ第2図A−B間を分
離してもよい。
In addition, in the biological terminal made of a skin tissue compatible member,
Although the drug injection port and the drug injection port are integrally formed, the region between FIGS. 2A and 2B may be separated according to the purpose of use such as expansion of the drug administration area.

他方、多孔性部材は皮膚組織との接触部分に介在すれば
所定の目的を達成し得るので、ミクロポーラスホローフ
ァイバの要部すなわち皮膚組織との接触部分のみをアパ
タイト焼結被覆材(特開昭52−82893号,同53
−75209号及び同53−118411号公報等、参
照)で形成してもよい。さらに、ミクロポーラスホロー
ファイバにハイドロキシアパタイト溶射乃至焼結層を形
成して成る生体端子としたものであっても良い。
On the other hand, since the porous member can achieve a predetermined purpose if it is interposed in the contact portion with the skin tissue, only the main portion of the microporous hollow fiber, that is, the contact portion with the skin tissue is covered with the apatite sintered coating material (Japanese Patent Laid-Open Publication No. Sho. 52-82893, 53
No. 75209 and No. 53-118411, etc.). Further, it may be a bio-terminal formed by forming a hydroxyapatite sprayed or sintered layer on a microporous hollow fiber.

更に、ミクロポーラスホローファイバの先端部において
は第3図の11に示すように熱溶着等により封じしたも
のでもよい。
Further, the tip of the microporous hollow fiber may be sealed by heat welding or the like as shown at 11 in FIG.

以上から明らかなように、本発明生体端子は多様な形状
・構造及び寸法をとり得るものであって特定形態に限定
されるものではない。
As is clear from the above, the biomedical terminal of the present invention can have various shapes, structures, and dimensions, and is not limited to a specific form.

以下、本発明を実験例により詳細に説明する。Hereinafter, the present invention will be described in detail with reference to experimental examples.

実験例I 1.生体端子の製造 ハイドロキシアパタイト粉末は、0.5モル/水酸カ
ルシウムと0.3モル/リン酸溶液を徐々に滴下し、
37℃で1日反応させて合成し、これを濾過乾燥して得
た。この合成粉末を金型に充填し、800kg/cm2の圧力
で圧縮成形し径2mmの貫通孔を有し且つカサ密度1.6
g/cm3の圧粉体を得た。これを端子頭部形状(第1図参
照)に旋盤及び歯科用ダイヤモンドバーで切削、加工し
た。同様に前記合成粉末を金型に充填圧縮成形、切削加
工して端子底部(第1図参照)とした。次いで、両圧粉
体の貫通孔を接合し、更に両者間に予め水を加え乳鉢で
よく練ったゲル状アパタイト粉末を塗布し、接着した。
これを1,250℃で1時間焼結処理して圧縮強度5,
000kg/cm2、曲げ強度1,200kg/cm2、相対密度9
5%且つ接着部も均一に焼結した第1図に図示の通りの
生体端子を得た。
Experimental Example I 1. Manufacture of biological terminal For hydroxyapatite powder, 0.5 mol / calcium hydroxide and 0.3 mol / phosphoric acid solution are gradually dropped,
Synthesis was carried out by reacting at 37 ° C. for 1 day, and this was obtained by filtration and drying. This synthetic powder was filled in a mold and compression-molded at a pressure of 800 kg / cm 2 to have a through hole with a diameter of 2 mm and a bulk density of 1.6.
A green compact of g / cm 3 was obtained. This was cut and processed into a terminal head shape (see FIG. 1) with a lathe and a dental diamond bar. Similarly, the synthetic powder was filled in a mold, compression-molded, and cut to obtain a terminal bottom portion (see FIG. 1). Next, the through holes of both green compacts were joined together, and further, water was previously added between the two and the gel apatite powder well kneaded in a mortar was applied and adhered.
This is sintered at 1,250 ° C for 1 hour to obtain compressive strength of 5,
000kg / cm 2, bending strength 1,200 kg / cm 2, the relative density 9
A bio-terminal as shown in FIG. 1 was obtained in which 5% and the bonded portion were evenly sintered.

ここに於いて、端子底部は直径5.4mm、厚さ2mm、端
子頭部首部分の径は4mm及び内径2mmである。
Here, the terminal bottom has a diameter of 5.4 mm, a thickness of 2 mm, and the terminal head neck has a diameter of 4 mm and an inner diameter of 2 mm.

尚、焼結温度を1,100℃とした場合に得られる焼結
体にあっては、相対密度85%、圧縮強度3,000kg
/cm2、曲げ強度700kg/cm2であった。これにミクロポ
ーラスホローファイバ(平均孔径0.2μのPVA(ポ
リビニルアルコール))を第1図の様に端子内に装着し
て試供品とした。
In addition, in the sintered body obtained when the sintering temperature is 1,100 ° C., the relative density is 85%, the compressive strength is 3,000 kg.
The bending strength was 700 kg / cm 2 and the bending strength was 700 kg / cm 2 . A microporous hollow fiber (PVA (polyvinyl alcohol) having an average pore diameter of 0.2 μ) was mounted in the terminal as shown in FIG. 1 to prepare a sample.

2.動物実験 上記生体端子を雑種成犬の側腹部皮膚に埋設し、経時観
察した結果、端子は底部及び首部分に於いて術後約2週
目で皮膚組織と強く結合接着して引っ張っても取れない
状態となり、1年経過後でも肉眼的には炎症反応などの
異常所見は何ら認められなかった。
2. Animal experiment The above-mentioned biological terminal was embedded in the flank skin of a mongrel dog and observed over time. As a result, the terminal was strongly bonded and adhered to the skin tissue at the bottom and neck about 2 weeks after the operation and removed even when pulled. After a lapse of one year, no abnormal findings such as an inflammatory reaction were visually observed.

また、通常の組織学的検索でも炎症細胞などは認められ
なかった。
In addition, no inflammatory cells were found in the usual histological examination.

他方、対照とした同形状のシリコーンゴム製端子にあっ
ては術後4週目でも皮膚との接着は全然認められず既に
炎症性の発赤が認められた。又、2ケ月目には炎症が進
行し化膿し始め、3ケ月目には脱落した。
On the other hand, with the silicone rubber terminal having the same shape as the control, no adhesion to the skin was observed at 4 weeks after the operation, and inflammatory redness was already observed. In addition, inflammation progressed and suppuration began in the second month, and shed in the third month.

実験例II 前記ハイドロキシアパタイト粉末に添加剤としてCa3(PO
4)27%,MgO 0.8%,Na2O 1.8%,K2O 0.2%,及びCaFe 0.2%を
添加した混合粉末を出発材料とした点を除き、他は前記
例と同様にして内径1.3mm,外径2.0mm,長さ8mm
の金管を含む小円柱状焼結体を製造し、これを研摩材で
研摩処理して添付第4図に図示する端子底部は直径5.
4mm,厚さ2mm,端子頭部首部分の径4mmの微小管状端
子を得た。
Experimental Example II Ca 3 (PO) was added to the hydroxyapatite powder as an additive.
4 ) 2 7%, MgO 0.8%, Na 2 O 1.8%, K 2 O 0.2%, and CaFe 0.2% were used as the starting materials, except that the mixed powder was used as the starting material. 0.3 mm, outer diameter 2.0 mm, length 8 mm
A small cylindrical sintered body including the gold pipe of No. 1 was manufactured, and this was subjected to polishing treatment with an abrasive, and the terminal bottom portion shown in FIG.
A small tubular terminal with a diameter of 4 mm, a thickness of 2 mm and a diameter of the neck portion of the terminal head was obtained.

この端子の焼結体部分の長さは8mmであった。The length of the sintered body portion of this terminal was 8 mm.

次にこれに平均孔径0.2μのPVA(ポリビニルアル
コール)よりなるミクロポーラスホローファイバを第4
図のように連結した後、成犬胸部に各々2カ所に渡って
その先端が皮下に位置するように刺通埋設した処、約3
週間後、これらの端子は、皮膚組織と完全に接合固定さ
れた状態となった。
Next, a microporous hollow fiber made of PVA (polyvinyl alcohol) having an average pore size of 0.2 μ
After connecting as shown in the figure, it was pierced and embedded in the chest of an adult dog in two places so that the tips were located subcutaneously.
After a week, these terminals were completely bonded and fixed to the skin tissue.

そこで、一方の端子端部を生理食塩水の充填された導管
に接合し、直流抵抗を測定した結果(不関導子としては
アドバンスエレクトロード社製心電図用電極レクロード
を他の剃毛胸部に貼着使用)、1.7kΩの値が得ら
れた。角質層を介した皮膚抵抗が通常100kΩ程度で
あることと対比すると、抵抗の著るしい低下が認められ
る。
Therefore, one end of the terminal was joined to a conduit filled with physiological saline and the DC resistance was measured (as an indifferent conductor, an electrode for electrocardiogram made by Advanced Electrode Co., Ltd.
Attached using R to other shaved chest), the value of 1.7kΩ were obtained. In contrast to the skin resistance through the stratum corneum which is usually about 100 kΩ, a marked decrease in resistance is observed.

次に他方の端子端部より径0.5mm,長さ20mmの微少針
型ブドウ糖センサ素子を挿入し、ブドウ糖の反応を確認
した。
Next, a microneedle type glucose sensor element having a diameter of 0.5 mm and a length of 20 mm was inserted from the other terminal end, and the reaction of glucose was confirmed.

【図面の簡単な説明】[Brief description of drawings]

添付第1図は本発明生体端子の模式断面図である。 添付第2図,第3図及び第4図は本発明の実施例を示す
断面図である。 I,II,IV……生体端子(皮膚組織親和性部材)、 III……皮膚組織親和性部材、 2,6,14……端子頭部(皮膚組織親和性部材)、 3,7,17……端子底部(皮膚組織親和性部材)、 4,8,12……ミクロポーラスホローファイバ、 13……皮膚組織、5,16……多孔性部材、 15……金属管、11……溶着部、 9……薬物注入口、10……薬物注出口。
FIG. 1 attached is a schematic cross-sectional view of the biomedical terminal of the present invention. FIGS. 2, 3, and 4 attached herewith are cross-sectional views showing an embodiment of the present invention. I, II, IV ... Biological terminal (skin tissue affinity member), III ... Skin tissue affinity member, 2,6,14 ... Terminal head (skin tissue affinity member), 3,7,17 ... ... Terminal bottom (skin tissue affinity member), 4,8,12 ... microporous hollow fiber, 13 ... skin tissue, 5,16 ... porous member, 15 ... metal tube, 11 ... welded portion, 9 ... Drug injection port, 10 ... Drug injection port.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】少なくとも皮膚組織との接触部分がリン酸
カルシウム系部材で形成された、ミクロポーラスホロー
ファイバより成ることを特徴とする経皮インプラント
体。
1. A percutaneous implant body comprising at least a contact portion with a skin tissue, which is made of a calcium phosphate-based member and is made of a microporous hollow fiber.
JP59235138A 1984-11-09 1984-11-09 Percutaneous implant body Expired - Lifetime JPH0611312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59235138A JPH0611312B2 (en) 1984-11-09 1984-11-09 Percutaneous implant body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59235138A JPH0611312B2 (en) 1984-11-09 1984-11-09 Percutaneous implant body

Publications (2)

Publication Number Publication Date
JPS61115568A JPS61115568A (en) 1986-06-03
JPH0611312B2 true JPH0611312B2 (en) 1994-02-16

Family

ID=16981614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59235138A Expired - Lifetime JPH0611312B2 (en) 1984-11-09 1984-11-09 Percutaneous implant body

Country Status (1)

Country Link
JP (1) JPH0611312B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823410A (en) * 1981-08-05 1983-02-12 Nippon Steel Corp Manufacture of nondirectional electromagnetic steel plate having superior magnetic characteristics

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823410A (en) * 1981-08-05 1983-02-12 Nippon Steel Corp Manufacture of nondirectional electromagnetic steel plate having superior magnetic characteristics

Also Published As

Publication number Publication date
JPS61115568A (en) 1986-06-03

Similar Documents

Publication Publication Date Title
CA1247960A (en) Transcutaneously implantable element
DE2821354C2 (en) Composite implant material for bone and dental prostheses and a process for its manufacture
GB2210363A (en) Ceramics composites and production process thereof
JPH01299549A (en) Artificial bone structure for bone implantation
US6903146B2 (en) Prosthetic filler for a living body and method of manufacturing the prosthetic filler
Shin et al. Tissue reactions to various percutaneous materials with different surface properties and structures
Shin et al. Surface properties of hydroxyapatite ceramic as new percutaneous material in skin tissue
JPH0611312B2 (en) Percutaneous implant body
EP1898799A1 (en) Device for and method of delivery and removal of substances in and from a tissue or vessel
EP0343114B1 (en) Transcutaneous device
CN220213105U (en) Titanium material root canal plug tip and series thereof
JPH0352304B2 (en)
JPH0150416B2 (en)
JP4802317B2 (en) Calcium phosphate ceramic bead assembly and method for constructing the same
JPH0313909B2 (en)
KR100508474B1 (en) Method for preparing porous implant and it's material thereof
JPH0930988A (en) Sustained release porous ceramic molding for medicine and its production
JPH0566909B2 (en)
JPH0213580B2 (en)
JPS639435A (en) Terminal for living body
JPH0445190B2 (en)
JP3152665B2 (en) Carrier for sustained release agent and method for producing the same
JPS62298349A (en) Terminal for living body
JPS6179463A (en) Composite apatite artificial bone material
JPH01126977A (en) Filler for crack or opening of bone