[go: up one dir, main page]

JPH059938B2 - - Google Patents

Info

Publication number
JPH059938B2
JPH059938B2 JP58005096A JP509683A JPH059938B2 JP H059938 B2 JPH059938 B2 JP H059938B2 JP 58005096 A JP58005096 A JP 58005096A JP 509683 A JP509683 A JP 509683A JP H059938 B2 JPH059938 B2 JP H059938B2
Authority
JP
Japan
Prior art keywords
etching
plasma
gas
emission intensity
etched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58005096A
Other languages
Japanese (ja)
Other versions
JPS59129428A (en
Inventor
Takashi Maruyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP509683A priority Critical patent/JPS59129428A/en
Publication of JPS59129428A publication Critical patent/JPS59129428A/en
Publication of JPH059938B2 publication Critical patent/JPH059938B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は異方性プラズマエツチング方法、即ち
サイドエツチが少なくきわめて異方性の高いプラ
ズマエツチング方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to an anisotropic plasma etching method, that is, a highly anisotropic plasma etching method with little side etching.

(b) 技術の背景 例えば、基板上に保護マスクを設けて選択的に
窒化シリコン膜や酸化シリコン膜その他の被エツ
チング膜をエツチングするリソグラフイ技術は半
導体装置の製造上最も基本的な技術である。
(b) Background of the technology For example, lithography technology, in which a protective mask is provided on a substrate and selectively etches silicon nitride films, silicon oxide films, and other films to be etched, is the most basic technology for manufacturing semiconductor devices. .

且つ、半導体集積回路(IC)がLSI、VLSIと
高集積化、高密度化されるに従つてエツチングパ
ターンが微細になり、従来のウエツトエツチング
法では精度良いパターンの形成が難しくなつて、
それに代わりドライエツチング法が広く使用され
るようになつてきた。
In addition, as semiconductor integrated circuits (ICs) become more highly integrated and dense, such as LSI and VLSI, etching patterns become finer, making it difficult to form precise patterns using conventional wet etching methods.
Instead, dry etching methods have become widely used.

このようなドライエツチング法は所謂ガスエツ
チングで、現在、その主体をなしている方法はプ
ラズマガスを使用するプラズマエツチング方法で
ある。
Such a dry etching method is so-called gas etching, and the main method at present is a plasma etching method using plasma gas.

(c) 従来技術と問題点 このプラズマエツチング方法は化学薬品溶液と
反応させるウエツトエツチング法と異なり、プラ
ズマ化したガスの衝突によつてエツチングする方
法であるから被エツチング膜のみならず下層の基
板をエツチングされやすい。しかし、プラズマエ
ツチング法には中性ガスによるエツチングと反応
性ガスによるエツチングとがあり、後者の方が下
地のエツチングが少なくてエツチング選択比が大
きいために半導体装置の製造にはその方が良く利
用されている。このエツチング方法の代表的なも
のがリアクテイブイオンエツチング法である。
(c) Prior art and problems This plasma etching method differs from the wet etching method in which it reacts with a chemical solution, and etches by the collision of plasma gas, so it etches not only the film to be etched but also the underlying substrate. It is easy to be etched. However, plasma etching methods include etching with neutral gas and etching with reactive gas, and the latter etches less of the underlying material and has a higher etching selectivity, so it is better used for manufacturing semiconductor devices. has been done. A typical example of this etching method is reactive ion etching.

ところが、この方法は被エツチング膜をエツチ
ングする反応性ガスを用いるから、前者の中性ガ
スによるエツチング法に較べるとサイドエツチン
グが比較的大きくなる欠点がある。換言すれば、
異方性エツチングの精度が悪くなるのが欠点であ
る。
However, since this method uses a reactive gas that etches the film to be etched, it has the disadvantage that side etching is relatively large compared to the former etching method using a neutral gas. In other words,
The disadvantage is that the accuracy of anisotropic etching becomes poor.

勿論、プラズマエツチング法は従前のウエツト
エツチング法と比較して異方性エツチングの精度
は格段に高いものである。しかし、ICを一層高
密度化するためには異方性エツチングの精度は更
に高い程好ましいことは言うまでもない。
Of course, the accuracy of anisotropic etching in the plasma etching method is much higher than that in the conventional wet etching method. However, it goes without saying that in order to further increase the density of the IC, it is preferable that the anisotropic etching accuracy be higher.

(d) 発明の目的 本発明はこのような観点より、一層高精度に異
方性エツチングがなされるプラズマエツチング方
法を提案するものである。
(d) Purpose of the Invention From this viewpoint, the present invention proposes a plasma etching method that allows anisotropic etching to be performed with higher precision.

(e) 発明の構成 その目的は、内部に基板を保持した反応容器内
に反応性ガスを供給し、該反応容器内にてプラズ
マを発生させて該基板表面を異方性エツチングす
るプラズマエツチング方法において、プラズマ発
生中のプラズマ発光強度を監視し、エツチング開
始時における該プラズマ発光強度が、該エツチン
グ実施中に略保たれるようにエツチングを制御す
ることを特徴とするプラズマエツチング方法によ
つて達成される。
(e) Structure of the Invention The purpose of the invention is to provide a plasma etching method in which a reactive gas is supplied into a reaction vessel holding a substrate therein, and plasma is generated in the reaction vessel to anisotropically etch the surface of the substrate. Achieved by a plasma etching method characterized in that the plasma emission intensity during plasma generation is monitored, and etching is controlled so that the plasma emission intensity at the start of etching is substantially maintained during the etching. be done.

(f) 発明の実施例 上記のようにプラズマエツチング法は下層の基
板もエツチングされ易いから、従来より基板の損
傷を防ぐためのエツチング終点検出法が開発さ
れ、利用されている。それは、例えば酸化シリコ
ン膜上のアルミニウム膜をエツチングする場合に
は塩素(Cl2)系ガスを使用するが、その化学反
応に伴つてアルミニウム(Al)あるいは塩化ア
ルミニウム(AlCl)のプラズマ発光が発生する。
その発光強度を観測して、その強度の減少点をエ
ツチング終点とするもので、発光波長の261.4nm
(AlCl)、308.2nm(Al)、309.8nm(Al)、394.4nm
(Al)、1396.2nm(Al)のいづれかを検出する。
(f) Embodiments of the Invention As mentioned above, in the plasma etching method, the underlying substrate is also likely to be etched, so etching end point detection methods have been developed and used to prevent damage to the substrate. For example, when etching an aluminum film on a silicon oxide film, chlorine (Cl 2 )-based gas is used, but the chemical reaction generates plasma emission of aluminum (Al) or aluminum chloride (AlCl). .
The emission intensity is observed and the point at which the intensity decreases is the end point of etching.The emission wavelength is 261.4nm.
(AlCl), 308.2nm (Al), 309.8nm (Al), 394.4nm
(Al), 1396.2nm (Al).

第1図はそのプラズマ発光強度とエツチング経
過時間との関係図表を示しており、aは発光強度
線、その線上のエツチング開始の直前時間tにお
ける発光強度がA点、エツチング終了の直後時間
tにおける発光強度がE点である。しかしなが
ら、図示しているように、エツチング直前時の発
光強度Aとエツチング直後時の発光強度Eとでは
差が生じて、エツチング直後の方がプラズマ発光
強度が強い。同様に、エツチング開始点の発光強
度Bとエツチング終止点の発光強度Cとの間にも
差が生じる。この現象はアルミニウムパターンの
サイドエツチングが進行してアルミニウムエツチ
ング面積が拡がるためであり、図に示す点BCD
で囲まれた面積Sはサイドエツチング量に比例す
るものである。ここに、発光強度点Dは点C−E
上の点Bと同一プラズマ発光強度の位置である。
Figure 1 shows a graph showing the relationship between plasma emission intensity and etching elapsed time. The emission intensity is at point E. However, as shown in the figure, there is a difference between the emission intensity A immediately before etching and the emission intensity E immediately after etching, and the plasma emission intensity is stronger immediately after etching. Similarly, a difference occurs between the emission intensity B at the etching start point and the emission intensity C at the etching end point. This phenomenon is due to the progress of side etching of the aluminum pattern and the expansion of the aluminum etching area.
The area S surrounded by is proportional to the amount of side etching. Here, the emission intensity point D is the point C-E
This is a position with the same plasma emission intensity as point B above.

第2図および第3図はこれを更に理解しやすく
擦るためのエツチング工程の断面図である。即
ち、第2図はエツチング開始の直前時間tにおけ
る断面図で、1は基板、2は酸化シリコン膜、3
はアルミニウム膜、4はレジスト膜、Fはアルミ
ニウム膜のエツチング面積を示している。一方、
第3図はエツチング反応工程途中の断面図を示
し、サイドエツチングが生ずると上記の面積Fに
アルミニウム膜の側面FSが加わつて、エツチング
面積はF+FSに拡大する。従つて、発光強度が増
加するわけである。
FIGS. 2 and 3 are cross-sectional views of the etching process to make this easier to understand. That is, FIG. 2 is a cross-sectional view at time t immediately before the start of etching, in which 1 is the substrate, 2 is a silicon oxide film, and 3 is a cross-sectional view of the etching process.
4 is the aluminum film, 4 is the resist film, and F is the etching area of the aluminum film. on the other hand,
FIG. 3 shows a cross-sectional view during the etching reaction process. When side etching occurs, the side surface F S of the aluminum film is added to the above area F, and the etching area expands to F+ FS . Therefore, the emission intensity increases.

本発明はこれに着目して面積S(第1図参照)
が零になるように、言い換えればサイドエツチン
グが生じないように制御せんとするもので、次に
図面を参照して同様の実施例により詳しく説明す
る。第4図はプラズマエツチング装置の概要図を
示しており、反応容器11内を排気口12より排
気し、ガス流入口13より反応ガスを流入して、
容器内の真空度を0.05〜0.5Torr程度にする。被
エツチング基板14は被エツチング膜が酸化シリ
コン膜上のアルミニウム膜であり、これを一方の
電極15上におき、対向電極16との間に波長
13.56MHzの高周波電力を300〜600W程度印加し
てガスプラズマを発生させる。且つ、反応生成し
たプラズマ発光強度は容器の透過窓を通し、光フ
アイバ17によつて検出系に導出する。尚、18
は真空制御弁、19は流入ガス制御弁である。
The present invention focuses on this, and the area S (see Fig. 1)
The purpose is to control the etching so that it becomes zero, in other words, so that side etching does not occur.Next, similar embodiments will be described in detail with reference to the drawings. FIG. 4 shows a schematic diagram of the plasma etching apparatus, in which the inside of the reaction vessel 11 is evacuated through the exhaust port 12, and a reaction gas is introduced through the gas inlet 13.
Make the vacuum level inside the container about 0.05 to 0.5 Torr. The film to be etched in the substrate 14 to be etched is an aluminum film on a silicon oxide film, and this is placed on one electrode 15, and between it and the counter electrode 16, a wavelength
Approximately 300 to 600 W of 13.56 MHz high frequency power is applied to generate gas plasma. In addition, the plasma emission intensity generated by the reaction passes through the transmission window of the container and is led to the detection system by the optical fiber 17. In addition, 18
19 is a vacuum control valve, and 19 is an inflow gas control valve.

反応ガスとしては塩素(Cl2)ガス:塩化硼素
(BCl3)ガス=1:1を主体とし、これに四塩化
珪素(SiCl4)ガス0.5〜10を混合したガスを用い
る。この場合、四塩化珪素のかわりに四塩化炭素
を用いてもよい。
The reaction gas used is mainly chlorine (Cl 2 ) gas: boron chloride (BCl 3 ) gas=1:1, mixed with silicon tetrachloride (SiCl 4 ) gas from 0.5 to 10%. In this case, carbon tetrachloride may be used instead of silicon tetrachloride.

第5図は検出系を含む本発明の制御系を示す図
である。光フアイバ17によつて検出されたプラ
ズマ光は、検出用の反応生成ガスの固有特定波長
(例えば261.4nm)のみ透過させるフイルタ21
を通し、その波長のプラズマ光強度をフオトダイ
オード、フオトマルからなる光電変換器22によ
つて電気信号に変換検出し、増幅器23を経て記
録計24に記録させる。
FIG. 5 is a diagram showing a control system of the present invention including a detection system. The plasma light detected by the optical fiber 17 is passed through a filter 21 that transmits only a specific wavelength (for example, 261.4 nm) unique to the reaction product gas for detection.
The plasma light intensity at that wavelength is converted into an electrical signal by a photoelectric converter 22 consisting of a photodiode and a photomultiplier, which is then recorded on a recorder 24 via an amplifier 23.

その記録計24に記録される光強度変化を計算
制御機25に同時に伝達し、それに対応してエツ
チング条件を換えてプラズマ発光強度が増加しな
いように計る。それは即ち、第1図において発光
強度BとCおよび発光強度AとEとが同じプラズ
マ発光強度を示して、面積Sが零に近づくように
することである。
The changes in light intensity recorded by the recorder 24 are simultaneously transmitted to the computer controller 25, and the etching conditions are changed accordingly to prevent the plasma emission intensity from increasing. That is, in FIG. 1, the emission intensities B and C and the emission intensities A and E show the same plasma emission intensity, so that the area S approaches zero.

そのエツチング条件とは電力、真空度、反応ガ
ス比率で、上記アルミニウムのエツチング例では
反応ガスのうちCl2+BCl3ガスに対するSiCl4ガス
の比と全体の真空度とがサイドエツチングに影響
が大きいというデータが得られている。従つて、
そのデータに基づいたプログラムを作成し、それ
を計算制御機25に入力しておく。そのプログラ
ムとは、例えばSiCl4ガスの比を0.5〜10の間で、
また真空度を0.5Torrから0.05Torrの間で順次変
化させて、その際の面積を記憶させる。そして、
その面積Sが最小になるように適性条件を導出さ
せるものである。それには、計算制御機25から
プログラムによる命令がガス系制御器29に伝え
られて機械的にガス制御弁19を操作し、同じく
計算制御機25からプログラムによる命令が真空
系制御器28に伝えられて機械的に真空制御弁1
8を操作する。
The etching conditions are electric power, degree of vacuum, and reaction gas ratio. In the aluminum etching example above, it is said that the ratio of SiCl 4 gas to Cl 2 + BCl 3 gas among the reaction gases and the overall degree of vacuum have a large effect on side etching. Data is available. Therefore,
A program is created based on the data and input into the calculation controller 25. For example, the program is to set the ratio of SiCl 4 gas between 0.5 and 10,
Also, the degree of vacuum is sequentially changed from 0.5 Torr to 0.05 Torr, and the area at that time is memorized. and,
The suitability conditions are derived so that the area S is minimized. To do this, a program command is transmitted from the computer controller 25 to the gas system controller 29 to mechanically operate the gas control valve 19, and a program command is also transmitted from the computer controller 25 to the vacuum system controller 28. Mechanically vacuum control valve 1
Operate 8.

若し完全に異方性エツチングされているとする
と、記録計24には第6図のプラズマ発光強度と
エツチング経過時間との関係図表に示すように発
光強度線bが作成され、図示のようにエツチング
開始の直前時の発光強度Fとエツチング終了の直
後時の発光強度Iとでは強度は同じになり、また
同様にエツチング開始点の発光強度Gとエツチン
グ終止点の発光強度Hとの強度も同じになつて第
1図に示した面積Sは消滅する。この第6図ない
しはこれに近い図表が本発明によつて得られる図
表で、これはサイドエツチングが零ないし殆ど生
じて浮いないこと、言い換えれば精度良く異方性
エツチングされていることを示すものである。
If the etching is completely anisotropically etched, the recorder 24 will produce an emission intensity line b as shown in the graph of the relationship between plasma emission intensity and etching elapsed time in FIG. The luminescence intensity F immediately before the start of etching and the luminescence intensity I immediately after the end of etching are the same, and similarly, the luminescence intensity G at the etching start point and the luminescence intensity H at the etching end point are also the same. Then, the area S shown in FIG. 1 disappears. This Figure 6 or a diagram similar to this is the diagram obtained by the present invention, and this shows that there is no or almost no side etching and no floating, in other words, that the etching is anisotropically etched with high accuracy. be.

このようにすれば、第7図に示すエツチング反
応工程途中断面図のように、アルミニウム膜3の
側面はエツチングされず、エツチング面積Fは反
応工程中絶えず一定したものとなる。
In this way, as shown in the cross-sectional view during the etching reaction process shown in FIG. 7, the side surface of the aluminum film 3 is not etched, and the etching area F remains constant throughout the reaction process.

(g) 発明の効果 以上の実施例の説明から判るように、本発明に
よればプラズマエツチングにおいてサイドエツチ
ングなくすることができるから、極めて精度の高
いパターンが得られて半導体装置の高集積化、高
密度化に著しく寄与するものである。
(g) Effects of the Invention As can be seen from the description of the embodiments above, according to the present invention, side etching can be eliminated in plasma etching, resulting in extremely highly accurate patterns and highly integrated semiconductor devices. This significantly contributes to higher density.

また、本発明は半導体装置のみならず、その他
の電子部品の製造にも適用できることは当然であ
る。
Further, the present invention is naturally applicable not only to the manufacture of semiconductor devices but also to the manufacture of other electronic components.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のプラズマ発光強度とエツチング
経過時間との関係図表、第2図はアルミニウム膜
のエツチング開始前工程断面図、第3図はその従
来のエツチング工程途中断面図、第4図はプラズ
マエツチング装置の概要図、第5図は本発明にか
かるプラズマ発光強度の制御系図、第6図は本発
明によるプラズマ発光強度とエツチング経過時間
との関係図表、第7図は本発明を適用した場合の
エツチング工程途中断面図である。 図中、線a、線bはプラズマ発光強度線、3は
アルミニウム膜、4はレジスト膜、11は反応容
器、14は被エツチング基板、17は光フアイ
バ、18は真空制御弁、19は流入ガス制御弁、
22は光電変換器、24は記録計、25は計算制
御機、28は真空系制御器、29はガス系制御器
を示している。
Figure 1 is a graph showing the relationship between conventional plasma emission intensity and etching elapsed time, Figure 2 is a cross-sectional view of the process before the start of etching an aluminum film, Figure 3 is a cross-sectional view of the conventional etching process in progress, and Figure 4 is a plasma etching diagram. A schematic diagram of an etching apparatus, FIG. 5 is a control system for plasma emission intensity according to the present invention, FIG. 6 is a diagram showing the relationship between plasma emission intensity and etching elapsed time according to the present invention, and FIG. 7 is a case where the present invention is applied. FIG. In the figure, lines a and b are plasma emission intensity lines, 3 is an aluminum film, 4 is a resist film, 11 is a reaction vessel, 14 is a substrate to be etched, 17 is an optical fiber, 18 is a vacuum control valve, and 19 is an inflow gas. control valve,
22 is a photoelectric converter, 24 is a recorder, 25 is a computer controller, 28 is a vacuum system controller, and 29 is a gas system controller.

Claims (1)

【特許請求の範囲】[Claims] 1 内部に基板を保持した反応容器内に反応性ガ
スを供給し、該反応容器内にてプラズマを発生さ
せて該基板表面を異方性エツチングするプラズマ
エツチング方法において、プラズマ発生中のプラ
ズマ発光強度を監視し、エツチング開始時におけ
る該プラズマ発光強度が、該エツチング実施中に
略保たれるようにエツチングを制御することを特
徴とするプラズマエツチング方法。
1 In a plasma etching method in which a reactive gas is supplied into a reaction vessel holding a substrate therein, plasma is generated in the reaction vessel and the substrate surface is anisotropically etched, the plasma emission intensity during plasma generation is 1. A plasma etching method characterized in that the etching is controlled so that the plasma emission intensity at the start of etching is substantially maintained during the etching.
JP509683A 1983-01-13 1983-01-13 plasma etching method Granted JPS59129428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP509683A JPS59129428A (en) 1983-01-13 1983-01-13 plasma etching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP509683A JPS59129428A (en) 1983-01-13 1983-01-13 plasma etching method

Publications (2)

Publication Number Publication Date
JPS59129428A JPS59129428A (en) 1984-07-25
JPH059938B2 true JPH059938B2 (en) 1993-02-08

Family

ID=11601845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP509683A Granted JPS59129428A (en) 1983-01-13 1983-01-13 plasma etching method

Country Status (1)

Country Link
JP (1) JPS59129428A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100481559B1 (en) * 2002-08-22 2005-04-08 동부아남반도체 주식회사 Etching scheme in a semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55119175A (en) * 1979-03-07 1980-09-12 Toshiba Corp Reactive ion etching method
JPS55157233A (en) * 1979-05-28 1980-12-06 Hitachi Ltd Method and apparatus for monitoring etching
JPS57117241A (en) * 1981-01-13 1982-07-21 Matsushita Electric Ind Co Ltd Reactive ion etching method
JPS5979528A (en) * 1982-10-29 1984-05-08 Hitachi Ltd Dry etching device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55119175A (en) * 1979-03-07 1980-09-12 Toshiba Corp Reactive ion etching method
JPS55157233A (en) * 1979-05-28 1980-12-06 Hitachi Ltd Method and apparatus for monitoring etching
JPS57117241A (en) * 1981-01-13 1982-07-21 Matsushita Electric Ind Co Ltd Reactive ion etching method
JPS5979528A (en) * 1982-10-29 1984-05-08 Hitachi Ltd Dry etching device

Also Published As

Publication number Publication date
JPS59129428A (en) 1984-07-25

Similar Documents

Publication Publication Date Title
US4330384A (en) Process for plasma etching
US4618398A (en) Dry etching method
US4547260A (en) Process for fabricating a wiring layer of aluminum or aluminum alloy on semiconductor devices
JPH0777214B2 (en) Ashing method for organic matter
JPH0670989B2 (en) Reactive Ion Etching of Silicon with Hydrogen Bromide
JPH07183348A (en) Preparation of device
JPH059938B2 (en)
US5989979A (en) Method for controlling the silicon nitride profile during patterning using a novel plasma etch process
JP3252789B2 (en) Etching method
JPH0114698B2 (en)
JPS5961036A (en) Method of detecting end point of plasma etching
JPS5835364B2 (en) plasma etching method
US7078160B2 (en) Selective surface exposure, cleans, and conditioning of the germanium film in a Ge photodetector
JPH05102089A (en) Dry etching method
JP4780264B2 (en) Method for forming chromium-based photomask
JPS6328995B2 (en)
JP2001059193A (en) Production of x-ray mask, and device therefor
JPH05109673A (en) Method for manufacturing semiconductor device
Staffa et al. Temperature dependence of the etch rate and selectivity of silicon nitride over silicon dioxide in remote plasma NF3/Cl2
JP2723384B2 (en) Method for manufacturing semiconductor device
JPH0567590A (en) End point detecting method in etching of semiconductor device
JPH04127428A (en) Manufacture of semiconductor device
JPH01188685A (en) Method for detecting end point of niobium film etching
JPS627880A (en) plasma etching equipment
JP2677461B2 (en) Method for manufacturing semiconductor device