JPH0610823A - Total power generation device through application of principles - Google Patents
Total power generation device through application of principlesInfo
- Publication number
- JPH0610823A JPH0610823A JP4155543A JP15554392A JPH0610823A JP H0610823 A JPH0610823 A JP H0610823A JP 4155543 A JP4155543 A JP 4155543A JP 15554392 A JP15554392 A JP 15554392A JP H0610823 A JPH0610823 A JP H0610823A
- Authority
- JP
- Japan
- Prior art keywords
- water
- buoyancy
- tank
- pressure
- gravity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/20—Hydro energy
Landscapes
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】梃子の原理力点の力×力点と支点
の距離=荷重点の力×荷重点と支点の距離 其の為力点と支点の距離か荷重点と支点の距離を上回る
時力点の力は荷重点の力を上回る。図に就いて説明する
と1.水そう 2.浮力そうち 3.加圧梃子 4.浮力梃子 5.浮力支点 6.押下棒 7.架台
8.加圧支点 9.加圧シリンダー 10.ストッパー
11.Oリング 12.加圧そう 13.逆流防止弁
14.水供給管 15.加圧水供給管 16.駆動そう
17.蓄圧室 18.圧水噴射板19.圧水噴射孔 20.水圧タービ
ン 21.タービン室 22.圧水噴射板作動ハンドル 1.水そうは形は中空箱型を呈して、2.浮力そうは
1.水そう内に1.水そうより縦横が1.水そうの縦横
よりやゝ小さく高さが1.水そうの半分強の中空箱型で
1.水そう内に設置されておる。まづ水が本管を通って
14.水供給管に到達して13.逆流防止弁を開き1
2.加圧そうに満水になると水は15.加圧水供給管を
経由して17.蓄圧室に流入し17.蓄圧室をも満杯に
して14.水供給管を昇りながら1.水そうに流入す
る。12.加圧そうは1.水そうと高さは同じ位の細長
の直立中空円筒で底部に9.加圧シリンダー10.スト
ッパー11.Oリングを装備しておる 16.駆動そう
は1.水そうの縦横より1まわり大きく高さは1.水そ
うよりやゝ低い中空箱型で内部を18.圧水噴射板にて
仕切られ仕切られた向って右側は17.蓄圧室を形成し
て左側は上下2室の21.タービン室を形成して中に各
1個の20.水圧タービンを内蔵しておる。1.水そう
に流入した水は除々に水量を増して、2.浮力そうを浮
かせ始め上方に移動する2.浮力そうの上部には4.浮
力梃子が2.浮力そう最上段の突起に嵌合されて居り
2.浮力そうが浮力に依って上昇し始めると4.浮力梃
子も2.浮力そうに押し上げられ上昇する4.浮力梃子
は1.水そうの向って左端より向って右側に到り1.水
そうの向って右壁を貫通して1.水そうの外に突出て居
り貫通された壁には1.浮力梃子の太さを多少上回る六
が穿れて居り其の六が4.浮力梃子の支点の役目をする
5.浮力支点である4.浮力梃子が上昇を始めると6.
押下棒は梃子の原理に依り下方に押し下げられ3.加圧
梃子を下降させる圧力となる。又1.水そうに流入した
水は量が増える度に重さ(重力)を増し、6.押下棒と
同じく3.加圧梃子を下降させる圧力となる。3.加圧
梃子が下方に押し下げられると8.加圧支点が設置され
て居る為3.加圧梃子の向って左端は9.加圧シリンダ
ーを上部に押し上げる圧力となる9.加圧シリンダーは
12.加圧そう内径に密着摺動する様嵌合され11.O
リングに依り水洩れを防いでおる。又下には下り止めの
10.ストッパーが設けられて居る9.加圧シリンダー
に押し上げ圧力が加ると12.加圧そう15.加圧水供
給管17.蓄圧室を満杯に満した水はパスカルの原理に
依り押し上げ圧力と同じ圧力に増強される。其の瞬間1
3.逆流防止弁は押し上げ圧力で上方に押し上げられて
12.加圧そうは密閉される。又18.圧水噴射板は2
枚の19.圧水噴射孔を有した板が密着摺動する様重ね
合され装置停止水時は2枚の18.圧水噴射板の19.
圧水噴射孔は互に一致連通しない状態にあり9.加圧シ
リンダーに依り加圧された後に22.圧水噴射板作動ハ
ンドルの操作に依り18.圧水噴射板2枚の中1枚が左
右いづれかにわずか移動して2枚の18.圧水噴射板の
19.圧水噴射孔が一致連通する様製作されておる。浮
力、重力、梃子力、水圧等原理に依って強く加圧された
圧水は19.圧水噴射孔より強噴射されて2基の20.
水圧タービンを駆動して発電又は重機械の動力源として
用いられる。18.圧水噴射板の表面積を大きくして大
容量の水圧タービンを駆動する事も出来るし又多基の水
圧タービンを駆動する事も可能である19.圧水噴射孔
よりの水の強噴射に依り17.蓄圧室の水量が減小する
と12.加圧そうより15.加圧水供給管を経由して水
が17.蓄圧室を充当する。其の為12.加圧そうの水
が減小すると同時に13.逆流防止弁が開き水が14.
水供給管より12.加圧そうに供給される。水量が少
い、又は落差が少ない等現時点の発電に適しない、又は
人口が少ない為送電設備が割高になる等僻地の発電、又
は大きな落差を必要としない為現在稼動中の水力発電所
の下流に設置して放流の水を利用して発電又は重機械の
動力源として利用する事は危険な原子力発電の代替とし
て社会のエネルギー対策に貢献する事が大きい。[Industrial application] Principle of leverage Power of force point × distance between power point and fulcrum = force at load point × distance between load point and fulcrum Therefore power point when the distance between power point and fulcrum or distance between load point and fulcrum is exceeded Force exceeds that at the load point. With reference to the figure, 1. Water so 2. Buoyancy Pressed lever 4. Buoyancy leverage 5. Buoyancy fulcrum 6. Push bar 7. Stand
8. Pressure fulcrum 9. Pressure cylinder 10. Stopper 11. O-ring 12. Pressurization 13. Check valve 14. Water supply pipe 15. Pressurized water supply pipe 16. Drive it 17. Accumulation chamber 18. Pressure jet plate 19. Pressure water injection hole 20. Water turbine 21. Turbine room 22. Pressure water jet operating handle 1. The water tank has a hollow box shape. Buoyancy seems to be 1. In the water tank 1. The vertical and horizontal directions are 1. The height is 1. It is a hollow box type that is half the strength of water. It is installed in the water tank. Water flows through the main pipe 14. 13. Reach the water supply pipe Open the check valve 1
2. When it is full of pressure, the water becomes 15. 17. Via the pressurized water supply pipe It flows into the accumulator chamber 17. Fully fill the accumulator chamber 14. Ascending the water supply pipe 1. It flows into the water tank. 12. Pressurization is 1. 8. An upright hollow cylinder with the same height as the water tank and at the bottom. Pressure cylinder 10. Stopper 11. Equipped with O-ring 16. Driving is 1. The height is 1. It is a hollow box type that is slightly lower than the water tank. The partition on the right side is 17. A pressure storage chamber is formed, and the left side has two chambers, 21. Turbine chambers are formed to form one 20. It has a built-in water pressure turbine. 1. The amount of water flowing into the water tank gradually increases, and 2. 1. Start to float the buoyancy and move upwards 2. At the top of buoyancy 4. Buoyancy leverage 2. It seems that the buoyancy seems to fit into the topmost protrusion. 2. When buoyancy seems to start rising due to buoyancy 4. Buoyancy leverage 2. 3. It is pushed up like buoyancy and rises Buoyancy leverage is 1. Go to the right side from the left end facing the water tank. Go through the right wall facing the water tank. There is one on the wall that penetrates and stands outside the water tank. There are six buoyant levers that are slightly thicker than the thickness of the lever. 4. Acts as a fulcrum for the buoyancy lever. Buoyancy fulcrum 4. 5. When the buoyancy lever starts to rise.
The push rod is pushed downward by the principle of leverage 3. It is the pressure to lower the pressure lever. Also 1. Every time the amount of water flowing into the water tank increases, the weight (gravity) increases. Same as the push rod 3. It is the pressure to lower the pressure lever. 3. 7. When the pressure lever is pushed down. 2. Since there is a pressure fulcrum, The left end facing the pressure lever is 9. 8. Pressure that pushes the pressure cylinder upwards. The pressure cylinder is 12. Fitted so that it presses against the inner diameter and slides closely against the inner diameter. O
The ring prevents water from leaking. In addition, there is a down stop 10. There is a stopper 9. When pressure is applied to the pressurizing cylinder, 12. Pressurization 15. Pressurized water supply pipe 17. The water that fills the accumulator chamber is boosted to the same pressure as the pushing pressure by Pascal's principle. That moment 1
3. The check valve is pushed up by the pushing pressure. The pressure tank is sealed. Also 18. There are 2 pressure jets
Sheet of 19. The plates with pressure water injection holes are overlapped so that they slide closely, and the two 18. 19. Water pressure jet plate
8. The pressure water injection holes are in a state where they do not communicate with each other. 22. After being pressurized by the pressure cylinder 18. Depending on the operation of the pressure water jet plate operating handle. One of the two pressurized water jet plates moves slightly to the left or right and the two 18. 19. Water pressure jet plate It is manufactured so that the pressure water injection holes are in communication. The buoyancy, gravity, leverage, water pressure, etc. 20 of the two groups by strong injection from the pressure water injection hole.
It is used as a power source for power generation or heavy machinery by driving a hydraulic turbine. 18. It is possible to drive a large-capacity hydraulic turbine by increasing the surface area of the pressurized water jet plate, or it is possible to drive multiple hydraulic turbines. Due to the strong jet of water from the pressurized water jet hole 17. 12. When the amount of water in the accumulator decreases. 15) Water is supplied through the pressurized water supply pipe. Fill the accumulator. Therefore 12. At the same time the amount of water that seems to be pressurized is reduced 13. Check valve opened and water was 14.
From the water supply pipe 12. Supplied under pressure. It is not suitable for power generation at the present time due to a small amount of water or a small head, or power generation in a remote area where transmission facilities are expensive due to a small population, or downstream of the hydropower station currently in operation because a large head is not required. Installed in the plant and using the discharged water to generate electricity or as a power source for heavy machinery, it greatly contributes to social energy measures as an alternative to dangerous nuclear power generation.
【図1】出力発生装置の縦断面図である。FIG. 1 is a vertical cross-sectional view of an output generator.
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成5年7月26日[Submission date] July 26, 1993
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】全文[Correction target item name] Full text
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【書類名】 明細書[Document name] Statement
【発明の名称】原理応用綜合発電装置Title of invention Integrated power generation device
【特許請求の範囲】[Claims]
【発明の詳細な説明】 図について説明すると 1.河川 2.水圧管 3.水
力発電所 4.水圧受板 5.水洩れ防止板 6.梃子
支柱 7.水力タービン右側板 8.水力タービン左側
板 9.水力タービン上板 10.水力タービン底板
11.発電機 12.放水管 13.浮力槽導水管 14.浮力受歯車
15.浮力伝導軸16.浮力内槽 17.浮力外槽
18.浮力外槽底板 19.浮力槽発電機伝導軸 20.浮力外槽回り止め 21.浮力内槽回り止め受溝
22.発電機 23.浮力槽導水管開閉弁 24.開
閉弁受スプリング 25.開閉弁露出口 26.開閉弁
スイッチ 27.開閉弁放水細孔 28.浮力槽放水受
箱 29.重力槽導水管.30.重力槽 31.重力
槽支柱 32.重力槽伝導軸 33.重力受歯車 3
4.発電機 35.昇降用支柱 36.昇降用ワイヤー
37.昇降用前ローラー 38.昇降用後ローラー
39.重力槽発電機伝導軸 40.重力槽放水棒 4
1.重力槽支柱パッキン 42.重力槽底板 43.重
力槽底板パッキン 44.重力槽放水受箱 45.加圧
小板 46.加圧小板Oリング 47.加圧室.48.増圧室 49.加圧大板 50.
加圧大板Oリング 51.熱ボイラー原料水取入管.5
2.加圧大板ボスOリング 53.水圧室 54.空気
圧縮室 55.空気取入孔 56.空気圧縮ピストン
57.銅パッキン.58.高熱噴射弁外壁 59.空気
圧縮ピストン止壁 60.高熱噴射弁ピストン 61.
高熱噴射弁熱解離室 62.高熱噴射弁噴射板 63.
高熱噴射弁噴射細孔 64.熱ボイラー65.水素気体
酸素気体未解離水蒸気圧送管 66.。圧縮高熱発電所
67.火力発電所 68.放水路。。流水を 1.河
川より 2.水圧管に導入し 1.河川にやや平行に上
流より下流に至る勾配を 1.河川の勾配より緩やかに
敷設して 2.水圧管の勾配の緩やかな下流側先端と
3.水力発電所の落差を大きくすると共に、2.水圧管
の全長を出来る限り短かくするため、2.水圧管の流水
の取入口の管径より下流に向かう程、2.水圧管の管径
を狭め流水圧を高め速流水として流送すると共に、2.
水圧管の勾配の緩やかな下流側先端より3.水力発電所
に急勾配に2.水圧管を敷設してこの2.水圧管の管径
も下に向かうほど管径を狭め尚も流水圧を高め高速流水
として 3.水力発電所内の 4〜10.水力タービン
に落下させる。4〜10.水力タービンの構造は従来の
水力タービンと異なり円径のドーナツ状で断面が正方形
の箱型の形をしており正方形の中に断面がやや小さい同
じく正方形の金属板 4.水圧受板が.数拾枚、等分の
間隔を置いて挿入され 4.水圧受板の上方は金属棒
6.梃子支柱を形成し 9.水力タービン上板を貫通し
て貫通直後ドーナツ状のドーナツ内径中心に設置された
11.発電機に直角に延出固設され 6.梃子支柱が
9.水力タービン上板を貫通する個所はモノレールの
吊下レールのように 9.水力タービン上板中心全周に
6.梃子支柱の径を上回る板巾を持つ金属板 5.水
洩れ防止板が 9.水力タービン上板中心で板厚の中心
に全円周上に穿れた横溝に差込嵌合されその上には
6.梃子支柱が貫通溶接されており 6.梃子支柱下部
には 4.水圧受板が溶接されており 4.水圧受板が
水の流力に依り流れ方向に移動すると 5.水洩れ防止
板及び6.梃子支柱も同様に同方向に移動しながら水圧
に依る水洩れを 5.水洩れ防止板によつて少量に留め
る様う考案されている。5.水洩れ防止板 6.梃子支
柱が流れ方向に移動すると 11.発電機に延出固設さ
れた 6.梃子支柱の梃子の原理に依り 6.梃子支柱
の長さに比例して理論的には無限大に 11.発電機を
駆動する力を増強する事が可能である。実際には 6.
梃子支柱の重量強度等で或る長さに制約される。又、4
〜10.水力タービンは〔図 4〕のように3基階段上
最上部に設置され、4.〜10.水力タービン中心には
3段目床上より11.発電機が1段目上部まで垂直に設
置され 11.発電機には3基の6.梃子支柱が各数拾
本づつ3種類延出固設され各 6.梃子支柱の先端には
5.水洩れ防止板その下には 4.水圧受板が溶接され
ている 6.梃子支柱は1段目より2段目、2段目より
3段目、全長が長く制作されて居り又、4.水圧受板は
板中心に1段目は大きな正方形の窓が2段目は1段目の
正方形の窓の1辺の1/2位の窓が3段目は窓無しに制
作されている。供給される流水は先ず1段目の4.〜1
0.水力タービンに高速流水として流入するため 4.
水圧受板及び 6.梃子支柱には大きな水圧が掛かるた
め 4.水圧受板 6.梃子支柱の破損につながりかね
ない。破損を防止するため 4.水圧受板の厚さ 6.
梃子支柱の太さを極端に大きくすると重量のみ増大して
発電能力の大幅な低下をもたらす。そのため3基の中一
番大きな水圧を受ける1段目の 4.〜10.水力ター
ビンの4.水圧受板の中心に正方形の大きな窓を空けて
水圧を逃して水力を2段目の 4.〜10.水力タービ
ンに送り伝え又、6.梃子支柱も3基中一番短かくして
強度を保全するよう考案されている。2段目の 4.〜
10.水力タービンに掛かる水圧は1段目より相当減退
しているので 4.水圧受板の中心の窓は1段目の1/
4位に留め 6.梃子支柱の全長も1段目より約く30
%程度長い。3段目の4.〜10.水力タービンの水圧
は2段目の 4.〜10.水力タービンに掛かる水圧よ
り尚減退しているので 4.水圧受板の窓は空けず盲に
して使用し 6.梃子支柱の全長も2段目より約30%
程度長くする。1段目2段目3段目の4〜10.水力タ
ービンの 4.水圧受板は工作上面積及び厚さ、材質等
中心の窓を除き均一が望ましい。6.梃子支柱も全長の
み3種類に異なるが太さ、材質等均一にしたい。但し3
基の 4.〜10.水力タービンの流水に流力が残留す
る時は増設も考えられる。11.発電機は1基なので相
当大出力の 11.発電機になると思われる。1基に限
定するのは梃子の原理を利用する事から 4.〜10.
水力タービンの周辺速度は高速でも中心の 11.発電
機としての回転数は低速になるため低速型の11.発電
機を使用するとしても 11.発電機の回転部分の径を
出来得る限り大型にして回転部分の周辺速度を出来得る
限り高速にする為である。但しどうしても周辺速度が不
足の場合は全 6.梃子支柱を大型の歯車に直結して
11..発電機の回転部分真下に小型の歯車を設け、大
小の歯車を噛み合せて歯数の差に依って周辺速度を上げ
ることも考えられる。数拾枚の3種類の 4.水圧受板
を駆動する事により流力の弱った流水を次に.12.放
水管に依り 17.浮力外槽に供給する。〔図 3〕に
3個所………線の説明は……の下は……線の上の部分よ
り数メーター低く構築されており 3.水力発電所の床
高は4段で構成されている。12.放水管より 13.
浮力槽導水管に移流して 16.〜17.浮力槽に供給
される供給方法は左右いづれかの一番端側の 17.浮
力外槽より供給され1基が満杯になると次の 17.浮
力外槽に供給されその 17.浮力外槽が満杯になると
次と順次に供給される 16.〜17.浮力槽は 1
6.浮力内槽..17.浮力外槽とで構成され両槽とも
断面は正方形とし高さは正方形の1辺の2倍程度で 1
6.浮力内槽は 17.浮力外槽より一回り小さく密閉
されて16.浮力内槽最上部に 14.浮力歯車側に
15.浮力伝導軸を直立溶接されている。17.浮力外
槽は上部を覆われていない。供給水は 17.浮力外
槽、15.浮力伝導軸の反対側側面より供給され流水圧
を高める為 13.浮力槽導水管の先端を絞って細くし
ておく。この時点、〔図 7〕の様に 14.浮力受歯
車と 15.浮力伝導軸はまだ噛み合っていない。又
16.浮力内槽と 17.浮力外槽の各4側面の間隙は
非常に狭く前後の間隙も 14.浮力受歯車 15.浮
力伝導軸に歯切された歯高をわずかに上回る程度であり
左右の間隙は尚狭小である。流水が一時に大量に供給さ
れると大きな流水圧によって 16.浮力内槽は 1
4.浮力受歯車側に圧送され浮上を始めその瞬間に 1
4.浮力受歯車と 15.浮力伝導軸の歯は噛み合う。
15.浮力伝導軸の上昇に依って 14.浮力受歯車は
回転を始める。16.浮力内槽が上昇を続け 14.浮
力受歯車を回転させ 14.浮力受歯車に連結された
19.浮力槽発電機伝導軸の回転によって左右2基の
22.発電機を駆動させる。19.浮力槽発電機伝導軸
が連続回転を続ける様に17.浮力外槽の容積及び基数
を決定する。〔図 3〕では4基にしてあるが実際は8
基にしたい。但し水は貴重な動力源なので出来る限り導
入量全量を使用したい。 1基の浮力外槽の容積×8=流水の導入量全量 17.浮力外槽の14.浮力受歯車側には17.浮力外
槽全高よりやや低い個所まで1本の 20.浮力外槽回
り止めが設けられ又 16.浮力内槽全高に穿れた縦溝
21.浮力外槽回り止め受溝が設けられ流水圧によっ
て 16.浮力内槽が 14.浮力受歯車側に強く圧迫
される為 21.浮力内槽回り止め受溝に適当な固さに
篏合され 16.浮力内槽を正確に上昇させる。20.
浮力外槽回り止めは 21.浮力内槽回り止め受溝より
最上方の個所よりやや低い箇所で高さを制約されている
ため 16.浮力内槽が浮力に依って17.浮力外槽最
高部まで上昇した時 21.浮力内槽回り止め受溝は
20.浮力外槽回り止めの最上突端を通り抜けて嵌合が
はづれる。14.浮力受歯車と15.浮力伝導柚の噛み
合いがはづれると共に供給水の重量が 18.浮力外槽
底板の下に設置された 24.開閉弁受スプリングを圧
縮する重量に達すると 24.開閉弁受スプリングは圧
縮され 8.浮力外槽底板は下降する。18.浮力外槽
底板は溶接されず 17.浮力外槽内径に篏合されて居
り 17.浮力外槽の水位が最高位に達する以前にその
重量に依り下降するよう考案されて居り水洩れOリング
に依って水洩れを防止している。23.浮力槽導水管開
閉弁は前後の1辺の長さが 17.浮力外槽の径の1/
2程度で左右の辺の全長は 17.浮力外槽の径の約2
倍程度で高さは 17.浮力外槽よりやや低い断面が横
長な長方形の中心部分は 17.浮力外槽に依って構成
されている。17.浮力外槽の側板の 23.浮力槽導
水管開閉弁の長方形底板の下部分は 18.浮力外槽底
板及び 23.浮力槽導水管開閉弁の下降範囲は窓状に
切削されて下降出来るようになっている。23.浮力槽
導水管開閉弁の底板の左右端には各1個の 27.開閉
弁放水細孔が穿れ小量の放水が行われる。18.浮力外
槽底板と 23.浮力槽導水管開閉弁の底板が下降する
と閉鎖されていた 17.浮力外槽と 23.浮力槽導
水管開閉弁が 25.開閉弁露出孔に依って連通され
17.浮力外槽の水は 23.浮力槽導水管開閉弁に放
水され更に 27.開閉弁放水細孔より少量づつ放水さ
れる。17.浮力外槽の放水により 24.開閉弁受ス
プリングを圧縮している圧力は減少するがその代わり
23.浮力槽導水管開閉弁の圧力が増すので 24.開
閉弁受スプリングは圧縮状態を維持する。27.開閉弁
放水細孔の放水量は極めて少量なので圧力の減少は除々
である。18.浮力外槽底板と 23.浮力槽導水管開
閉弁が下降するとその下に左右2個の 26.開閉弁ス
イッチが設られ向かって右が 13.浮力槽導水管を閉
鎖するスイッチ向かって左が 13.浮力槽導水管を開
放するスイッチでこれを作動させる。先ず8号機左から
1号機開、1号機右が1号機閉、1号機左が2号機開、
2号機右が2号機閉、2号機左が3号機開、この順番で
運転される。順番外に飛ぶのは8号機左が1号機開だけ
である。数基の16.17.浮力槽は同じ作動を繰り返
し行われる。発電機の回転部分の周辺速度を早める必要
がある場合は前述した 4.〜10.水力タービンと同
様、大小の歯車を用いる。後述する 30.重力槽の場
合も同様である。放水された水は〔図 3〕に示された
ように数基の浮力槽の下部に横長に数基の並列寸法を上
回る底浅な箱型の 28.浮力槽放水受箱に流入して.
28.浮力槽放水受箱より 29.重力槽導水管を経由
して数基の 30.重力槽のいづれかの一番端側の 3
0.重力槽に供給される。30.重力槽は長方形の箱型
で底板が前方より後方に向かって容積が狭まるよう上方
に向って傾斜して居り最前方突端に 32.重力槽伝導
軸が溶接され前後中心を 31.重力槽支柱に依って貫
通され 31.重力槽支柱が 30.重力槽を貫通して
いる部分は 30.重力槽の深さと同高の硬質ゴム製の
肉厚の円筒状のパッキン 41.重力槽支柱パツキンに
包囲されるような状態に設置されている。〔図 3〕に
は一応4基の重力槽を想定しているが実際には16.1
7.浮、力槽と同じ8基にしたい。 1基の重力槽の容積×8=流水の導入量全量 30.重力槽の運転は左右何れかの端より2基組み合わ
せて使用する。左右何れかの端の1基と隣の1基は〔図
3.9.10〕の様に両内側中央前後に2本の35.昇
降用支柱が設置され最上段には各2個の 37.昇降用
前ローラー 38.昇降用後ローーラーが回転する様に
取り付けられ又 30.重力槽の4隅最上部には 3
6.昇降用ワイヤーが取り付けられて、隣接の 30.
重力槽の対称の4隅最上部に 37.昇降用前ローラ
ー、38.昇降用後ローラーを経由して取り付けられて
いる。最端の 30.重力槽と隣接の 30.重力槽の
重量は同重量に製作されているので2槽の 30.重力
槽は昇降する際の最高位置と最低置位(床)の中間位置
に 36.昇降用ワイヤーに吊り下げられた状態にあ
る。流水が 29.重力槽導水管より、最端の 30.
重力槽に供給されると供給水は30.重力槽の底板を流
れて 30.重力槽前方 32.重力槽伝導軸後方底板
の個所より増量を開始し先ず 30.重力槽の 31.
重力槽支柱の前部分を満杯にしてその後 31.重力槽
支柱の後部分を満杯にする。30.重力槽は水の重量に
依り下降を始めると同時に30.重力槽の前部が後部よ
り容積が大きいので初めに供給水が留水する為 3
0.重力槽は硬質ゴム製の 41.重力槽支柱パッキン
を圧縮して前方に少し移動する。下降及び前移動する事
により 32.重力槽伝導軸と 33.重力受歯車は噛
み合い 32.重力槽伝導軸が下降し始め 33.重力
受歯車は回転し 39.重力槽発電機伝導軸を経由して
34.発電機を駆動する。最端隣接の 30.重力槽
は 36.昇降用ワイヤーに吊り上げられる状態で上昇
を始める。8基の作動順は、番目=1、=5、=
2、=6、=3、=7、=4、=8の順に繰
り返し作動させる。32.重力槽伝導軸が下降を始め高
さの1/2程下降した時点で32.重力槽伝導軸最下部
は後述する 45.〜63.水圧槽の 45.加圧小板
を加圧し始める。30.重力槽が最下部まで下降する少
し手前で 42.重力槽底板は 40.重力槽放水棒に
到達し 42.重力槽底板は 30.重力槽が下降する
為 40.重力槽放水棒によって押し上げられ 30.
重力槽内の水は放水される。30.重力槽の上板、前
板、後板、側板等は総べて溶接構造で箱型に製作されて
いるが、低板、前部よりやや後方と側板やや内側で切断
されており後部や内側で蝶番によって支えられ、その底
板の板厚中心の全周には浅溝が設けられ〔図.9〕に陰
線で〔図10〕に実線で記されている様43・重力槽底
板パツキンが浅溝に半円を埋め込まれみず洩れを防いで
いる。30.重力槽下方には〔図 3〕に示す様に 2
8.浮力槽放水受箱と同様な44.重力槽放水受箱が横
長に設置され 30.重力槽より放された流水は44.
重力槽放水受箱に流入し 51.熱ボイラー原料水取入
管を経由して 64.熱ボイラーに流入する。45.〜
63.水圧槽は 3.水力発電所の4段目最低階に設置
され〔図 11〕に記された様に図に向かつて右に直立
円筒状の 47.加圧室を向かつて左側に 47.加圧
室の径の数10倍の断面が円形状の円筒が横倒しになっ
ている形状に設置され 48〜63.部分を内蔵又は付
設してその低部で.47.加圧室の低部と連通してい
る。前述した様に 30.重力槽の32.重力槽伝導軸
最下部は.45.〜63.水圧槽の 45.加圧小板を
下方に.30.重力槽の重量で強く加圧している。4
5.加圧小板は 46.加圧小板Oリングに依って水洩
れを防がれながら .32.重力槽伝導軸の下降と共に
下降を続ける。47.加圧室 48.増圧室 53.水
圧室 64.熱ボイラーはあらかじめ満杯の水に満たさ
れている。パスカルの原理により 48.増圧室の圧力
は 47.加圧室の圧力と等しい。49.加圧大板は円
形状でステンレスの厚板で製作されており〔図 11〕
の様に 45.〜63.水圧槽の内径に篏合され中心に
49.加圧大板の直径の1/3位の円径で 49.加
圧大板の板厚の2倍のボスが 48.増圧室の反対方向
に突出している。又.49.加圧大板の 48.増圧室
の反対側は 49.加圧大板の板厚の2倍程度の空間を
形成して空間の中心に空間の直径の1/3位のパイプ状
で 49.加圧大板の板厚の2倍位の全長を有する 5
3.水圧室が突出しその53.水圧室の内径に前述し
た.49.加圧大板の中心のボスが篏合され 49.加
圧大板の中心のボス外径先端の近くに 52.加圧大板
ボスOリングが篏合されて水洩れを防いでいる。又 4
9.加圧大板最大径板厚中心には全周に渡ってOリング
溝が切削され 50.加圧大板Oリングが篏合され水洩
れを防いでいる。パスカルの原理に依って 48.増圧
室の圧力が上ると 49.加圧大板が〔図 11〕で向
かって左方向に移動を始め中心のボスも同じく左に移動
して 53.水圧室の留水を加圧する。加圧される事に
よって 53.水圧室の留水は 56.空気圧縮ピスト
ンを強く加圧して 54.空気圧縮室の内径を高速で
〔図 11〕向かって左に移動して 56〜62.間の
空気は強く圧縮され高熱を発生する。55.空気取入孔
は空気圧力が上昇すると直に閉鎖する構造になつてい
る。56.空気圧縮ピストンは耐熱鋼で製作され円径で
54.空気圧縮室内径に篏合され〔図 12〕向かっ
て右端に近い所に浅溝があり、その溝に銅で製作された
57.銅パッキンが篏合され空気及び水洩れを防いで
いる。銅を使用するのは高熱に耐えるためであり、〔図
12〕で向かって右端に近い個所に位置されているの
は出来る限り水に近い個所に位置させる為である。3
0.重力槽の重量は大きいので大きな圧力が生じ高熱が
64.熱ボイラーに噴射される瞬間高圧高熱空気と水
の接点にて熱解離に依って少量でも水素気体と酸素気体
が発生するのが理想である。58.〜63.高熱噴射弁
と 54.空気圧縮室 55.空気取入孔 56.空気
圧縮ピストンは総べて耐熱鋼で製作され水に接しててる
ので相当な高熱にも耐え得る事と思われる。〔図 1
1〕の様に54.空気圧縮室の高熱を発生する個所は
64.熱ボイラーの水中に位置させる。45.加圧小板
が加圧されていない時 63.高熱噴射弁噴射細孔よ
り、61.高熱噴射弁熱解離室に水が流入しているので
60.高熱噴射弁ピストン.が高圧高熱空気の圧力で
〔図 11〕向かって左に移動しようとするが 63.
高熱噴射弁噴射細孔が小孔のため少量の水しか 64.
熱ボイラーに噴射されないので 61.高熱噴射弁熱解
離室内の水圧に依って直ちに移動出来ないため56.空
気圧縮ピストン 60.高熱噴射弁ピストン間の空気は
益々高圧、高熱になり 60.高熱噴射弁ピストンがあ
る程度後退した時点で 58.高熱噴射弁外壁との間隙
が開くように制作されていると高圧、高熱空気が 6
1.高熱噴射弁熱解離室に流入し 60.高熱噴射弁ピ
ストンが 62.高熱噴射弁噴射板にまだ接していない
ので残留している水と接して爆発的な蒸気圧力が発生し
て60.高熱噴射弁ピストンは向かって右方向に飛ばさ
れて 59.空気圧縮ピストン止壁で止まり 61.高
熱噴射弁熱解離室内でも水素気体、酸素気体の発生が期
待出来る。16.〜17.浮力槽 30.重力槽は各8
基設置する予定だが 45〜63.水圧槽も同じく〔図
3〕は4基であるが実際には8基設置し 64.熱ボ
イラーは大型で横長なのを1基設置する。64.熱ボイ
ラーで発生した水素気体、酸素気体、未解離水蒸気は
65.水素気体、酸素気体未解離水蒸気圧送管に依って
蒸気タービンに圧送され発電又は重機械の動力源として
利用されその後分離室に送られ水素気体、酸素気体、水
に分離され水素気体、酸素気体は併設された火力発電所
用の熱源として再利用され余分の水は 68.放水路に
放水されて河川に流入する。以上の様に流水を最大限に
利用して水力、梃子の原理、浮力、重力、パスカルの原
理等複数の原理を任意に組合せ利用して出力を発生させ
ると共に現在駆動中の水力発電所が老朽化して更新する
時現発明を利用して従来の貯水池、調整池水路をそのま
ま利用し水圧管のみ先端に行くに従って除々に細くなる
様にして従来の出力を最大限に増強する事も考えられ
る。以上の通り無公害に自然の恩恵を最大限に利用する
ことは自然保護、地球に生きる生物の安全幸福を保護す
る事である。DETAILED DESCRIPTION OF THE INVENTION Referring to FIG. River 2. Penstock 3. Hydroelectric power plant 4. Water pressure receiving plate 5. Water leakage prevention plate 6. Lever prop 7. Hydro turbine right side plate 8. Hydro turbine left side plate 9. Hydro turbine upper plate 10. Hydro turbine bottom plate
11. Generator 12. Water discharge pipe 13. Buoyancy tank water conduit 14. Buoyancy receiving gear 15. Buoyancy transmission shaft 16. Buoyancy inner tank 17. Buoyancy outer tank
18. Buoyancy outer tank bottom plate 19. Buoyancy tank generator transmission shaft 20. Buoyancy outer tank rotation stopper 21. Buoyancy inner tank detent groove 22. Generator 23. Buoyancy tank conduit opening / closing valve 24. Open / close valve receiving spring 25. Open / close valve exposure port 26. Open / close valve switch 27. On-off valve water discharge pore 28. Buoyancy tank water discharge box 29. Gravity tank conduit. 30. Gravity tank 31. Gravity tank support 32. Gravity tank conduction axis 33. Gravity receiving gear 3
4. Generator 35. Elevating column 36. Lifting wire 37. Front roller for raising and lowering 38. Rear roller for lifting
39. Gravity tank generator conduction shaft 40. Gravity tank water discharge rod 4
1. Gravity tank support packing 42. Gravity tank bottom plate 43. Gravity tank bottom plate packing 44. Gravity tank water discharge box 45. Pressure plate 46. Pressure Plate O-ring 47. Pressurized chamber. 48. Booster chamber 49. Pressurized large plate 50.
Pressurized large plate O-ring 51. Heat boiler feed water intake pipe. 5
2. Pressurized large plate boss O-ring 53. Water pressure chamber 54. Air compression chamber 55. Air intake hole 56. Air compression piston
57. Copper packing. 58. High-heat injection valve outer wall 59. Air compression piston stop wall 60. High heat injection valve piston 61.
High heat injection valve thermal dissociation chamber 62. High heat injection valve injection plate 63.
High heat injection valve injection fine hole 64. Thermal boiler 65. Hydrogen gas Oxygen gas Undissociated water vapor pressure feed pipe 66. . Compression high heat power plant 67. Thermal power plant 68. Drainage channel. . Running water 1. From the river 2. Introduced into penstock 1. The gradient from upstream to downstream, which is slightly parallel to the river, is 1. Lay more gently than the slope of the river 1. With the downstream end of the penstock that has a gentle slope
3. While increasing the head of the hydroelectric power plant, 2. To keep the total length of the penstock as short as possible, 2. 1. As it goes downstream from the pipe diameter of the inlet of the penstock, In addition to narrowing the diameter of the penstock to increase the running water pressure and sending it as fast running water, 2.
2. From the downstream end of the penstock where the slope is gentle. 1. A steep slope at the hydroelectric power plant. By laying a penstock, this 2. 2. The diameter of the penstock also becomes narrower as it goes down, and the flowing water pressure is further increased for high-speed running water. Inside the hydroelectric power plant 4-10. Drop it into a hydraulic turbine. 4-10. Unlike conventional hydraulic turbines, the structure of a hydraulic turbine is a box-shaped box with a circular donut shape and a square cross section. The square metal plate has a slightly smaller cross section inside the square. Water pressure plate. 3. Several sheets are inserted at equal intervals. Above the water pressure plate is a metal rod
6. Form a lever support 9. 11. It was installed at the center of the inner diameter of a donut that penetrated the upper plate of the hydraulic turbine and immediately after the penetration. 5. Fixed and extended at right angles to the generator. Lever prop 9. The part that penetrates the upper plate of the hydro turbine is like a monorail suspension rail. All around the center of the upper plate of the hydro turbine 6. Metal plate with a width that exceeds the diameter of the lever column 5. Water leakage prevention plate 9. At the center of the hydraulic turbine upper plate, it is inserted and fitted into a lateral groove that is drilled on the entire circumference at the center of the plate thickness.
6. Lever props are welded through. 6. At the bottom of the lever support 4. Water pressure receiving plate is welded 4. 4. When the water pressure receiving plate moves in the flow direction due to the flow force of water. Water leakage prevention plate and 6. 4. The lever support also moves in the same direction to prevent water leakage due to water pressure. It is designed to keep a small amount with a water leakage prevention plate. 5. Water leakage prevention plate 6. 11. When the lever support moves in the flow direction 5. It was extended and fixed to the generator. Lever Based on the principle of leverage of the support column 6. In theory, infinity is proportional to the length of the lever. 11. It is possible to increase the power that drives the generator. Actually 6.
It is restricted to a certain length due to the weight strength of the lever column. Again 4
-10. The hydraulic turbine is installed at the top of the three stairs as shown in [Fig. 4]. -10. At the center of the hydraulic turbine, from the 3rd floor above 11. 11. The generator is installed vertically up to the top of the first stage 11. The generator has three 6. Lever props are extended and fixed in three types, with several picks each. At the tip of the lever column, 5. Water leakage prevention plate 4. Underneath it. Water pressure plate is welded 6. Lever props are made from the first stage to the second stage, the second stage to the third stage, and the overall length is long. The water pressure receiving plate is made in the center of the plate with a large square window in the first stage, a second stage with half the window of one side of the square window of the first stage, and a window without the third stage. The running water supplied is 4. ~ 1
0. 3. Because it flows into the hydraulic turbine as high-speed running water.
Water pressure receiving plate and 6. Lever pillars are subject to a large amount of water pressure. 4. Water pressure receiving plate 6. This may lead to damage to the lever column. To prevent damage 4. Water pressure plate thickness 6.
If the thickness of the lever support is made extremely large, only the weight will increase and the power generation capacity will be greatly reduced. Therefore, the first stage, which receives the largest water pressure among the three, 4. -10. Hydro turbine 4. 3. A large square window is opened in the center of the water pressure receiving plate to release the water pressure and increase the hydraulic power in the second stage. -10. 6. Send it to the hydraulic turbine, and 6. The lever column is also designed to be the shortest of the three to maintain strength. Second stage 4. ~
10. Since the water pressure applied to the hydraulic turbine is considerably reduced from the first stage, 4. The window at the center of the water pressure receiving plate is 1 /
Stay in 4th place 6. The total length of the lever support is about 30 than the first stage
% Long. Third stage 4. -10. The water pressure of the hydraulic turbine is the second stage 4. -10. It is still less than the water pressure on the hydro turbine, so it is 4. The water pressure receiving plate window should be left open and blind. The total length of the leverage column is about 30% from the second stage
Make it longer. 1st stage 2nd stage 3rd stage 4-10. Hydro turbine 4. It is desirable that the water pressure receiving plate is uniform except for the central window such as the area and thickness of the work piece and the material. 6. There are also three types of lever stanchions only in total length, but we want to make the thickness and material uniform. However, 3
4. -10. If the hydropower remains in the running water of the hydro turbine, it is possible to add more. 11. Since there is only one generator, the output is quite large. It seems to be a generator. The reason for limiting the number to one is that the principle of leverage is used. -10.
11. The peripheral speed of the hydraulic turbine is at the center even at high speeds. The rotation speed of the generator is low, so it is a low-speed type 11. 11. Even if you use a generator This is because the diameter of the rotating part of the generator should be as large as possible and the peripheral speed of the rotating part should be as high as possible. However, if the peripheral speed is inadequate, then all 6. Directly connect the lever support to a large gear
11. . It is also conceivable that a small gear is provided just below the rotating part of the generator, and large and small gears are meshed with each other to increase the peripheral speed depending on the difference in the number of teeth. 3. Three types of several picks. Next, the running water with weak hydrodynamic force is driven by driving the water pressure receiving plate. 12. Depending on the water discharge pipe 17. Supply to the buoyancy outer tank. [Fig. 3] shows three locations ……………………………………………………………………………………………………………………………………………. The floor height of the hydroelectric power plant consists of four steps. 12. From the discharge pipe 13.
Transfer to the buoyancy tank conduit 16. ~ 17. The method of supply to the buoyancy tank is 17. When one unit is filled with water supplied from the buoyancy outer tank, the next 17. Supplied to the buoyancy tank 17. When the outer buoyancy tank is full, it is supplied in sequence with the next 16. ~ 17. Buoyancy tank is 1
6. Buoyancy inner tank. . 17. It is composed of a buoyancy outer tank and both tanks have a square cross section, and the height is about twice the side of the square.
6. The buoyancy inner tank is 17. 16. It is one size smaller than the buoyancy outer tank and is sealed. 14. At the top of the buoyancy inner tank On the buoyancy gear side
15. The buoyancy transmission shaft is welded upright. 17. The outer buoyancy tank is not covered. Supply water is 17. Buoyancy outer tank, 15. It is supplied from the opposite side of the buoyancy transmission shaft to increase the water pressure 13. Make the tip of the buoyancy tank water pipe narrow and make it thin. At this point, as in [Fig. 7] 14. Buoyancy receiving gear and 15. The buoyancy transmission shaft has not meshed yet. or
16. Buoyancy inner tank and 17. The gaps on each of the four sides of the buoyancy outer tank are very small, and the gaps at the front and rear are also 14. Buoyancy receiving gear 15. The height of the buoyancy transmission shaft is slightly higher than the gear height, and the left and right gaps are still small. When a large amount of running water is supplied at one time, a large running water pressure causes 16. The buoyancy inner tank is 1
4. It is pumped to the buoyancy receiving gear side and starts to levitate. 1
4. Buoyancy receiving gear and 15. The teeth of the buoyancy transmission shaft mesh.
15. Due to the rise of the buoyancy conduction axis 14. The buoyancy force receiving gear starts rotating. 16. The buoyancy inner tank continues to rise 14. Rotate the buoyancy receiving gear 14. Connected to the buoyancy receiving gear
19. Buoyancy tank generator Rotation of transmission shaft
22. Drive the generator. 19. Floating tank generator so that the transmission shaft continues to rotate 17. Determine the volume and radix of the outer buoyancy tank. In [Fig. 3], there are four, but actually eight.
I want to base it on. However, since water is a valuable power source, we would like to use the total amount introduced as much as possible. Volume of one buoyancy outer tank x 8 = total amount of flowing water 17. 14. Outer buoyancy tank 17. On the buoyancy receiving gear side. 20. One buoyancy outer tank that is slightly lower than the total height. 15. A buoyancy outer tank detent is also provided. Vertical groove formed in the entire height of the buoyancy inner tank 21. 15. A buoyancy outer tank detent groove is provided and is controlled by running water pressure. The buoyancy inner tank is 14. Because it is strongly pressed against the buoyancy receiving gear side 21. 16. The buoyancy tank is fixed to the detent receiving groove with appropriate hardness. Accurately raise the buoyancy inner tank. 20.
The buoyancy outer tank detent is 21. 16. Since the height is restricted at a place slightly lower than the uppermost part of the buoyancy inner tank detent receiving groove 16. Buoyancy inner tank depends on buoyancy 17. When the buoyancy outer tank rises to the highest level 21. Buoyancy inner tank detent groove
20. The fitting is broken through the uppermost tip of the buoyancy outer tank detent. 14. Buoyancy receiving gear and 15. The buoyancy-conducting yuzu mesh is disengaged and the weight of the supplied water is 18. Installed under the buoyancy outer tank bottom plate 24. 24. When the weight for compressing the on-off valve receiving spring is reached. The on-off valve receiving spring is compressed 8. The bottom plate of the buoyancy outer tank descends. 18. Buoyancy outer tank bottom plate is not welded 17. It is integrated with the inner diameter of the buoyancy outer tank. The buoyancy tank is designed to descend depending on its weight before reaching the maximum water level, and a water leakage O-ring prevents water leakage. 23. The length of one side of the front and rear sides of the buoyancy tank water pipe opening / closing valve is 17. 1/1 of the diameter of the buoyancy outer tank
The total length of the left and right sides is about 17. About 2 of the diameter of the buoyancy outer tank
It is about double and the height is 17. 17. The central part of the oblong rectangle whose cross section is slightly lower than the buoyancy tank is 17. It is composed of an outer buoyancy tank. 17. 23. Side plate of buoyancy tank The lower part of the rectangular bottom plate of the buoyancy tank conduit opening / closing valve is 18. Buoyancy outer tank bottom plate and 23. The descending range of the buoyancy tank water pipe opening / closing valve is cut like a window so that it can descend. 23. One for each of the left and right edges of the bottom plate of the buoyancy tank water guide valve 27. A small amount of water is discharged by opening the on-off valve water discharge pores. 18. Buoyancy outer tank bottom plate and 23. 17. The bottom plate of the buoyancy tank water pipe opening / closing valve was closed when it descended. Buoyancy outer tank and 23. The buoyancy tank conduit opening / closing valve is 25. Connected via the open / close valve exposure hole
17. Water in the buoyancy tank is 23. 27. Water was released to the buoyancy tank water pipe opening / closing valve. Water is discharged little by little from the on-off valve water discharge pores. 17. 24. By discharging water from the buoyancy tank. The pressure compressing the on-off valve receiving spring decreases, but instead
23. 24. Because the pressure of the buoyancy tank water pipe on-off valve increases. The on-off valve receiving spring maintains the compressed state. 27. Since the amount of water discharged from the on-off valve water discharge pores is extremely small, the pressure decreases gradually. 18. Buoyancy outer tank bottom plate and 23. When the buoyancy tank water pipe opening / closing valve descends, two right and left 26. On the right is the opening / closing valve switch. The left side is 13. facing the switch that closes the buoyancy tank water pipe. Activate this with a switch that opens the buoyancy tank conduit. First, from Unit 8 left, Unit 1 is open, Unit 1 right is Unit 1 closed, Unit 1 left is Unit 2 open,
No. 2 right is closed, No. 2 closed, No. 2 left is open No. 3, and they are operated in this order. No. 8 left is the only one that can fly out of order. Several 16.17. The buoyancy tank repeats the same operation. When it is necessary to increase the peripheral speed of the rotating part of the generator, it was mentioned above. -10. As with the hydraulic turbine, large and small gears are used. It will be described later 30. The same applies to the case of a gravity tank. As shown in [Fig.3], the discharged water is a shallow box type that exceeds the parallel dimension of several horizontally long underneath several buoyancy tanks. Flow into the buoyancy tank drainage box.
28. From the buoyancy tank discharge box 29. Several 30 via the gravity tank conduit. 3 at the end of either of the gravity tanks
0. Supplied to gravity tank. 30. The gravity tank has a rectangular box shape and the bottom plate inclines upward so that the volume decreases from the front to the rear, and is located at the frontmost tip. 31. The conduction axis of the gravity tank is welded to the front and rear center. 31. Penetration is carried out by the gravity tank support. Gravity tank support 30. The part that penetrates the gravity tank is 30. 41. Cylindrical packing made of hard rubber with the same height as the gravity tank 41. It is installed so that it is surrounded by a gravity tank support packing. In Fig. 3, four gravity tanks are assumed for the time being, but in reality 16.1
7. I want to have 8 units, the same as the floating and power tanks. Volume of one gravity tank × 8 = total amount of flowing water 30. The gravity tank is operated by combining two units from either end. As shown in [Fig. 3.9.10], one of the left and right ends and the adjacent one are two 35. Elevating columns are installed and two pieces are provided at the top 37. Front roller for raising and lowering 38. After being raised and lowered, the roller is attached so that it can rotate. 3 at the top of the four corners of the gravity tank
6. Adjacent to the lifting wire, 30.
37. At the top of the four symmetrical corners of the gravity tank. Front roller for raising and lowering, 38. It is attached via a rear roller for lifting. The last 30. Adjacent to gravity tank 30. Since the weight of the gravity tank is the same, the two tanks are 30. The gravity tank is at an intermediate position between the highest position and the lowest position (floor) when moving up and down. It is in a state of being suspended by the lifting wire. Running water 29. From the gravity tank water pipe, the end 30.
When supplied to the gravity tank, the supply water is 30. Flowing through the bottom plate of the gravity tank 30. Front of gravity tank 32. 30. Start increasing the amount from the bottom plate behind the gravity tank transmission shaft. 31. Gravity tank
After filling the front part of the gravity tank column, 31. Fill the back of the gravity tank column. 30. At the same time, the gravity tank starts descending due to the weight of water. Since the volume of the front part of the gravity tank is larger than that of the rear part, the feed water will be accumulated first. 3
0. The gravity tank is made of hard rubber 41. Compress the gravity tank column packing and move it slightly forward. By descending and moving forward 32. Gravity tank conduction axis and 33. Gravity receiving gear meshes 32. Gravity tank conduction axis begins to descend 33. The gravity receiving gear rotates and 39. 34. Gravity tank generator via transmission shaft. Drive the generator. 30. Gravity tank 36. Start climbing while being lifted by the lifting wire. The operating order of the eight units is th = 1, = 5, =
It is repeatedly operated in the order of 2, = 6, = 3, = 7, = 4, = 8. 32. 32. When the conduction axis of the gravity tank begins to descend and then descends about 1/2 of the height. The lowermost part of the gravity tank conduction shaft will be described later. ~ 63. Water pressure tank 45. Start pressing the pressure plate. 30. Just before the gravity tank descends to the bottom 42. Gravity tank bottom plate is 40. Reach the gravity tank discharge rod 42. Gravity tank bottom plate is 30. Because the gravity tank descends 40. Pushed up by the gravity tank discharge rod 30.
The water in the gravity tank is discharged. 30. The top plate, front plate, rear plate, side plates, etc. of the gravity tank are all manufactured in a box structure with a welded structure, but the lower plate is cut slightly behind the front part and the side plate slightly inside, and the rear part and inside Is supported by a hinge, and a shallow groove is provided all around the center of the thickness of the bottom plate [Fig. 9] is a shaded line and [FIG. 10] is a solid line 43. The gravity tank bottom plate packing prevents the leakage without embedding a semicircle in the shallow groove. 30. As shown in [Fig. 3] below the gravity tank, 2
8. Similar to the buoyancy tank drainage box 44. Gravity tank water discharge box installed horizontally. 30. The running water released from the gravity tank is 44.
Flow into the gravity tank discharge box 51. 64. Via the heat boiler feed water intake pipe 64. Flow into the heat boiler. 45. ~
63. The water pressure tank is 3. It was installed on the 4th lowest floor of the hydroelectric power plant, and as shown in [Fig. 11], it was in the shape of an upright cylinder 47. To the left once facing the pressure chamber 47. It is installed in a shape in which a circular cylinder has a cross section with a diameter of several tens of times the diameter of the pressurizing chamber lying sideways 48-63. At the lower part with built-in or attached parts. 47. It communicates with the lower part of the pressure chamber. As mentioned above, 30. 32. of gravity tank The bottom of the gravity tank conduction axis is. 45. ~ 63. Water pressure tank 45. Press the small plate down. 30. The weight of the gravity tank pressurizes strongly. Four
5. The pressure plate is 46. While preventing leakage of water by the O-ring of the pressure plate. 32. Continues to descend as the gravity tank conduction axis descends. 47. Pressure chamber 48. Booster chamber 53. Water pressure chamber 64. The thermal boiler is pre-filled with full water. According to Pascal's principle 48. The pressure in the booster chamber is 47. It is equal to the pressure in the pressurizing chamber. 49. The pressure plate is circular and is made of thick stainless steel plate [Fig. 11].
Like 45. ~ 63. 49. Centered on the inner diameter of the water pressure tank. With a circle diameter of about 1/3 of the diameter of the pressure plate. A boss that is twice the thickness of the pressure plate is 48. It projects in the direction opposite to the booster chamber. or. 49. Pressure plate 48. 49. On the opposite side of the booster chamber. 49. A space having a thickness about twice that of the large pressure plate is formed, and a pipe shape is formed at the center of the space at about 1/3 of the space diameter. It has a total length that is about twice the thickness of the large pressure plate.
3. 53. The water pressure chamber protrudes. The inner diameter of the hydraulic chamber is described above. 49. The boss at the center of the pressure plate is integrated 49. 52. Near the boss outer diameter tip at the center of the pressure plate. Pressurized large plate boss O-rings are integrated to prevent water leakage. Again 4
9. O-ring groove is cut over the entire circumference at the center of the maximum diameter of the large pressed plate. The pressurizing large plate O-ring is integrated to prevent water leakage. According to Pascal's principle 48. 49. When the pressure in the booster chamber rises. The pressure plate starts moving to the left in [Fig. 11] and the center boss also moves to the left. Pressurize the water in the hydraulic chamber. 53. by being pressurized Distilled water in the water pressure chamber is 56. Pressurize the air compression piston strongly 54. Move the inner diameter of the air compression chamber to the left at high speed [Fig. 11] 56-62. The air in between is strongly compressed and generates high heat. 55. The air intake hole has a structure in which it immediately closes when the air pressure rises. 56. The air compression piston is made of heat resistant steel and has a circular diameter of 54. 57. There is a shallow groove near the right end as it is fitted into the diameter of the air compression chamber [Fig. 12], and the groove is made of copper. Copper packing is integrated to prevent air and water leaks. Copper is used to withstand high heat, and it is located near the right end in [Fig. 12] so that it is located as close to water as possible. Three
0. Since the weight of the gravity tank is large, a large pressure is generated and high heat 64. Ideally, a small amount of hydrogen gas and oxygen gas are generated due to thermal dissociation at the contact point of water and high-pressure high-heat air that is injected into the thermal boiler. 58. ~ 63. High heat injection valve and 54. Air compression chamber 55. Air intake hole 56. All of the air compression pistons are made of heat-resistant steel and are in contact with water, so it seems that they can withstand a considerable amount of heat. [Fig. 1
1] 54. The places that generate high heat in the air compression chamber are
64. Place in the heat boiler underwater. 45. When the pressure plate is not pressed 63. From the high-temperature injection valve injection pores, 61. Water is flowing into the thermal dissociation chamber of the high heat injection valve 60. High heat injection valve piston. Tries to move to the left toward [Fig. 11] under the pressure of high-pressure and high-heat air, but 63.
High-heat injection valve Since the injection holes are small, only a small amount of water 64.
Since it is not injected into the heat boiler, 61. High heat injection valve Immediate movement due to water pressure inside the heat dissociation chamber 56. Air compression piston 60. The air between the high-heat injection valve pistons becomes increasingly high in pressure and heat. 58. When the high heat injection valve piston retracts to some extent 58. High-pressure, high-heat air can be produced if the gap between the outer wall of the high-heat injection valve is opened.
1. High heat injection valve flows into the thermal dissociation chamber 60. The high heat injection valve piston is 62. 60. Since it has not yet contacted the high-heat injection valve injection plate, explosive steam pressure was generated in contact with the remaining water. The high heat injection valve piston is blown rightward 59. Stop at the air compression piston stop wall 61. The generation of hydrogen gas and oxygen gas can be expected even in the thermal dissociation chamber of the high heat injection valve. 16. ~ 17. Buoyancy tank 30. 8 gravity tanks each
It is planned to install the base, but 45-63. Similarly, there are four water pressure tanks in [Fig. 3], but actually eight water tanks are installed. Install one large-sized, horizontally-oriented heat boiler. 64. Hydrogen gas, oxygen gas and undissociated water vapor generated in the thermal boiler are
65. Hydrogen gas, oxygen gas Undissociated water vapor is sent to the steam turbine by pressure pipes and used as a power source for power generation or heavy machinery, then sent to the separation chamber and separated into hydrogen gas, oxygen gas and water. 68. Excess water reused as a heat source for the attached thermal power plant It is discharged into a discharge channel and flows into a river. As described above, by utilizing the running water to the maximum extent, hydraulic power, leverage principle, buoyancy, gravity, Pascal principle and other multiple principles can be combined arbitrarily to generate output and the currently operating hydropower station is aging. It is also possible to use the present invention to renew and convert it into a new one, and use the existing reservoir and regulating reservoir water channels as they are, and gradually increase the conventional output by making the penstock only gradually thinner toward the tip. As mentioned above, to maximize the benefits of nature without pollution is to protect nature and the safety and well-being of living creatures on earth.
【図面の簡単な説明】[Brief description of drawings]
【図 1】 1.河川 2.水圧管 3.水力発電所
66.圧縮高熱発電所 67.火力発電所の側面図。[Figure 1] 1. River 2. Penstock 3. Hydroelectric power plant
66. Compression high heat power plant 67. Side view of a thermal power plant.
【図 2】.1.河川 2.水圧管 3.水力発電所
66.圧縮高熱発電所 67.火力発電所の上面図。[Fig. 2]. 1. River 2. Penstock 3. Hydroelectric power plant
66. Compression high heat power plant 67. Top view of a thermal power plant.
【図 3】 3.水力発電所内の水力発電装置、圧縮高
熱発電装置全体の上面図。[Figure 3] 3. The top view of the whole hydroelectric power generation device in a hydroelectric power plant, and a compression high heat power generation device.
【図 4】.4〜10水力タービン 11.発電機の断
面図。[Fig. 4]. 4-10 hydraulic turbine 11. Sectional drawing of a generator.
【図 5】.4〜10水力タービンの 4.水圧受板
5.水洩れ防止板 6.梃子支柱 7.水力タービン右
側板 8.水力タービン左側板 9.水力タービン上板 10.水力タービン底板の断面
拡大図。[Fig. 5]. 4-10 hydraulic turbines 4. Water pressure plate
5. Water leakage prevention plate 6. Lever prop 7. Hydro turbine right side plate 8. Hydro turbine left side plate 9. Hydro turbine upper plate 10. An enlarged cross-sectional view of a hydraulic turbine bottom plate.
【図 6】.13.浮力槽導水管 14.浮力受歯車
15.浮力伝導軸 16.浮力内槽 17.浮力外槽 19.浮力槽発電機
伝導軸 22.発電機の上面図。[Fig. 6]. 13. Buoyancy tank water conduit 14. Buoyancy receiving gear
15. Buoyancy transmission shaft 16. Buoyancy inner tank 17. Buoyancy outer tank 19. Buoyancy tank generator transmission shaft 22. The top view of a generator.
【図 7】.水が供給されない時の 13.浮力槽導水
管 14.浮力受歯車 15.浮力伝導軸 16.浮力内槽 17.浮力外槽
20.浮力外槽回り止め 21.浮力外槽回り止め受溝
の断面図。[Fig. 7]. 13. When water is not supplied Buoyancy tank water conduit 14. Buoyancy receiving gear 15. Buoyancy transmission shaft 16. Buoyancy inner tank 17. Buoyancy outer tank
20. Buoyancy outer tank rotation stopper 21. Sectional drawing of a buoyancy outer tank rotation stop receiving groove.
【図 8】.水が満杯に供給された時の 18.浮力槽
底板 23.浮力槽導水管開閉弁 24.開閉弁受スプ
リング 25.開閉弁露出口 26.開閉弁スイッチ 27.開閉弁放水細孔の断面
図。[Figure 8]. 18. When the water is full Buoyancy tank bottom plate 23. Buoyancy tank conduit opening / closing valve 24. Open / close valve receiving spring 25. Open / close valve exposure port 26. Open / close valve switch 27. Sectional drawing of an on-off valve water discharge pore.
【図 9】.水の供給されない時の 29.重力槽導水
管 30.重力槽 31.重力槽支柱 32.重力槽伝導軸 33.重力受
歯車 35.昇降用支柱 36.昇降用ワイヤー37.昇降用
前ローラー 38.昇降用後ローラー 40.重力槽放
水棒 41.重力槽支柱パッキン 42.重力槽底板
43.重力槽底板パッキンの断面図。[FIG. 9]. 29. When water is not supplied Gravity tank water conduit 30. Gravity tank 31. Gravity tank support 32. Gravity tank conduction axis 33. Gravity receiving gear 35. Elevating column 36. Lifting wire 37. Front roller for raising and lowering 38. Rear roller for lifting 40. Gravity tank water discharge rod 41. Gravity tank support packing 42. Gravity tank bottom plate
43. Sectional drawing of the gravity tank bottom plate packing.
【図10】.水の供給された時の 29.重力槽導水管
32.重力槽伝導軸 33.重力受歯車 39.重力槽発電機伝導軸 40.
重力槽放水棒 42.重力槽底板 43.重力槽底板パ
ッキン 44.重力槽放水受箱 の断面図。FIG. 29. When water is supplied Gravity tank water conduit 32. Gravity tank conduction axis 33. Gravity receiving gear 39. Gravity tank generator conduction shaft 40.
Gravity tank water discharge rod 42. Gravity tank bottom plate 43. Gravity tank bottom plate packing 44. Sectional drawing of the gravity tank discharge box.
【図11】 45〜63水圧槽の 45.加圧小板 4
6.加圧小板Oリング 47.加圧室 48.増圧室 49.加圧大板 50.
加圧大板Oリング 51.熱ボイラー原料水取入管 5
2.加圧大板ボスOリング 53.水圧室 54.空気
圧縮室 55.空気取入孔 56.空気圧縮ピストン 57.銅パッキン 58〜6
3高熱噴射弁 64.熱ボイラー 65.水素気体酸素
気体未解離水蒸気圧送管の断面図。FIG. 11: 45-63 of hydraulic tank 45. Pressurizing small plate 4
6. Pressure Plate O-ring 47. Pressure chamber 48. Booster chamber 49. Pressurized large plate 50.
Pressurized large plate O-ring 51. Heat boiler raw water intake pipe 5
2. Pressurized large plate boss O-ring 53. Water pressure chamber 54. Air compression chamber 55. Air intake hole 56. Air compression piston 57. Copper packing 58-6
3 high heat injection valve 64. Thermal boiler 65. Sectional drawing of a hydrogen gas oxygen gas undissociated water vapor pressure-feeding pipe.
【図12】 56〜63空気圧縮ピストン及び高熱噴射
弁の拡大図。FIG. 12 is an enlarged view of 56-63 air compression pistons and a high heat injection valve.
【手続補正2】[Procedure Amendment 2]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】全図[Correction target item name] All drawings
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図1】 [Figure 1]
【図2】 [Fig. 2]
【図4】 [Figure 4]
【図5】 [Figure 5]
【図3】 [Figure 3]
【図6】 [Figure 6]
【図7】 [Figure 7]
【図8】 [Figure 8]
【図10】 [Figure 10]
【図12】 [Fig. 12]
【図9】 [Figure 9]
【図11】 FIG. 11
Claims (1)
力を発生せしめる装置1. An apparatus for generating an output by using a plurality of principles in combination.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4155543A JPH0610823A (en) | 1992-05-01 | 1992-05-01 | Total power generation device through application of principles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4155543A JPH0610823A (en) | 1992-05-01 | 1992-05-01 | Total power generation device through application of principles |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0610823A true JPH0610823A (en) | 1994-01-21 |
Family
ID=15608359
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4155543A Pending JPH0610823A (en) | 1992-05-01 | 1992-05-01 | Total power generation device through application of principles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0610823A (en) |
-
1992
- 1992-05-01 JP JP4155543A patent/JPH0610823A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8648486B2 (en) | Method and system for tidal energy storage and power generation | |
US5411377A (en) | Mass displacement wave energy conversion system | |
US9024461B2 (en) | Tidal energy seawater desalination system, power generation system and integral energy utilization system | |
JP5477901B2 (en) | Hydropower column | |
KR101015204B1 (en) | Air Compressor Using Wave Force | |
US3983702A (en) | Hydraulic energy extractor | |
US6953328B2 (en) | Buoyancy pump device | |
WO2006122397A1 (en) | Wave energy accumulator | |
EP1970563A1 (en) | System for harnessing the force of gravity | |
AU2011326515B2 (en) | Apparatus utilizing buoyancy forces and method for using same | |
US4845376A (en) | Buoyant gas activated hydroelectric generator | |
NO865230L (en) | APPARATUS FOR DERIVING ENERGY BY VARIATION OF THE LEVEL OF A LIQUID BODY. | |
US8093735B1 (en) | Sea wave electrical power generation system | |
US3961480A (en) | Pressure source and systems incorporating it | |
WO2007049288A1 (en) | A system for generating continuous energy | |
US20090293472A1 (en) | Apparatus and process for recovering energy from bouyancy and gravitational forces | |
US6945042B1 (en) | System for generating fluid movement | |
CN2173314Y (en) | Miniature loss energy source circulation hydraulic generator | |
JPH0610823A (en) | Total power generation device through application of principles | |
WO2016016668A1 (en) | Conversion from gravitational force to electrical power | |
WO2010076797A2 (en) | Apparatus with buoyant and sinkable piston | |
WO2016091238A1 (en) | Device for renewable electrical generation using buoyancy forces | |
KR101097655B1 (en) | Buoyancy and gravity power generation device | |
KR20100114874A (en) | Air compressor using wave force and power generation system having same | |
CN221096706U (en) | Energy storage device |