JPH0610082B2 - Method for producing α-type silicon nitride fine powder - Google Patents
Method for producing α-type silicon nitride fine powderInfo
- Publication number
- JPH0610082B2 JPH0610082B2 JP19913284A JP19913284A JPH0610082B2 JP H0610082 B2 JPH0610082 B2 JP H0610082B2 JP 19913284 A JP19913284 A JP 19913284A JP 19913284 A JP19913284 A JP 19913284A JP H0610082 B2 JPH0610082 B2 JP H0610082B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- silicon nitride
- particle size
- weight
- fine powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/06—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
- C01B21/068—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
- C01B21/0685—Preparation by carboreductive nitridation
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Products (AREA)
Description
【発明の詳細な説明】 本発明はα型窒化ケイ素(α−Si3N4)微粉末の製造方
法に関する。より詳しくは高品位で微細なα型窒化ケイ
素微粉末を収率よくかつ安価に得る方法を提供するもの
である。The present invention relates to a method for producing α-type silicon nitride (α-Si 3 N 4 ) fine powder. More specifically, the present invention provides a method for obtaining fine and fine α-type silicon nitride fine powder with high yield and at low cost.
窒化ケイ素焼結体は耐熱性高温強度にすぐれており、高
強度耐熱材料、高精密耐摩耗性材料としてジーゼル、ガ
スタービン等の熱機関の高温化、軽量化、高効率化が実
現できる材料として期待されている。これら焼結体の熱
的、機械的性質は焼結体原料粉末の性状に依存するとこ
ろが大きく、1μm以下の球状に近い形状で粒径分布の
狭い高品位のα型窒化ケイ素微粉末の安価な供給が望ま
れている。Silicon nitride sinter has excellent heat resistance and high temperature strength. As a high strength heat resistant material and high precision wear resistant material, it can be used as a material that can achieve high temperature, light weight and high efficiency of heat engines such as diesel and gas turbines. Is expected. The thermal and mechanical properties of these sintered bodies largely depend on the properties of the raw material powder of the sintered body, and are inexpensive, high-quality α-type silicon nitride fine powders with a shape close to a sphere of 1 μm or less and a narrow particle size distribution. Supply is desired.
窒化ケイ素合成法の中で酸化ケイ素の還元窒化法は反応
操作が比較的容易であること、装置を腐食したり、爆発
等の危険性のある原料を用いないことおよびα型窒化ケ
イ素含有率の高い窒化ケイ素が得られ易いことなど工業
的に有利な方法として注目されている。Among the silicon nitride synthesis methods, the reduction nitriding method of silicon oxide has a relatively easy reaction operation, does not use raw materials that may corrode the equipment or cause an explosion, and It is attracting attention as an industrially advantageous method in that high silicon nitride can be easily obtained.
しかし、この方法は原料として十分精選された酸化ケイ
素微粉末および炭素粉末を用いても通常数μmの大きさ
の窒化ケイ素粉末しか得られず、場合によっては針状結
晶、棒状粒子が混在し、1μm以下の球状に近い形状を
有する均一なα型窒化ケイ素微粉末が得られないという
問題と原料中の炭素/酸化ケイ素比率が小さい場合には
窒化反応率が低く、未反応酸化ケイ素が残るという問題
を有している。また、これらの問題は中心粒径1μm以
上の粗粒酸化ケイ素粉末を用いる程顕著であり、より安
価にα型窒化ケイ素粉末を得るための大きな障壁となっ
ている。However, this method can only obtain a silicon nitride powder having a size of several μm, even if a silicon oxide fine powder and a carbon powder, which are sufficiently selected as raw materials, are used. In some cases, needle crystals and rod-shaped particles are mixed, The problem that a uniform α-type silicon nitride fine powder having a spherical shape of 1 μm or less cannot be obtained, and when the carbon / silicon oxide ratio in the raw material is small, the nitriding reaction rate is low and unreacted silicon oxide remains. I have a problem. Further, these problems are more remarkable when a coarse-grained silicon oxide powder having a central particle size of 1 μm or more is used, and it becomes a large barrier for obtaining α-type silicon nitride powder at a lower cost.
窒化反応速度をあげるために、触媒として鉄、マンガ
ン、マグネシウム等の酸化物を添加する方法(窯業協会
誌vol.85〔11〕1977年P.537〜542参照)が提案さ
れている。しかし、ここに窒化反応を促進する物質とし
て述べられている酸化鉄、酸化マグネシウム、酸化カル
シウム、二酸化マンガン、酸化コバルト、酸化クロム、
および五酸化バナジウムを触媒として添加しても窒化率
は向上するが、生成する窒化ケイ素の粒子径は通常数μ
mで、かつ針状結晶や棒状粒子が混在する。この傾向は
粒子径の大きい酸化ケイ酸を原料として用いる程著るし
い。また、酸化鉄、二酸化マンガン、酸化コバルト、酸
化クロムの添加では炭化ケイ素が共に生成しやすすく、
五酸化バナジウムの添加ではβ型窒化ケイ素が生成しや
すすい。すなわち、ここで述べられているような物質は
窒化反応を促進させる触媒としては効果があるが、生成
する窒化ケイ素粒子の粒径や形状の制御という点では問
題があり、粒子形状のそろった球状の微粉末を生成させ
るという目的には殆んど効果がない。In order to increase the nitriding reaction rate, a method of adding oxides of iron, manganese, magnesium or the like as a catalyst (see Ceramic Industry Association vol. 85 [11] 1977 P. 537-542) has been proposed. However, iron oxide, magnesium oxide, calcium oxide, manganese dioxide, cobalt oxide, chromium oxide, which are mentioned as substances that accelerate the nitriding reaction,
The addition of vanadium pentoxide as a catalyst also improves the nitriding rate, but the particle size of the generated silicon nitride is usually several μm.
m and acicular crystals and rod-shaped particles are mixed. This tendency is more remarkable when oxidized silica having a large particle size is used as a raw material. In addition, addition of iron oxide, manganese dioxide, cobalt oxide, and chromium oxide facilitates the formation of silicon carbide together,
Addition of vanadium pentoxide facilitates the formation of β-type silicon nitride. That is, the substances described here are effective as a catalyst for accelerating the nitriding reaction, but have a problem in controlling the particle size and shape of the silicon nitride particles to be produced, and have a spherical shape with a uniform particle shape. It has almost no effect on the purpose of producing the fine powder.
窒化反応を促進させると共に粒子形状を制御する方法と
して2μm以下の窒化ケイ素微粉末を添加する方法(特
公昭54-23917号公報、特開昭58-91005号公報、第1回次
世代産業基盤技術シンポジウム予稿集、昭和58年11
月11日P.27〜46参照)が提案されている。しかし、こ
の方法は上記公報および文献にも記載されているよう
に、原料酸化ケイ素粉末の粒径が20−40mμの微粉
末であれば効果は顕著であるが、粒径が1μm以上の粗
粒酸化ケイ素粉末を用いた場合には、窒化反応速度も遅
く、α型窒化ケイ素含有率も低く、かつ、生成する窒化
ケイ素の粒子形状制御が出来ず、針状結晶や棒状の粒子
が混在した不均一な粒子形状の窒化ケイ素しか得られな
い。すなわちこの方法は原料として使用する酸化ケイ素
の粒径が1μm以上と大きい場合には効果がある方法で
はない。As a method of accelerating the nitriding reaction and controlling the particle shape, a method of adding fine powder of silicon nitride of 2 μm or less (Japanese Patent Publication No. 54-23917, Japanese Patent Laid-Open No. 58-91005, 1st next-generation industrial basic technology) Symposium Proceedings, 1983 11
(See P.27-46 on 11th of March) is proposed. However, as described in the above-mentioned publications and literatures, this method is effective if the raw material silicon oxide powder is a fine powder having a particle size of 20-40 mμ, but it is a coarse particle having a particle size of 1 μm or more. When silicon oxide powder was used, the nitriding reaction rate was slow, the α-type silicon nitride content was low, and the particle shape of the silicon nitride produced could not be controlled, resulting in a mixture of needle-shaped crystals and rod-shaped particles. Only silicon nitride having a uniform particle shape can be obtained. That is, this method is not effective when the particle size of silicon oxide used as a raw material is as large as 1 μm or more.
酸化ケイ素の還元窒化反応による窒化ケイ素の合成にお
いては、その生産コストに占める原料コストの比重は大
きく重要である。In the synthesis of silicon nitride by the reduction and nitriding reaction of silicon oxide, the weight of raw material cost to the production cost thereof is very important.
特に原料として用いる酸化ケイ素の価格はその粒径等に
依存しており、粒径20−40mμの酸化ケイ素微粉末
は高価であり、生産コストを大幅に下げるために安価な
粒径1μm以上の粗粒酸化ケイ素を用いることが可能な
方法の開発が切望されている。In particular, the price of silicon oxide used as a raw material depends on the particle size, etc., and silicon oxide fine powder having a particle size of 20-40 mμ is expensive, and in order to significantly reduce the production cost, a coarse particle size of 1 μm or more is used. There is a strong demand for development of a method capable of using granular silicon oxide.
本発明者らはこのような実情に鑑み、酸化ケイ素および
炭素を原料とする還元窒化反応において還元窒化反応触
媒としてMgおよびMg化合物から選ばれた少なくとも1種
を添加すると共に、BET比表面積15〜100m2/gの
窒化ケイ素微粉末を添加すると、中心粒径1μm以上の
酸化ケイ素粗粒子を用いた場合においてもこれらの添加
物の相乗効果により、窒化率が高く、かつ中心粒径1μ
m以下の球状に近い形状をもつ均一なα型窒化ケイ素微
粉末が収率よく得られることを見出し、本発明に到達し
た。In view of such circumstances, the present inventors have added at least one selected from Mg and Mg compounds as a reduction nitriding reaction catalyst in the reduction nitriding reaction using silicon oxide and carbon as raw materials, and have a BET specific surface area of 15 to 15 When 100 m 2 / g of silicon nitride fine powder is added, the nitriding ratio is high and the center particle size is 1 μm due to the synergistic effect of these additives even when using silicon oxide coarse particles having a center particle size of 1 μm or more.
The inventors have found that a uniform α-type silicon nitride fine powder having a spherical shape of m or less can be obtained with a high yield, and have reached the present invention.
すなわち本発明は酸化ケイ素粉末および炭素粉末の混合
物を窒素を含む雰囲気下、高温で加熱処理して窒化ケイ
素を製造する方法において、中心粒径が1〜100μm
の酸化ケイ素粉末1重量部に対し、炭素粉末を0.4〜4
重量部、MgおよびMg化合物から選ばれた少なくとも
1種をMg元素重量に換算して0.0005〜0.1重量部、B
ET比表面積15〜100m2/gを有する窒化ケイ素微粉末を
0.005〜1重量部を混合した混合物を用いることを特徴
とするα型窒化ケイ素微粉末の製造方法を提供するもの
である。That is, the present invention is a method for producing silicon nitride by heat-treating a mixture of silicon oxide powder and carbon powder at a high temperature in an atmosphere containing nitrogen, and having a central particle diameter of 1 to 100 μm.
0.4 to 4 carbon powder to 1 part by weight of silicon oxide powder
Parts by weight, at least one selected from Mg and Mg compounds is converted to Mg element weight by 0.0005 to 0.1 parts by weight, B
ET fine powder having a specific surface area of 15 to 100 m 2 / g
The present invention provides a method for producing α-type silicon nitride fine powder, which is characterized by using a mixture of 0.005 to 1 part by weight.
本発明によれば粒子性状が良好な窒化ケイ素微粉末が安
価に得られ、その工業的価値は非常に大きい。According to the present invention, silicon nitride fine powder having good particle properties can be obtained at low cost, and its industrial value is very large.
本発明について以下に詳述する。The present invention will be described in detail below.
本発明において使用される酸化ケイ素粉末は中心粒径が
100μm以下で出来るだけ高純度のものが望ましい。
中心粒径1μm以下の酸化ケイ素微粉末を使用しても本
発明に従えば中心粒径1μm以下の球状に近い均一なα
型窒化ケイ素微粉末を得ることが出来るが、その価格は
中心粒径1〜100μmの酸化ケイ素粉末に比べて10倍近
い価格であり、より安価にα型窒化ケイ素微粉末を得る
ことが出来ないので工業的にみて中心粒径が1〜100μ
mの粗粒子が好適である。また、中心粒径100μm以
上の酸化ケイ素粉末を用いる場合には炭素粉末等との混
合を均一にするために、ボールミル等での混合時間を長
くし、粉砕効果をも期待するか、あらかじめボールミ
ル、振動ミル等で酸化ケイ素粉末を100μm以下に粉砕し
てから使用することが必要である。酸化ケイ素粉末中に
B、Al、Zn化合物等の不純物が含まれている場合、
これらが還元窒化反応を抑制する働きを示し、一方V、
Nb、Ta、Cr、Mo、W、Mn、Fe、Co、Ni、Cu化合物等の不
純物はSiCを生成させると共に、針状結晶を生成しや
すすくするため、原料酸化ケイ素粉末中に出来るだけ含
まれていないことが望ましい。The silicon oxide powder used in the present invention preferably has a center particle size of 100 μm or less and is as pure as possible.
According to the present invention, even if a silicon oxide fine powder having a center particle size of 1 μm or less is used, a uniform α having a center particle size of 1 μm or less and a spherical shape is obtained.
Type silicon nitride fine powder can be obtained, but the price is nearly 10 times as high as that of silicon oxide powder having a central particle size of 1 to 100 μm, and α type silicon nitride fine powder cannot be obtained at a lower cost. Therefore, the central particle size is 1 to 100μ when viewed industrially.
Coarse particles of m are preferred. Further, when using a silicon oxide powder having a central particle diameter of 100 μm or more, in order to make the mixing with the carbon powder uniform, the mixing time in a ball mill or the like is lengthened, and a crushing effect is expected, It is necessary to pulverize the silicon oxide powder to 100 μm or less with a vibration mill before use. When impurities such as B, Al, and Zn compounds are contained in the silicon oxide powder,
These functions to suppress the reduction nitriding reaction, while V,
Impurities such as Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni and Cu compounds are included as much as possible in the raw material silicon oxide powder in order to easily generate needle-like crystals as well as to generate SiC. It is desirable that it is not.
したがって、これらの金属を含む不純物が夫々の金属元
素の総量として0.3重量%以上含まれていない酸化ケイ
素を使用することが望ましい。このような酸化ケイ素粉
末として、無水ケイ酸、石英、クリストバライト、石英
ガラスおよびシリカゲルが挙げられるが、安価に入手出
来るものとして天然石英粉末を用いることが最も好まし
い。Therefore, it is desirable to use silicon oxide which does not contain impurities containing these metals in an amount of 0.3% by weight or more as a total amount of each metal element. Examples of such silicon oxide powder include silicic acid anhydride, quartz, cristobalite, quartz glass, and silica gel, but natural quartz powder is most preferably used because it can be obtained at low cost.
炭素粉末も同様に上記の金属を含む不純物を夫々の金属
元素の総量として0.3重量%以上含まないものを使用す
ることが望ましい。その代表的なものはアセチレンブラ
ックやファーネスブラック等の粉末である。またその粒
径は数mμのものから使用出来る。取扱いの点からいう
と混合の際粉末化できるものであれば造粒した0.3〜1.5
mm程度の粒状のもの、プレス成型した粒状のものを使用
するのが有利である。Similarly, it is desirable to use carbon powder that does not contain impurities containing the above metals as a total amount of the metal elements in an amount of 0.3% by weight or more. Typical examples thereof are powders such as acetylene black and furnace black. Also, the particle size can be used from several mμ. From a handling point of view, if it can be pulverized during mixing, it is granulated 0.3 to 1.5
It is advantageous to use a granular material having a size of about mm or a granular material which is press-molded.
酸化ケイ素粉末1重量部に対して炭素が0.4重量部より
少ないと、還元窒化反応式 3SiO2+6C+2N2→Si3N4+6CO において反応当量より少なくなり未反応SiO2が残留す
る。一方、4重量部より多いと、α型窒化ケイ素含有率
が低下すると共に、未反応炭素が多く残り、その除去が
困難、かつ、コスト的にも高くつくので好ましくない。
従って炭素粉末の添加量としては0.4〜4重量部が好ま
しくより好ましくは0.5〜1.2重量部である。本発明にお
いて用いられるMgまたはその化合物としては、金属マ
グネシウム、硝酸マグネシウム、塩化マグネシウム、硫
酸マグネシウム、水酸化マグネシウム、酸化マグネシウ
ム、炭酸マグネシウム、塩基性炭酸マグネシウム、マグ
ネシウムイソプロポキサイド、窒化マグネシウム等から
用いることが出来るが、粗粒酸化ケイ素粉末、炭素粉末
等の原料粉末は混合をより均一にするため、水を加えて
湿式ボールミル等で混合されるので、上記の中でも水溶
性のMg化合物を用いる方が好ましい。水に不溶性の場合
にはあらかじめ酸性の水溶液に溶解した後、添加するこ
とが出来る。また、上に列挙した物質を単独で添加して
も2種類以上添加してもよいが、その添加量としては、
Mg元素の重量換算で酸化ケイ素粉末1重量部に対し、0.
0005〜0.1重量部の範囲であることが望ましい。0.0005
重量部以下の添加量では還元窒化反応の促進および生成
するα−Si3N4の形状制御・微粒化に殆んど効果がな
く、一方、0.1重量部以上では生成したα−Si3N4中にMg
が多量含有され、焼結体原料として好ましくない。より
好ましい添加量としては0.001〜0.03重量部の範囲であ
る。また、この際、Mgと共に、Be、Sr、Ca、Zr、Ti、H
f、Sn、Ge等の金属またはそれらの化合物が共存してい
てもよいが、それぞれの金属元素の総量として0.1重量
部を越えることは好ましくない。If the amount of carbon is less than 0.4 parts by weight relative to 1 part by weight of the silicon oxide powder, the reduction nitriding reaction formula 3SiO 2 + 6C + 2N 2 → Si 3 N 4 + 6CO becomes less than the reaction equivalent and unreacted SiO 2 remains. On the other hand, if the amount is more than 4 parts by weight, the content of α-type silicon nitride is lowered, unreacted carbon remains in a large amount, the removal thereof is difficult, and the cost is high, which is not preferable.
Therefore, the amount of carbon powder added is preferably 0.4 to 4 parts by weight, more preferably 0.5 to 1.2 parts by weight. As Mg or a compound thereof used in the present invention, metal magnesium, magnesium nitrate, magnesium chloride, magnesium sulfate, magnesium hydroxide, magnesium oxide, magnesium carbonate, basic magnesium carbonate, magnesium isopropoxide, magnesium nitride or the like is used. However, raw powders such as coarse-grained silicon oxide powder and carbon powder are mixed in a wet ball mill by adding water in order to make the mixing more uniform. preferable. When it is insoluble in water, it can be added after being dissolved in an acidic aqueous solution in advance. The substances listed above may be added alone or in combination of two or more.
In terms of the weight of Mg element, it is 0.
It is preferably in the range of 0005 to 0.1 part by weight. 0.0005
Addition of less than 1 part by weight has almost no effect on the promotion of the reduction nitridation reaction and shape control and atomization of the produced α-Si 3 N 4 , while on the other hand, over 0.1 part by weight of the produced α-Si 3 N 4 Mg in
Is contained in a large amount, which is not preferable as a raw material for a sintered body. A more preferable addition amount is in the range of 0.001 to 0.03 parts by weight. At this time, together with Mg, Be, Sr, Ca, Zr, Ti, H
Metals such as f, Sn, and Ge or compounds thereof may coexist, but it is not preferable that the total amount of each metal element exceeds 0.1 parts by weight.
本発明に用いられる窒化ケイ素微粉末はそのBET比表面
積が15〜100m2/gのα型窒化ケイ素微粉末であり、好ま
しくはα相含有率が90%以上のものである。The silicon nitride fine powder used in the present invention is an α-type silicon nitride fine powder having a BET specific surface area of 15 to 100 m 2 / g, and preferably has an α phase content of 90% or more.
中心粒径が1μm以下の微粒子であってもそのBET比表
面積が15m2/g未満の場合、本発明効果が発現せず、生成
するα型窒化ケイ素の中心粒径が1μm以上と大きくな
るうえ針状結晶、棒状粒子が混在するようになる。特に
この現象は1μm以上の酸化ケイ素の粗粒子を原料とし
て用いた場合顕著となる。If the BET specific surface area is less than 15 m 2 / g even for fine particles having a median particle diameter of 1 μm or less, the effect of the present invention will not be exhibited, and the resulting α-type silicon nitride will have a large median particle diameter of 1 μm or more. Needle-shaped crystals and rod-shaped particles are mixed. This phenomenon is particularly remarkable when coarse particles of silicon oxide having a size of 1 μm or more are used as a raw material.
またBET比表面積が100m2/gを超えても効果にそれ以上向
上がみられない。一方、製造が困難であり、コスト的、
工業的不利となるので100m2/g以下が好ましい。より
好ましくは15〜50m2/gの範囲である。Further, even if the BET specific surface area exceeds 100 m 2 / g, the effect is not further improved. On the other hand, manufacturing is difficult and costly,
Since it is industrially disadvantageous, it is preferably 100 m 2 / g or less. More preferably, it is in the range of 15 to 50 m 2 / g.
また窒化ケイ素微粉末のα相含有率が90%未満でβ相
やアルモファス相を多量に含むものを使用すると生成す
る窒化ケイ素のα相含有率が低くなったり、針状結晶、
棒状粒子が混在するようになるので、90%以上のα相
含有率の窒化ケイ素微粉末を用いるのが好ましい。Further, when a silicon nitride fine powder having an α-phase content of less than 90% and a large amount of β-phase or Armophas phase is used, the α-phase content of silicon nitride produced becomes low, needle-shaped crystals,
Since the rod-shaped particles are mixed, it is preferable to use silicon nitride fine powder having an α phase content of 90% or more.
本発明において添加するα−Si3N4微粉末の粒径は通常
中心粒径1μm以下好ましくは0.3〜0.8μmである。The particle size of the α-Si 3 N 4 fine powder added in the present invention is usually not more than 1 μm and preferably 0.3 to 0.8 μm.
本発明で得られるα型窒化ケイ素微粉末で中心粒径が0.
3〜0.5μmと微粒の場合でも、そのBET比表面積は15m2/
gよりかなり小さいので通常は強力な衝撃破壊力(衝撃
値3G〜15G)を有する振動ミル等の粉砕機等にBET
比表面積が15m2/g以上になるまでかけ、得るのが好まし
い。これら粉砕機にかけても粒径が1μm以下の窒化ケ
イ素粉末の粒径はほとんど変化しないのでむしろ粒子表
面が荒されることによりBET比表面積が大きくなると考
えられる。The α-type silicon nitride fine powder obtained in the present invention has a central particle size of 0.
Even with fine particles of 3 to 0.5 μm, the BET specific surface area is 15 m 2 /
Since it is much smaller than g, BET is usually applied to a crusher such as a vibration mill that has a strong impact destructive force (impact value 3G to 15G).
It is preferably obtained by applying until the specific surface area becomes 15 m 2 / g or more. It is considered that the BET specific surface area is increased by roughening the particle surface because the particle diameter of the silicon nitride powder having a particle diameter of 1 μm or less hardly changes even when subjected to these pulverizers.
なお、一般に使用されるボールミルでは破壊力が小さい
ので200時間程度ではBET比表面積はほとんど増加し
ない。In addition, since a generally used ball mill has a small breaking force, the BET specific surface area hardly increases in about 200 hours.
粉砕の際、振動ミル等の粉砕機の材質によっては、Al、
Fe、Ni、W等の金属不純物が混在してくる。このような
窒化ケイ素微粉末を用いた場合、その効果が顕著に現れ
ず生成する窒化ケイ素中に針状結晶や棒状粒子が混在す
る。そのような場合には振動ミル等の粉砕機により処理
されBET比表面積を15m2/g〜100m2/gに調整されたα−
Si3N4微粉末をフッ酸を含む鉱酸で洗浄処理した後、使
用することが望ましい。When crushing, depending on the material of the crusher such as a vibration mill, Al,
Metal impurities such as Fe, Ni and W are mixed. When such a silicon nitride fine powder is used, its effect does not appear remarkably, and needle crystals and rod-shaped particles are mixed in the generated silicon nitride. Such is the case has been adjusted processed BET specific surface area by a pulverizer such as a vibration mill to 15m 2 / g~100m 2 / g α-
It is preferable to use the Si 3 N 4 fine powder after cleaning with a mineral acid containing hydrofluoric acid.
また、粉砕機にかけた場合、粒子の表面層が酸化物で覆
われる場合もあるのでこれらを除くためにも上記の洗滌
は好ましいことである。Further, when the particles are crushed, the surface layer of the particles may be covered with the oxide, so that the above washing is preferable in order to remove them.
α−Si3N4微粉末の添加量は酸化ケイ素粉末1重量部に
対し、0.005〜1重量部が適当である。α−Si3N4微粉末
の添加量が0.005重量部より少ないと、その効果は殆ん
どみられず、針状結晶や棒状粒子が混在した1μm以上
のα−Si3N4粉末しか得られない。また、1重量部より
多いと新しく生成したα−Si3N4より添加物のα−Si3N4
の方が多くなり生産効率も悪く、したがってより好まし
くは0.005〜0.1重量部の範囲である。An appropriate amount of the α-Si 3 N 4 fine powder added is 0.005 to 1 part by weight with respect to 1 part by weight of the silicon oxide powder. If the amount of the α-Si 3 N 4 fine powder added is less than 0.005 parts by weight, the effect is hardly seen, and only α-Si 3 N 4 powder of 1 μm or more mixed with needle-like crystals and rod-shaped particles is obtained. I can't. Further, if the amount is more than 1 part by weight, the additive α-Si 3 N 4 is more than the newly formed α-Si 3 N 4.
However, the production efficiency is poor, and therefore the more preferred range is 0.005 to 0.1 part by weight.
本発明において上記の原料、添加物を均一に混合する方
法としては公知の方法が採用でき、特に限定されるもの
ではないが、好ましくは酸化ケイ素粉末、炭素粉末、Mg
またはMg化合物、および窒化ケイ素粉末を水と共に湿式
混合する。In the present invention, the above-mentioned raw materials, as a method for uniformly mixing the additives, a known method can be adopted and is not particularly limited, but preferably silicon oxide powder, carbon powder, Mg
Alternatively, the Mg compound and the silicon nitride powder are wet mixed with water.
混合方法としてはボールミル、セラミック混練機等の混
合主段をとることができるが、Fe、Al等の反応の害とな
る不純物が混入しないように材質を選定する必要があ
る。通常、ボールミルの場合、石英ガラス、窒化ケイ素
もしくはプラスチックで被覆されたボールを用い、プラ
スチック製ポケット中で混合することが好ましい。また
炭素粉末は一般に数百mμ以下で比重も小さく取扱い難
いため、前述のように一担これらを0.3〜1.5mm程度に造
粒、もしくはプレス成型した粒子を用い、これを他原料
と上記の手段で混合する方法が好ましい。As a mixing method, a main mixing stage such as a ball mill or a ceramic kneader can be adopted, but it is necessary to select the material so that impurities such as Fe and Al which may be harmful to the reaction are not mixed. Usually, in the case of a ball mill, it is preferable to use balls coated with quartz glass, silicon nitride or plastic, and mix them in a plastic pocket. Further, since carbon powder is generally several hundred mμ or less and has a small specific gravity and is difficult to handle, as described above, particles which are granulated or press-molded to have a particle size of 0.3 to 1.5 mm are used. The method of mixing is preferable.
混合が湿式で行われる場合、混合物を乾燥させるが、乾
燥時に酸化ケイ素と炭素粉末等が比重差等により分離し
ないように噴霧乾燥、ロータリーエバポレーター等の手
段をとることが好ましい。When the mixing is carried out by a wet method, the mixture is dried, but it is preferable to take measures such as spray drying and a rotary evaporator so that the silicon oxide and the carbon powder and the like are not separated during the drying due to a difference in specific gravity.
混合物は窒素を含む雰囲気中で加熱処理され還元窒化反
応に供せられるが、その雰囲気としてN2、NH3、N2
−H2、N2−Ar等の窒素を含有した反応ガス系を使用す
ることが出来る。加熱処理温度は1,400〜1,600℃、好ま
しくは1,450〜1,550℃の範囲が選択出来る。1,400℃未
満では窒化反応を十分進めるためには長時間を要し、1,
600℃を超えるとSiCの生成が多くなる。経済的な点も含
めて、1,450〜1,550℃の温度で2〜6時間保持するのが
最も適当である。さらに、還元窒化反応後、残存してい
る過剰炭素の除去を目的として酸化性雰囲気中で加熱処
理を行うが、その処理は一般に600〜800℃、1〜
4時間が適当である。The mixture is heat-treated in an atmosphere containing nitrogen and subjected to a reduction nitriding reaction, and the atmosphere is N 2 , NH 3 , N 2
A reaction gas system containing nitrogen such as —H 2 or N 2 —Ar can be used. The heat treatment temperature can be selected in the range of 1,400 to 1,600 ° C, preferably 1,450 to 1,550 ° C. If the temperature is lower than 1,400 ° C, it takes a long time for the nitriding reaction to proceed sufficiently.
Above 600 ° C, the amount of SiC produced increases. Including the economical point, it is most suitable to maintain the temperature at 1,450 to 1,550 ° C for 2 to 6 hours. Further, after the reduction nitriding reaction, heat treatment is performed in an oxidizing atmosphere for the purpose of removing the residual excess carbon, and the treatment is generally 600 to 800 ° C.
4 hours is appropriate.
本発明方法ではMgまたはその化合物の還元窒化反応に
対する触媒効果だけでなく、これらの物質とBET比表面
積15〜100m2/gのα−Si3N4微粉末の相乗作用による微粒
化効果が発現するため、安価な粒径1〜100μmの粗
粒酸化ケイ素を用いても粒径1μm以下の球状に近い形
状をもつ均一なα−Si3N4微粉末を容易に得ることが出
来る。また、本発明により得られたα−Si3N4微粉末は
水およびイソプロピルアルコール等のアルコール系溶剤
によく分散する特性を持っている。In the method of the present invention, not only the catalytic effect on the reduction nitriding reaction of Mg or its compound, but also the atomization effect by the synergistic action of these substances and the BET specific surface area of 15 to 100 m 2 / g α-Si 3 N 4 fine powder is expressed. Therefore, even if an inexpensive coarse-grained silicon oxide having a particle size of 1 to 100 μm is used, a uniform α-Si 3 N 4 fine powder having a particle size of 1 μm or less and a nearly spherical shape can be easily obtained. The α-Si 3 N 4 fine powder obtained by the present invention has the property of being well dispersed in water and an alcohol solvent such as isopropyl alcohol.
本発明により耐熱性、および高温強度にすぐれた窒化ケ
イ素焼結体用の原料粉末の製造を工業的により有利に行
うことが出来る。INDUSTRIAL APPLICABILITY According to the present invention, it is possible to industrially advantageously produce a raw material powder for a silicon nitride sintered body, which is excellent in heat resistance and high temperature strength.
以下、実施例により本発明を具体的に説明するが、本発
明はこれらに限定されるものではない。Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited thereto.
実施例1 酸化ケイ素粉末として市販石英砂粉末(中心粒径6μ
m、BET比表面積1.2m2/g)、炭素粉末として市販アセチ
レンブラックプレス品を用いた。Example 1 Commercially available quartz sand powder as silicon oxide powder (central particle size: 6 μm)
m, BET specific surface area 1.2 m 2 / g), and a commercial acetylene black pressed product was used as carbon powder.
Mgの化合物としてはMg(NO3)2・6H2Oを用いた。窒
化ケイ素粉末は市販されている中心粒径0.5μm、BET比
表面積17m2/gでα相含有率96%のα−Si3N4微粉末
(シュタルク社製LC−12)を用いた。これらの粉末
を表1に示す組成割合にし、水を加えてプラスチック被
覆ボール、プラスチック製ポットを用いて2時間湿式ボ
ールミル混合を行った。得られたスラリー状の混合物を
ロータリーエバポレーターを用い、回転させながら加熱
減圧下で乾燥させた。Mg (NO 3 ) 2 .6H 2 O was used as the Mg compound. As the silicon nitride powder, a commercially available α-Si 3 N 4 fine powder (LC-12 manufactured by Starck) having a central particle size of 0.5 μm, a BET specific surface area of 17 m 2 / g and an α phase content of 96% was used. These powders were mixed in the composition ratios shown in Table 1, water was added, and wet ball mill mixing was performed for 2 hours using a plastic-coated ball and a plastic pot. The obtained slurry-like mixture was dried under heating and reduced pressure while rotating using a rotary evaporator.
乾燥された混合物を黒鉛製容器に入れ、N2ガスを流し
ながら表1に示した温度と時間で4〜6時間加熱処理し
てSiO2を還元窒化させた。得られた粉末をさらに空気中
で700℃4時間加熱処理し、未反応Cを燃焼除去して
Si3N4微粉末を得た。The dried mixture was placed in a graphite container and heat-treated at a temperature and a time shown in Table 1 for 4 to 6 hours while flowing N 2 gas to reduce and nitride SiO 2 . The obtained powder is further heat-treated in air at 700 ° C. for 4 hours to burn and remove unreacted C.
Si 3 N 4 fine powder was obtained.
このようにして合成したそれぞれのSi3N4微粉末につい
て平均粒径、N含有率、α−Si3N4含有率(X線回折図
から求めた)を測定し、その値を表1にした。The average particle size, N content, and α-Si 3 N 4 content (obtained from the X-ray diffraction pattern) of each of the Si 3 N 4 fine powders thus synthesized were measured, and the values are shown in Table 1. did.
実施例2 窒化ケイ素粉末として実施例1で合成して得た中心粒径
0.5μm、BET比表面積7m2/g、α相含有率98%の粉末
をイソプロピルアルコールを分散媒とし、窒化ケイ素製
ボールとポットを用いて75時間および100時間湿式
振動ミル処理を行なった粉末を用いた。75時間湿式振
動ミル処理の窒化ケイ素粉末は中心粒径0.5μm、BET比
表面積17m2/g、α相含有率96%であり、これを窒化ケ
イ素粉末Aとした。Example 2 Median particle diameter obtained by synthesizing in Example 1 as silicon nitride powder
Powder having 0.5 μm, BET specific surface area of 7 m 2 / g, and α phase content of 98% was subjected to wet vibration mill treatment for 75 hours and 100 hours using silicon nitride balls and pots with isopropyl alcohol as a dispersion medium. Using. The silicon nitride powder treated by the wet vibration mill for 75 hours had a central particle size of 0.5 μm, a BET specific surface area of 17 m 2 / g, and an α phase content of 96%.
一方、100時間湿式振動ミル処理の窒化ケイ素粉末は
中心粒径0.5μm、BET比表面積21m2/g、α相含有率96
%であり、これを窒化ケイ素粉末Bとした。On the other hand, the silicon nitride powder treated by the wet vibration mill for 100 hours has a central particle diameter of 0.5 μm, a BET specific surface area of 21 m 2 / g, and an α phase content of 96.
%, And this was designated as silicon nitride powder B.
窒化ケイ素粉末として窒化ケイ素粉末AおよびBを用
い、実施例1の操作に従ってSi3N4粉末を合成した。そ
れぞれの粉末について平均粒径、N含有率、α−Si3N4
含有率を表1に示した。Using the silicon nitride powders A and B as the silicon nitride powder, the Si 3 N 4 powder was synthesized according to the procedure of Example 1. Average particle size, N content, α-Si 3 N 4 for each powder
The content is shown in Table 1.
比較例1 窒化ケイ素粉末として実施例1および2で合成した粉末
を用いた。実施例1で合成した粉末は中心粒径0.5μ
m、BET比表面積7m2/gでα相含有率98%で窒化ケイ
素粉末Cとした。また実施例2で合成した粉末は中心粒
径0.4μm、BET比表面積9m2/g、α相含有率99%で窒
化ケイ素粉末Dとした。Comparative Example 1 The powder synthesized in Examples 1 and 2 was used as the silicon nitride powder. The powder synthesized in Example 1 has a central particle size of 0.5 μm.
m, a BET specific surface area of 7 m 2 / g, and an α phase content of 98% to obtain a silicon nitride powder C. The powder synthesized in Example 2 was designated as silicon nitride powder D having a central particle size of 0.4 μm, a BET specific surface area of 9 m 2 / g and an α phase content of 99%.
窒化ケイ素粉末として窒化ケイ素粉末CおよびDを用
い、実施例1の操作に従ってSi3N4粉末を合成した。そ
れぞれの粉末について平均粒径、粒子形状、N含有率、
α−Si3N4含有率を表1に示したが、実施例1および2
とは異なり、得られる窒化ケイ素粉末の粒径が大きくか
つ、針状結晶が混在したものが得られた。Using the silicon nitride powders C and D as the silicon nitride powder, the Si 3 N 4 powder was synthesized according to the procedure of Example 1. For each powder, average particle size, particle shape, N content,
The α-Si 3 N 4 content is shown in Table 1.
Unlike the above, the obtained silicon nitride powder had a large particle size and contained needle crystals.
実施例8 窒化ケイ素粉末として実施例1で合成した中心粒径0.5
μm、BET比表面積7m2/g、α相含有率98%の粉末を
イソプロピルアルコールを溶媒とし、窒化ケイ素製ボー
ルと高アルミナ質製ポットを用いて100時間湿式振動
ミル処理を行って粉末を得た。Example 8 A central particle size of 0.5 synthesized in Example 1 as a silicon nitride powder.
μm, BET specific surface area 7 m 2 / g, α phase content 98% powder using isopropyl alcohol as a solvent, using a silicon nitride ball and high alumina pot for 100 hours wet vibration mill treatment to obtain a powder It was
この窒化ケイ素粉末を50%フッ酸水溶液と70%硝酸
水溶液の体積比1:5の混合溶液に50g/の濃度になる
よう加え、1時間攪拌処理した後、洗浄・乾燥した粉末
を用いた。この粉末は中心粒径0.5μm、BET比表面積22
m2/g、α相含有率96%でAl含有量は0.02%であり、
これを窒化ケイ素粉末Eとした。This silicon nitride powder was added to a mixed solution of 50% hydrofluoric acid aqueous solution and 70% nitric acid aqueous solution at a volume ratio of 1: 5 so as to have a concentration of 50 g /, stirred for 1 hour, and then washed and dried powder was used. This powder has a central particle size of 0.5 μm and a BET specific surface area of 22.
m 2 / g, α phase content 96%, Al content 0.02%,
This was designated as silicon nitride powder E.
窒化ケイ素粉末として窒化ケイ素粉末Eを用い、実施例
1の操作に従ってSi3N4粉末を合成した。それぞれの粉
末について平均粒径、N含有率、α−Si3N4含有率を表
1に示した。Using silicon nitride powder E as the silicon nitride powder, Si 3 N 4 powder was synthesized according to the procedure of Example 1. Table 1 shows the average particle size, N content, and α-Si 3 N 4 content of each powder.
実施例4 酸化ケイ素粉末として、市販無水ケイ酸(中心粒径17μ
m、BET比表面積0.3m2/g)、炭素粉末としてアセチレン
ブラック粒状品を用いた。Mgの化合物はMg(NO3)2・
6H2O、窒化ケイ素粉末は窒化ケイ素粉末Bを用いた。Example 4 Commercially available silicic acid anhydride (central particle size: 17 μm) was used as the silicon oxide powder.
m, BET specific surface area 0.3 m 2 / g), and acetylene black granular product was used as carbon powder. The compound of Mg is Mg (NO 3 ) 2 ·
6H 2 O, and silicon nitride powder B was used as the silicon nitride powder.
これらの粉末を用い、実施例1の操作に従ってSi3N4粉
末を合成し、それぞれの粉末について平均粒径、N含有
率、α−Si3N4含有率を測定し、表1に示した。Using these powders, Si 3 N 4 powder was synthesized according to the procedure of Example 1, and the average particle size, N content and α-Si 3 N 4 content were measured for each powder, and the results are shown in Table 1. .
実施例5 Mgの化合物としてMg(OH)2を用いた以外は実施例1で
用いたと同じ粉末を用い、実施例1の操作に従ってSi3N
4粉末を合成した。それぞれの粉末について平均粒径、B
ET比表面積、N含有率、α−Si3N4含有率を表1に示し
た。Example 5 The same powder used in Example 1 was used, except that Mg (OH) 2 was used as the Mg compound, and Si 3 N was used according to the procedure of Example 1.
4 powders were synthesized. Average particle size for each powder, B
Table 1 shows the ET specific surface area, N content, and α-Si 3 N 4 content.
比較例2 実施例1で使用したと同じ粉末を用い、窒化ケイ素粉末
を添加しない場合、Mg(NO3)2・6H2Oを添加しない場
合およびそれらのいずれも添加しない場合につき、実施
例1の操作に従ってSi3N4粉末を合成した。それぞれの
粉末について平均粒径、粒子形状、N含有率、α−Si3N
4含有率を表1に示した。Comparative Example 2 Using the same powder as that used in Example 1, no silicon nitride powder was added, no Mg (NO 3 ) 2 .6H 2 O was added, and none of them was added. A Si 3 N 4 powder was synthesized according to the procedure described in 1. Average particle size, particle shape, N content, α-Si 3 N for each powder
The 4 contents are shown in Table 1.
第1図は実施例1−1で得られたα型窒化ケイ素微粉
末、第2図は比較例1−9で得られた窒化ケイ素粉末の
電子顕微鏡写真である。FIG. 1 is an electron micrograph of the α-type silicon nitride fine powder obtained in Example 1-1, and FIG. 2 is an electron micrograph of the silicon nitride powder obtained in Comparative Example 1-9.
Claims (1)
窒素を含む雰囲気下、高温で加熱処理して窒化ケイ素を
製造する方法において、中心粒径が1〜100μmの酸
化ケイ素粉末1重量部に対し、炭素粉末を0.4〜4重量
部、MgおよびMg化合物から選ばれた少なくとも1種
をMg元素重量に換算して0.0005〜0.1重量部、BET
比表面積15〜100m2/gを有する窒化ケイ素微粉末を0.005
〜1重量部を混合した混合物を用いることを特徴とする
α型窒化ケイ素微粉末の製造方法。1. A method for producing silicon nitride by heat-treating a mixture of silicon oxide powder and carbon powder at a high temperature in an atmosphere containing nitrogen, wherein 1 part by weight of silicon oxide powder having a central particle diameter of 1 to 100 μm is used. , 0.4 to 4 parts by weight of carbon powder, 0.0005 to 0.1 parts by weight of at least one selected from Mg and Mg compounds in terms of Mg element weight, BET
0.005 of silicon nitride fine powder having a specific surface area of 15-100 m 2 / g
A method for producing an α-type silicon nitride fine powder, characterized in that a mixture obtained by mixing 1 to 1 part by weight is used.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19913284A JPH0610082B2 (en) | 1984-09-21 | 1984-09-21 | Method for producing α-type silicon nitride fine powder |
US06/747,851 US4590053A (en) | 1983-07-14 | 1985-06-24 | Method for producing α-form silicon nitride fine powders |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19913284A JPH0610082B2 (en) | 1984-09-21 | 1984-09-21 | Method for producing α-type silicon nitride fine powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6177608A JPS6177608A (en) | 1986-04-21 |
JPH0610082B2 true JPH0610082B2 (en) | 1994-02-09 |
Family
ID=16402672
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19913284A Expired - Lifetime JPH0610082B2 (en) | 1983-07-14 | 1984-09-21 | Method for producing α-type silicon nitride fine powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0610082B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2678602A1 (en) * | 1991-07-02 | 1993-01-08 | Atochem | PROCESS FOR THE PREPARATION OF SILICON NITRIDE BY SILICA CARBONITRURATION AND SILICON NITRIDE AS PARTICLES EXEMPT FROM WHISKEY. |
FR2687393B1 (en) * | 1992-02-18 | 1994-04-15 | Elf Atochem Sa | CONTINUOUS PROCESS FOR THE PREPARATION OF SILICON NITRIDE BY CARBONITRURATION AND THE SILICON NITRIDE THUS OBTAINED. |
-
1984
- 1984-09-21 JP JP19913284A patent/JPH0610082B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6177608A (en) | 1986-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5578784B2 (en) | Alpha-aluminum oxide-based nanocrystal sintered body, method for producing the same, and use thereof | |
KR20040095953A (en) | Process for Manufacturing Ultra TiC- Transition Metal Based Complex Powder | |
CA2110961A1 (en) | Process for preparing aluminum oxide particles, an aluminum oxide powder prepared according to this process, as well as its use | |
JPH0336783B2 (en) | ||
US4217335A (en) | Process for producing β-silicon carbide fine powder | |
EP0186144B1 (en) | Process for preparing aluminum nitride powder | |
Simonenko et al. | Preparation of MB 2/SiC and MB 2/SiC-MC (M= Zr or Hf) powder composites which are promising materials for design of ultra-high-temperature ceramics | |
JPS6272507A (en) | Manufacturing method of Sialon powder | |
US4590053A (en) | Method for producing α-form silicon nitride fine powders | |
WO1990002160A1 (en) | Abrasive grain and method of producing same | |
JPH0610082B2 (en) | Method for producing α-type silicon nitride fine powder | |
JPH0647447B2 (en) | Method for producing aluminum nitride powder | |
US4724131A (en) | Method for producing α-form silicon nitride | |
JPS63239104A (en) | Method for producing β-phase containing silicon nitride fine powder | |
US7314593B2 (en) | Process for preparing improved silicon carbide powder | |
JPS6021804A (en) | Manufacture of finely powdered alpha type silicon nitride | |
JPS58213617A (en) | Production method of titanium carbonitride powder | |
US2733134A (en) | Method for making titanium carbide | |
JP4442214B2 (en) | Method for producing fine α-alumina | |
JPS6191007A (en) | Method for producing α-type silicon nitride fine powder | |
JPH03193623A (en) | Production of conjugated boride powder in as mo2feb2-base | |
JPH0829923B2 (en) | Silicon nitride powder | |
JP3496795B2 (en) | Method for producing silicon nitride powder | |
US2929685A (en) | Method for making titanium boride from phosphates | |
JPH0532405A (en) | Silicon nitride powder, its production and sintered compact therefrom |