[go: up one dir, main page]

JPH06109951A - Production of optical transmission device - Google Patents

Production of optical transmission device

Info

Publication number
JPH06109951A
JPH06109951A JP4256666A JP25666692A JPH06109951A JP H06109951 A JPH06109951 A JP H06109951A JP 4256666 A JP4256666 A JP 4256666A JP 25666692 A JP25666692 A JP 25666692A JP H06109951 A JPH06109951 A JP H06109951A
Authority
JP
Japan
Prior art keywords
optical
optical fiber
block
alignment
accuracy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4256666A
Other languages
Japanese (ja)
Inventor
Masaaki Iwasaki
正明 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4256666A priority Critical patent/JPH06109951A/en
Publication of JPH06109951A publication Critical patent/JPH06109951A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4228Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements
    • G02B6/4232Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements using the surface tension of fluid solder to align the elements, e.g. solder bump techniques

Landscapes

  • Mechanical Coupling Of Light Guides (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To simplify high-accuracy optical axis alignment in optical packaging and to couple optical waveguides and optical fibers with low loss without adjustment by taking reliability and productivity into consideration. CONSTITUTION:Circular metallic pads 16 and 18 formed on the end faces of an optical waveguide element 10 and a block 21 with thin guide for aligning the optical fibers are bonded by solder bumps 17 and the optical axes of the optical waveguides 12 and V-grooves 20 are aligned with high accuracy without adjustment. Then, a block 22 with optical fiber fixing guides is adhered to the block 21 with the thin guides for aligning the optical fibers without taking care for the alignment accuracy. The high-accuracy coupling in optical packaging is easily executed simply by butting the optical fibers 14 against each other along the guides of the V-grooves 20 in the final.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光伝送装置の製造方法に
関し、特に光通信等において光波の変調、光路の切り替
え等を行う光通信モジュールを構成する光導波路素子と
光ファイバ端末とを接続する光伝送装置の製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an optical transmission device, and particularly to connecting an optical waveguide element and an optical fiber terminal which constitute an optical communication module for modulating a light wave and switching an optical path in optical communication. The present invention relates to a method for manufacturing an optical transmission device.

【0002】[0002]

【従来の技術】光通信システムの実用化が進み、大容量
や多機能をもつ高度のシステムの開発が進められてい
る。光伝送路網の交換機能、光データバスにおける端末
間の高速接続、切り替え等の新たな機能が求められてお
り、それらを可能にする光通信ネットワークの必要性が
高まっている。
2. Description of the Related Art Practical application of optical communication systems has advanced, and development of advanced systems having large capacity and multiple functions has been advanced. New functions such as a switching function of an optical transmission line network, a high-speed connection between terminals in an optical data bus, and a switching function are required, and the need for an optical communication network that enables them is increasing.

【0003】このような大容量、広帯域の特徴を有する
光伝送の実現において、例えば、現在実用されている光
スイッチは、プリズム、ミラー、ファイバ等を機械的に
移動させるものであり、低速であること、信頼性が不十
分なこと、形状が大きくマトリクス化に不適なこと等の
欠点がある。これを解決する手段として開発が進められ
ている一例として、基板上に設置した光導波路を用いた
導波形の光スイッチがあり、高速、多素子の集積化が可
能および高信頼等の特長がある。特にLiNbo3 結晶
等の強誘電体材料を用いたものは、光吸収が小さく低損
失であることと大きな電気光学効果を有しているため高
効率である等の特長があり、光伝送、光交換などの分野
への適用が期待されている。
In the realization of optical transmission having such a large capacity and wide band, for example, an optical switch currently in practical use mechanically moves a prism, a mirror, a fiber, etc., and is low speed. However, there are drawbacks such as insufficient reliability, large shape, and unsuitable for matrix formation. As one example that is being developed as a means to solve this, there is a waveguide type optical switch that uses an optical waveguide installed on a substrate, and has features such as high speed, multi-element integration and high reliability. . In particular, a material using a ferroelectric material such as LiNbo 3 crystal has features such as high efficiency because it has small light absorption and low loss and has a large electro-optical effect. It is expected to be applied to fields such as exchange.

【0004】このような導波路型光デバイスと光伝送網
との接続では、温度変動等の周囲の環境変動に対して安
定性と、光損失が小さいことが要求され、そのため光導
波路−光ファイバ間の高精度(1〜10μm)の位置合
わせ、固定が必要とされており、最も単純な構成として
光導波路端面と光ファイバ端面との突き合わせにより実
現されている。
In the connection of such a waveguide type optical device and an optical transmission network, it is required that the optical fiber is stable with respect to environmental changes such as temperature changes and has a small optical loss. High precision (1 to 10 μm) alignment and fixing are required, and the simplest configuration is realized by abutting the end face of the optical waveguide and the end face of the optical fiber.

【0005】導波路型光デバイスと光ファイバ端末との
結合構成の従来の光伝送装置の一例の斜視図を図3に示
す。図3(a)では、基板111上に光導波路112が
形成されており、光ファイバ端末113に配列された光
ファイバ114を光軸調整により、光導波路112に突
き合わせ、その状態を保持しながらUV硬化樹脂などの
接着剤115で光ファイバ端末113を基板111に固
定する。固定方法に関しては、接着剤の他に半田溶接、
レーザ溶接がある。
FIG. 3 shows a perspective view of an example of a conventional optical transmission apparatus having a combination structure of a waveguide type optical device and an optical fiber terminal. In FIG. 3A, the optical waveguide 112 is formed on the substrate 111, and the optical fibers 114 arrayed in the optical fiber terminal 113 are brought into abutment with the optical waveguide 112 by adjusting the optical axis, and the UV is maintained while maintaining that state. The optical fiber terminal 113 is fixed to the substrate 111 with an adhesive 115 such as a cured resin. Regarding the fixing method, in addition to adhesive, solder welding,
There is laser welding.

【0006】また、図3(b)は、光導波路素子110
及び光ファイバ端末113の端面にそれぞれ対となる数
十〜数百μm角程度の金属パッド116,118を備
え、この金属パッド116に、はんだバンプを形成し、
このバンプを介して光導波路素子110と光ファイバ端
末113との端面結合が無調整で精度良く光軸位置合わ
せが図れる。
Further, FIG. 3B shows an optical waveguide device 110.
And metal pads 116 and 118 each having a size of several tens to several hundreds of μm on each end face of the optical fiber terminal 113, and solder bumps are formed on the metal pads 116.
Through this bump, the end face coupling between the optical waveguide device 110 and the optical fiber terminal 113 can be adjusted without any adjustment and the optical axis can be accurately aligned.

【0007】[0007]

【発明が解決しようとする課題】上述した従来の光伝送
装置の製造方法において、光導波路素子と光ファイバ端
末とを高精度で位置合わせ、および固定をする必要があ
る。しかしながら、従来例の光軸調整および固定方法で
は、固着時の位置ずれ、経時変化が大きいので、長期に
安定性を要求されるものには不適であり、生産性も悪
い。レーザ溶接を用いた場合でも、高精度の光軸調整を
要求される課題は解消されない。また、バンプを用いた
結合方法では、光導波路素子および光ファイバ端末とも
にある程度の大きさが要求され、その重さも無視できな
い。特に、光ファイバ端末には光ファイバが既に接続さ
れているため、はんだバンプによるセルフアライメント
効果を十分に生かしきれない。今後、光デバイスモジュ
ールに対してより以上の高精度化、光損失低減の要求が
予想され、光実装における光軸合わせの簡略化および高
精度化が必要である。
In the above-described conventional method of manufacturing an optical transmission device, it is necessary to align and fix the optical waveguide element and the optical fiber terminal with high accuracy. However, the optical axis adjusting and fixing methods of the conventional example are not suitable for those requiring long-term stability and have poor productivity, because the positional deviation during fixing and the change over time are large. Even when laser welding is used, the problem of requiring highly accurate optical axis adjustment cannot be solved. Further, in the coupling method using bumps, both the optical waveguide element and the optical fiber terminal are required to have a certain size, and their weight cannot be ignored. In particular, since the optical fiber is already connected to the optical fiber terminal, the self-alignment effect due to the solder bump cannot be fully utilized. In the future, it is expected that the optical device module will be required to have higher accuracy and lower optical loss, and it is necessary to simplify the optical axis alignment and to improve the accuracy in optical mounting.

【0008】[0008]

【課題を解決するための手段】本発明の光伝送装置の製
造方法は、光導波路が基板表面に形成されている光導波
路素子の端面と光ファイバが配列される光ファイバ端末
の端面とに対をなす円形の金属パッドを設け、互いの前
記金属パッドをバンプを介して接着する光伝送装置にお
いて、前記光ファイバ端末が光ファイバ位置合わせ用薄
型ガイド付のブロックと光ファイバ固定用ガイド付のブ
ロックとにより構成され、前記光導波路素子と前記光フ
ァイバ位置合わせ用薄型ガイド付のブロックとをバンプ
を用いて高精度に接続する工程と、前記光ファイバ固定
用ガイド付のブロックを前記光ファイバ位置合わせ用薄
型ガイド付のブロックに貼付けた後に光ファイバを配列
する工程とを有する。
A method for manufacturing an optical transmission device according to the present invention is directed to an end face of an optical waveguide element having an optical waveguide formed on a substrate surface and an end face of an optical fiber terminal on which optical fibers are arranged. In a light transmission device in which circular metal pads that form a circle are provided and the metal pads are bonded to each other via bumps, the optical fiber terminal includes a block with a thin guide for optical fiber alignment and a block with a guide for fixing the optical fiber. And a step of connecting the optical waveguide element and the block with the thin guide for optical fiber alignment with high precision using bumps, and the block with the guide for fixing the optical fiber is aligned with the optical fiber. And a step of arranging the optical fibers after being attached to a block with a thin guide.

【0009】[0009]

【作用】本発明の光伝送装置の製造方法は、光導波路素
子と光ファイバ端末を構成する光ファイバ位置合わせ用
薄型ガイド付ブロックとの端面に形成された円形金属パ
ッドをはんだバンプにより接合すれば、その溶融はんだ
のセルフアライメント効果により無調整で高精度に光導
波路素子と光ファイバ位置合わせ用薄型ガイド付ブロッ
クとの光軸合わせが実現する。これらは、光ファイバが
未接続の上、光ファイバ端末が本来の数分の一から十数
分の一である軽量薄型ブロックであるため、セルフアラ
イメント効果を妨げないことによる。こうして高精度位
置合わせ(自動調整、固定)された後、光ファイバを配
列、固定するための光ファイバ固定用ガイド付ブロック
をほとんど位置合わせ精度を気にすることなく接着する
ことができる。従って、光実装における高精度結合が簡
易に実現する。
According to the method of manufacturing the optical transmission device of the present invention, the circular metal pads formed on the end faces of the optical waveguide element and the block with the optical fiber alignment thin guide forming the optical fiber terminal are joined by solder bumps. By the self-alignment effect of the molten solder, the optical axis alignment between the optical waveguide element and the thin guide block for optical fiber alignment can be realized with high accuracy without adjustment. This is because the self-alignment effect is not hindered because the optical fiber is not connected and the optical fiber terminal is a light weight thin block having a fraction of one to one tenth of the original. After the high-accuracy alignment (automatic adjustment and fixation) in this manner, the optical fiber fixing guide block for arranging and fixing the optical fibers can be bonded with almost no concern about the alignment accuracy. Therefore, highly accurate coupling in optical mounting is easily realized.

【0010】[0010]

【実施例】次に本発明について図面を参照して説明す
る。図1は本発明の一実施例を説明するための断面図で
あり、光導波路素子と2種類のガイド付ブロックで構成
される光ファイバ端末とをはんだバンプを介して端面で
結合する接続方法を示す。
The present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view for explaining an embodiment of the present invention, which shows a connection method for connecting an optical waveguide element and an optical fiber terminal composed of two kinds of blocks with guides at an end face via solder bumps. Show.

【0011】光導波路素子10及び光ファイバ位置合わ
せ用薄型ガイド付のブロック21の接合面にそれぞれ対
となる円形の金属パッド16,18を形成し、はんだバ
ンプ17を用いた結合方法により無調整で高精度の光軸
位置合わせが実現できる。
Circular metal pads 16 and 18 that form a pair are formed on the joint surfaces of the optical waveguide element 10 and the block 21 with a thin guide for aligning the optical fibers, and the solder bumps 17 are used for bonding without adjustment. High precision optical axis alignment can be realized.

【0012】基板11の表面に光導波路12が形成され
た光導波路素子10の端面には、直径数十百μm程度の
円形金属パッド16、およびはんだバンプ17が形成さ
れている。金属パッド16の金属材料は、用いるはんだ
バンプ17の材料により異なるが、PbSnはんだであ
ればCr−Ni、AuSnはんだならばCr−Auがよ
い。はんだバンプの高さは数十〜数百μmがよい。光フ
ァイバ位置合わせ用薄型ガイド付のブロック21の端面
にも光導波路素子10と同様の円形の金属パッド18が
形成されている。光ファイバ14を配列するためのV溝
20と金属パッド18との位置関係は、光導波路1と金
属パッド16とのそれに一致するようになっている。
On the end face of the optical waveguide device 10 having the optical waveguide 12 formed on the surface of the substrate 11, a circular metal pad 16 having a diameter of several tens of μm and a solder bump 17 are formed. The metal material of the metal pad 16 differs depending on the material of the solder bump 17 used, but is preferably Cr-Ni for PbSn solder and Cr-Au for AuSn solder. The height of the solder bump is preferably several tens to several hundreds μm. A circular metal pad 18 similar to that of the optical waveguide device 10 is also formed on the end face of the block 21 with the thin guide for optical fiber alignment. The positional relationship between the V-grooves 20 for arranging the optical fibers 14 and the metal pads 18 matches that of the optical waveguide 1 and the metal pads 16.

【0013】先ず、図1(A)に示すように、光導波路
素子10に光ファイバ位置合わせ用薄型ガイド付のブロ
ック21を仮接続する。このときの位置合わせは、光フ
ァイバ位置合わせ用薄型ガイド付のブロック21の端面
の金属パッド18の一部がはんだバンプ17に接触する
程度でよいので、従来要求されていた高精度の位置合わ
せは不要となる。
First, as shown in FIG. 1A, a block 21 with a thin guide for optical fiber alignment is temporarily connected to the optical waveguide device 10. Since the alignment at this time may be such that a part of the metal pad 18 on the end face of the block 21 with the thin guide for optical fiber alignment comes into contact with the solder bumps 17, high-precision alignment conventionally required can be achieved. It becomes unnecessary.

【0014】ここで、はんだバンプ17を溶融させる
と、図1(B)に示すように溶融はんだ19の表面張力
によるセルフアライメント効果で、図1(C)に示すよ
うに光導波路12と光ファイバ14との高精度位置合わ
せが自動的に行われ、同時に固定することができる。
Here, when the solder bumps 17 are melted, the self-alignment effect due to the surface tension of the molten solder 19 as shown in FIG. 1 (B) causes the optical waveguide 12 and the optical fiber as shown in FIG. 1 (C). High-precision alignment with 14 is automatically performed and can be fixed at the same time.

【0015】次に、光ファイバ固定用ガド付のブロック
22を接着剤15により光ファイバ位置合わせ用薄型ガ
イド付のブロック21に接続する。ここでの接着は、既
に導波路12とG溝20との光軸合わせが高精度で固定
されているため、数十〜数百μm程度の精度でよく、従
来要求されたμmオーダの調整精度を大幅に緩和するこ
とができる。最後に、図1(D)に示すように光ファイ
バ14をV溝20に沿って挿入し、光導波路素子10端
面に付き合てて固定することで光実装の無調整で高精度
の結合が実現できる。
Next, the block 22 with a gad for fixing the optical fiber is connected to the block 21 with a thin guide for positioning the optical fiber by an adhesive 15. Since the optical axis alignment between the waveguide 12 and the G groove 20 is already fixed with high accuracy, the bonding here may be performed with accuracy of about several tens to several hundreds of μm, and conventionally required adjustment accuracy of the μm order. Can be significantly eased. Finally, as shown in FIG. 1 (D), the optical fiber 14 is inserted along the V groove 20 and fixed by being attached to the end face of the optical waveguide element 10 to achieve high-precision coupling without adjustment of optical mounting. realizable.

【0016】図2は本発明の一実施例に係る光導波路素
子および2種類のガイド付のブロックで構成される光フ
ァイバ端末の斜視図である。はんだバンプを用いた結合
方法により無調整で高精度の光軸位置合わせが実現でき
る。
FIG. 2 is a perspective view of an optical fiber terminal including an optical waveguide element and two types of blocks with guides according to an embodiment of the present invention. The bonding method using solder bumps enables highly accurate optical axis alignment without adjustment.

【0017】[0017]

【発明の効果】以上説明したように本発明は、光導波路
が基板表面に形成されている光導波路素子の端面と光フ
ァイバが配列される光ファイバ端末の端面とに対をなす
円形の金属パッドを設け、互いの金属パッドをバンプを
介して接着する光伝送装置において、光ファイバ端末が
光ファイバ位置合わせ用薄型ガイド付のブロックと光フ
ァイバ固定用ガイド付のブロックとにより構成され、光
導波路素子と光ファイバ位置合わせ用薄型ガイド付のブ
ロックとをバンプを用いて高精度に接続し、光ファイバ
固定用ガイド付のブロックを光ファイバ位置合わせ用薄
型ガイド付のブロックに貼付けた後光ファイバを配列す
ることにより、光実装における高精度な光軸位置合わせ
が図れ、光導波路と光ファイバとを低損失で容易に結合
させることができる。また、温度変化等に対する信頼性
が高く、生産性も優れているので実用的でもある。
As described above, according to the present invention, a circular metal pad that makes a pair with an end face of an optical waveguide element having an optical waveguide formed on a substrate surface and an end face of an optical fiber terminal on which optical fibers are arranged. In the optical transmission device in which the metal pads are bonded to each other through the bumps, the optical fiber terminal is composed of a block with a thin guide for optical fiber alignment and a block with a guide for fixing the optical fiber. And the block with the thin guide for optical fiber alignment are connected with high precision using bumps, and the block with the guide for fixing the optical fiber is attached to the block with the thin guide for aligning the optical fiber, and then the optical fibers are arranged. By doing so, highly accurate alignment of the optical axis in optical mounting can be achieved, and the optical waveguide and the optical fiber can be easily coupled with low loss. . Further, it is practical because it has high reliability against temperature changes and the like and has excellent productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の製造工程を説明するための
断面図である。
FIG. 1 is a cross-sectional view for explaining a manufacturing process according to an embodiment of the present invention.

【図2】本実施例の光導波路素子および光ファイバ端末
の斜視図である。
FIG. 2 is a perspective view of an optical waveguide device and an optical fiber terminal of this embodiment.

【図3】従来の光伝送装置の一例の斜視図である。FIG. 3 is a perspective view of an example of a conventional optical transmission device.

【符号の説明】[Explanation of symbols]

10 光導波路素子 11 基板 12 光導波路 13 光ファイバ端末 14 光ファイバ 15 接着剤 16,18 円形の金属パッド 17 はんだバンプ 19 溶融はんだ 20 V溝 21 光ファイバ位置合わせ用薄型ガイド付のブロッ
ク 22 光ファイバ固定用ガイド付のブロック
10 Optical Waveguide Element 11 Substrate 12 Optical Waveguide 13 Optical Fiber Terminal 14 Optical Fiber 15 Adhesive 16, 18 Circular Metal Pad 17 Solder Bump 19 Molten Solder 20 V Groove 21 Block with Optical Fiber Alignment Thin Guide 22 Optical Fiber Fixing Block with guide

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光導波路が基板表面に形成されている光
導波路素子の端面と光ファイバが配列される光ファイバ
端末の端面とに対をなす円形の金属パッドを設け、互い
の前記金属パッドをバンプを介して接着する光伝送装置
において、前記光ファイバ端末が光ファイバ位置合わせ
用薄型ガイド付のブロックと光ファイバ固定用ガイド付
のブロックとにより構成され、前記光導波路素子と前記
光ファイバ位置合わせ用薄型ガイド付のブロックとをバ
ンプを用いて高精度に接続する工程と、前記光ファイバ
固定用ガイド付のブロックを前記光ファイバ位置合わせ
用薄型ガイド付のブロックに貼付けた後に光ファイバを
配列する工程とを有することを特徴とする光伝送装置の
製造方法。
1. A circular metal pad that forms a pair with an end face of an optical waveguide element in which an optical waveguide is formed on a substrate surface and an end face of an optical fiber terminal on which optical fibers are arranged is provided, and the metal pads are connected to each other. In the optical transmission device adhered via a bump, the optical fiber terminal is composed of a block with an optical fiber alignment thin guide and a block with an optical fiber fixing guide, and the optical waveguide element and the optical fiber alignment For connecting the block with the thin guide for use with bumps with high accuracy, and arranging the optical fibers after the block with the guide for fixing the optical fiber is attached to the block with the thin guide for aligning the optical fiber And a step of manufacturing the optical transmission device.
JP4256666A 1992-09-25 1992-09-25 Production of optical transmission device Withdrawn JPH06109951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4256666A JPH06109951A (en) 1992-09-25 1992-09-25 Production of optical transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4256666A JPH06109951A (en) 1992-09-25 1992-09-25 Production of optical transmission device

Publications (1)

Publication Number Publication Date
JPH06109951A true JPH06109951A (en) 1994-04-22

Family

ID=17295786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4256666A Withdrawn JPH06109951A (en) 1992-09-25 1992-09-25 Production of optical transmission device

Country Status (1)

Country Link
JP (1) JPH06109951A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0726477A3 (en) * 1995-02-09 1997-07-30 At & T Corp An arrangement for interconnecting an optical fiber to an optical component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0726477A3 (en) * 1995-02-09 1997-07-30 At & T Corp An arrangement for interconnecting an optical fiber to an optical component

Similar Documents

Publication Publication Date Title
US6118917A (en) Optical fiber passive alignment apparatus using alignment platform
US5627931A (en) Optoelectronic transducer
JP4559327B2 (en) Alignment method of optical module using lens and optical module created by the method
US5319725A (en) Bilithic composite for optoelectronic integration
KR100302144B1 (en) connector-type optical transceiver using SOI optical wave-guide
US7369334B2 (en) Optical device with alignment compensation
KR19980030121A (en) Optical module with lens aligned in V-groove and manufacturing method thereof
JPH0829638A (en) Optical waveguide / optical fiber connection structure, optical waveguide / optical fiber connection method, optical waveguide substrate used for optical waveguide / optical fiber connection, method of manufacturing the same, and optical fiber with optical fiber substrate used for optical waveguide / optical fiber connection fiber
GB2329486A (en) Coupling optical fibre to optical element on substrate
US5849204A (en) Coupling structure for waveguide connection and process for forming the same
EP1936414A2 (en) Small optical package having multiple optically aligned soldered elements therein
JPH0527140A (en) Optical transmitter and manufacture of the same
EP0846966A2 (en) Optical waveguide
JPH0688917A (en) Method for connecting optical waveguide element and optical fiber terminal
JPH05210025A (en) Connecting structure and connecting method for optical waveguide element and optical fiber
JPH06109951A (en) Production of optical transmission device
JPH0688918A (en) Optical waveguide device and its production
JPH05303023A (en) Connecting structure between optical waveguide element and optical fiber
JPH0239110A (en) Optical fiber terminal for optical semiconductor element module
KR100271826B1 (en) Optical alignment between laser diode and optical fiber using inp v-groove
JP3692226B2 (en) Optical package and optical module assembly method
JPH024204A (en) Mounting method for opto-electronic circuits
JP2613880B2 (en) Connection method between optical waveguide and optical fiber
JPH0571922B2 (en)
JP2982362B2 (en) Optical waveguide / optical fiber coupling structure

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991130