[go: up one dir, main page]

JPH0599014A - Detection method for frictional factor on road surface - Google Patents

Detection method for frictional factor on road surface

Info

Publication number
JPH0599014A
JPH0599014A JP3262257A JP26225791A JPH0599014A JP H0599014 A JPH0599014 A JP H0599014A JP 3262257 A JP3262257 A JP 3262257A JP 26225791 A JP26225791 A JP 26225791A JP H0599014 A JPH0599014 A JP H0599014A
Authority
JP
Japan
Prior art keywords
torque
road surface
vehicle
friction coefficient
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3262257A
Other languages
Japanese (ja)
Inventor
Masuo Kashiwabara
益夫 柏原
Akira Shimizu
彰 清水
Hideyuki Kojima
秀幸 小島
Atsumi Hoshina
敦巳 保科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP3262257A priority Critical patent/JPH0599014A/en
Publication of JPH0599014A publication Critical patent/JPH0599014A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)

Abstract

PURPOSE:To accurately detect a friction coefficient on a road surface for a vehicle. CONSTITUTION:A friction coefficient mu on a driving road surface is calculated and detected by, for instance, the following equation: mu=(TWP-Ialpha)/mWgr, or mu=(mrTWP+IR)/mWg(mr<2>+I), where TWP is a maximum value of a shaft torque TW of a driving wheel in respect to a driving road surface immediately before slipping, mWg is a vehicle weight applied to the driving wheel, I is an inertial moment from a detection part of the shaft torque to the tire tread of the rear wheel, F is frictional force generated on the tire tread of the rear wheel, N is repulsive force in a perpendicular direction applied from the road surface to the rear wheel, (r) is a diameter of the rear wheel, and R is a running resistance of the vehicle. Thus, a road surface friction coefficient is accurately detected from torque generated on the tire tread of the driving wheel.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、車両の走行路面の摩擦
係数を検出する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting a friction coefficient on a road surface of a vehicle.

【0002】[0002]

【従来の技術】アクセルペダルの操作量 (踏込み量) を
検出し、該操作量に応じてエンジンの吸気系に介装され
たスロットル弁をアクチュエータによって駆動制御する
ものがあり、特に、車輪のスリップを検出したときには
エンジントルクを減じ、その後徐々に増大させる積分制
御を行うことによりスリップを抑制しつつ駆動力を最適
なレベルに保持するトラクション制御を行うものがある
(特開平1−218932号公報等参照) 。
2. Description of the Related Art There is a type in which an accelerator pedal operation amount (depression amount) is detected and a throttle valve provided in an intake system of an engine is driven and controlled by an actuator in accordance with the operation amount. In some cases, traction control is performed to reduce the engine torque and then gradually increase the integral torque to suppress slip while maintaining the driving force at an optimum level.
(See Japanese Patent Laid-Open No. 1-218932, etc.).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、かかる
従来のトラクション制御装置においては、車輪のスリッ
プ発生により初めてトルクを減じるため、スリップ初期
の制御遅れが生じる場合があり、良好なトラクション制
御を行えない場合があった。また、自動変速機を備えた
車両では雪道等摩擦係数が小さい路面を走行する際の車
輪のスリップを防止するために変速マップを通常走行時
用のモードより高速ギヤ側が使用されるスノーモードに
切り換えられるようにしたものがあるが、現在このモー
ドの切換は運転者の判断により手動で行われているた
め、適切なモードが使用されない場合があった。
However, in such a conventional traction control device, since the torque is reduced only when the wheel slip occurs, a control delay may occur at the initial stage of the slip, and good traction control cannot be performed. was there. Also, in vehicles equipped with an automatic transmission, in order to prevent slipping of wheels when traveling on a road surface with a small friction coefficient such as a snow road, the shift map is changed to a snow mode in which the higher speed gear side is used than the mode for normal running. Although there is one that can be switched, the switching of this mode is currently performed manually at the discretion of the driver, so that the appropriate mode may not be used.

【0004】このため、本願出願人は駆動輪の軸トルク
を検出し、エンジンの非減速時に前記軸トルクが減少し
た時にはスリップが発生したと判断して、軸トルクの減
少の直前に発生していた軸トルクを当該走行路面で発生
しうる最大軸トルクとして求め、当該最大軸トルク発生
時には駆動輪と走行路面との間に最大摩擦力を生じてい
るから前記最大軸トルクと車両の諸元 (駆動輪に加わる
車重,駆動輪の径) から走行路面の摩擦係数を演算によ
り検出するものを提案した (特願平3−1091号) 。
Therefore, the applicant of the present application detects the shaft torque of the drive wheels, determines that slip occurs when the shaft torque decreases when the engine is not decelerating, and the slip occurs immediately before the shaft torque decreases. Determined as the maximum axial torque that can be generated on the traveling road surface.When the maximum axial torque is generated, the maximum frictional force is generated between the drive wheel and the traveling road surface. We proposed a method that detects the friction coefficient of the road surface by calculation from the vehicle weight applied to the drive wheels and the diameter of the drive wheels (Japanese Patent Application No. 3-1091).

【0005】しかしながら、正確には前記走行路面の摩
擦係数を求めるためには、駆動輪の接地面のトルクを検
出する必要があり、該接地面のトルクと駆動輪の軸トル
クとは各トルク発生部間の慣性モーメントに角加速度が
作用する分だけ相違し、その分、路面摩擦係数の検出値
に誤差を生じるものであった。本発明はこのような従来
の問題点に鑑みなされたもので、トラクション制御,,
変速制御等を、より適切に行うために検出が要求される
走行路面の摩擦係数を走行中に間接的に検出でき、か
つ、より正確に検出する方法を提供することを目的とす
る。
However, in order to accurately obtain the friction coefficient of the traveling road surface, it is necessary to detect the torque of the ground contact surface of the drive wheel, and the torque of the ground contact surface and the axial torque of the drive wheel generate each torque. The moment of inertia between the parts is different by the amount of the angular acceleration acting, and thus the detected value of the road surface friction coefficient has an error. The present invention has been made in view of the above conventional problems.
An object of the present invention is to provide a method for indirectly detecting a friction coefficient of a traveling road surface, which is required to be detected in order to more appropriately perform gear shift control and the like, during traveling, and more accurately detecting the friction coefficient.

【0006】[0006]

【課題を解決するための手段】このため、本発明に係る
路面摩擦係数の検出方法は、車両に搭載されたエンジン
のトルク及び車両の駆動輪に連結された駆動軸のトルク
を夫々検出し、エンジントルクの非減少時に軸トルクが
減少した時に、該減少直前に検出された軸トルクと、前
記駆動軸のトルク検出部から前記駆動輪の接地面までの
部分の慣性モーメントと駆動輪の角加速度との積として
求まる損失トルクと、車両の諸元とに基づいて走行路面
の摩擦係数を演算により検出する方法とした。
Therefore, a road surface friction coefficient detecting method according to the present invention detects the torque of an engine mounted on a vehicle and the torque of a drive shaft connected to driving wheels of the vehicle, respectively. When the shaft torque decreases when the engine torque is not decreasing, the shaft torque detected immediately before the decrease, the moment of inertia of the portion from the torque detecting portion of the drive shaft to the ground surface of the drive wheel, and the angular acceleration of the drive wheel. The friction coefficient of the traveling road surface is calculated based on the loss torque obtained as the product of the above and the specifications of the vehicle.

【0007】また、駆動輪の角加速度を、検出された軸
トルクと、車速の検出値から求めた車両の走行抵抗と、
車両の諸元とに基づいて推定演算した値を用いてもよ
い。
Further, the angular acceleration of the driving wheels, the running resistance of the vehicle obtained from the detected axial torque and the detected value of the vehicle speed,
A value estimated and calculated based on the specifications of the vehicle may be used.

【0008】[0008]

【作用】エンジントルクの非減少時においては、駆動輪
がスリップする前は駆動輪の軸トルクも減少しないが、
駆動輪がスリップすると軸トルクは大きく減少する。し
たがって、上記条件で軸トルクの減少を検出したときに
は駆動輪がスリップした時であり、その直前において駆
動輪の接地面に生じるトルク(接地面トルク)の値は駆
動輪と路面との間に生じる最大摩擦力に駆動輪の輪径を
乗算した値に等しく、かつ、前記最大摩擦力は車両の諸
元 (重量) と路面の摩擦係数とによって求められるか
ら、前記接地面トルクが分かれば逆算により路面の摩擦
係数を求めることができる。
When the engine torque is not reduced, the axial torque of the drive wheels does not decrease before the drive wheels slip.
When the drive wheels slip, the shaft torque is greatly reduced. Therefore, when the reduction of the axial torque is detected under the above conditions, it is when the drive wheel slips, and immediately before that, the value of the torque (ground plane torque) generated on the ground surface of the drive wheel is generated between the drive wheel and the road surface. It is equal to the value obtained by multiplying the maximum frictional force by the wheel diameter of the drive wheel, and the maximum frictional force is obtained from the specifications (weight) of the vehicle and the friction coefficient of the road surface. The friction coefficient of the road surface can be obtained.

【0009】前記駆動輪の接地面トルクは、駆動輪の定
速回転時は軸トルクと一致するが、加減速時は軸トルク
検出部から駆動輪の接地面までの部分の慣性モーメント
に駆動輪の角加速度を乗じて求められるトルク分(加速
時に正の値)を前記軸トルクから差し引いた値となる。
そこで、軸トルク減少直前の軸トルクと、前記慣性モー
メントと駆動輪の角加速度の積として求まる損失トルク
と、車両諸元とに基づいて路面摩擦係数を演算により検
出できる。
The ground contact torque of the drive wheel coincides with the shaft torque when the drive wheel rotates at a constant speed, but during acceleration / deceleration, the moment of inertia of the portion from the shaft torque detecting portion to the ground contact surface of the drive wheel becomes equal to the drive wheel. Is a value obtained by subtracting a torque component (a positive value at the time of acceleration) obtained by multiplying the angular acceleration from the shaft torque.
Therefore, the road surface friction coefficient can be detected by calculation based on the axial torque immediately before the reduction of the axial torque, the loss torque obtained as the product of the inertia moment and the angular acceleration of the drive wheels, and the vehicle specifications.

【0010】また、駆動輪の角加速度は駆動輪の回転速
度をセンサにより検出すれば微分により求められるが検
出された軸トルクと、車速の検出値から求めた車両の走
行抵抗と、車両の諸元とに基づいて推定演算してもよ
く、前記駆動輪の回転速度センサが不要となる。
Further, the angular acceleration of the drive wheels can be obtained by differentiating the rotational speed of the drive wheels with a sensor, but the detected axial torque, the running resistance of the vehicle obtained from the detected value of the vehicle speed, and various vehicle characteristics. The calculation may be performed based on the original value, and the rotation speed sensor for the drive wheel is not necessary.

【0011】[0011]

【実施例】以下に本発明の実施例を説明する。一実施例
のシステム構成を示す図1において、車両に搭載された
エンジン1の吸気通路2には、ステップモータ等のアク
チュエータ3によって駆動されるスロットル弁4が介装
されている。
EXAMPLES Examples of the present invention will be described below. In FIG. 1 showing the system configuration of one embodiment, a throttle valve 4 driven by an actuator 3 such as a step motor is provided in an intake passage 2 of an engine 1 mounted on a vehicle.

【0012】そして、通常はコントロールユニット5
が、アクセルセンサ6により検出される図示しないアク
セルペダルの操作量 (踏込量) 等に応じてエンジン1の
目標トルクを設定し、エンジントルクを該目標トルクに
近づけるべくコントロールユニット5からアクチュエー
タ3に開度制御信号が出力され、該信号によりアクチュ
エータ3を介してスロットル弁4の開度が制御される。
And, normally, the control unit 5
However, the target torque of the engine 1 is set according to the operation amount (depression amount) of an accelerator pedal (not shown) detected by the accelerator sensor 6, and the control unit 5 opens the actuator 3 to bring the engine torque close to the target torque. Degree control signal is output, and the opening degree of the throttle valve 4 is controlled via the actuator 3 by the signal.

【0013】また、走行路面の摩擦係数μを検出するた
め、駆動輪 ,本実施例では後輪7の軸トルクを検出する
トルクセンサ8が、後輪7に連結された車軸 (駆動軸)
に設けられ、エンジン1の出力軸に連結されたトルクコ
ンバータ付自動変速機9には、該変速機9の出力軸の回
転速度を検出することによって車速を検出する車速セン
サ10が設けられ、これらトルクセンサ8,車速センサ10
からの信号は前記コントロールユニット5に入力され、
コントロールユニット5は、各検出信号に基づき後輪7
のスリップ発生時には路面の摩擦係数μを検出し、該摩
擦係数μに応じて後述するトラクション制御が行われ
る。
Further, in order to detect the friction coefficient μ of the traveling road surface, a torque sensor 8 for detecting the axial torque of the drive wheel, that is, the rear wheel 7 in this embodiment, is an axle (drive shaft) connected to the rear wheel 7.
A vehicle speed sensor 10 for detecting a vehicle speed by detecting the rotation speed of the output shaft of the transmission 9 is provided in the automatic transmission 9 with a torque converter connected to the output shaft of the engine 1. Torque sensor 8, vehicle speed sensor 10
The signal from is input to the control unit 5,
The control unit 5 controls the rear wheel 7 based on each detection signal.
When the slip occurs, the friction coefficient μ of the road surface is detected, and traction control described later is performed according to the friction coefficient μ.

【0014】以下に、前記コントロールユニット5によ
る摩擦係数μの検出と、該検出値に基づくエンジントル
ク制御を図2に示したフローチャートに従って説明す
る。ステップ (図ではSと記す。以下同様) 1では、ア
クセルペダルの操作量を含む運転条件に応じて第1の目
標トルクT1 を設定する。ステップ2では、トルクセン
サ8により検出される後輪7の軸トルクTW がA/D変
換される。
The detection of the friction coefficient μ by the control unit 5 and the engine torque control based on the detected value will be described below with reference to the flow chart shown in FIG. In step (denoted as S in the figure. The same applies hereinafter) 1, the first target torque T 1 is set according to the operating conditions including the operation amount of the accelerator pedal. In step 2, the axial torque T W of the rear wheel 7 detected by the torque sensor 8 is A / D converted.

【0015】ステップ3では、エンジントルクTe が演
算される。これは、別ルーチンで求められる基本燃料噴
射量TP (=K・Q/N;Kは定数,Qは吸入空気流
量,Nはエンジン回転数) に比例する値として求められ
る。このステップ3の機能がエンジントルク検出手段に
相当する。ステップ4では、前記エンジントルクTe
減少中であるか否かを判定する。
In step 3, the engine torque T e is calculated. This is obtained as a value proportional to the basic fuel injection amount T P (= K · Q / N; K is a constant, Q is the intake air flow rate, and N is the engine speed) obtained in another routine. The function of step 3 corresponds to the engine torque detecting means. In step 4, it is determined whether the engine torque T e is decreasing.

【0016】ステップ4の判定がNOであるとき、つま
りエンジントルクTe の非減少時 (単調増加時) である
ときは、ステップ5へ進み軸トルクTW が減少したか否
かを判定する。ステップ5の判定がYESであるとき、
つまりエンジントルクTe が単調増加中に軸トルクTW
が減少した場合は、ステップ6へ進んで、この状態が初
回か否かを判定する。
When the determination in step 4 is NO, that is, when the engine torque T e is not decreasing (monotonically increasing), the process proceeds to step 5 and it is determined whether the shaft torque T W has decreased. When the determination in step 5 is YES,
That is, while the engine torque T e is monotonically increasing, the shaft torque T W
If is decreased, the process proceeds to step 6 and it is determined whether or not this state is the first time.

【0017】ステップ6で初回と判定された場合は、後
輪7にスリップを生じた結果として軸トルクTe が減少
したものと判断し、前回の軸トルクの検出値TW-1 が現
在の走行路面の摩擦係数μに対して発生しうる最大軸ト
ルクであるから、ステップ7において次のようにして摩
擦係数μを逆算する。図3に示すように、車体重量を
m,車体の走行加速度をa,後輪 (駆動輪) に掛かる車
重をmW ,後輪の角加速度をα,重力加速度をg,後輪
軸トルク検出部から後輪接地面までの慣性モーメントを
I,後輪の接地面に生じる摩擦力をF,後輪が接地面か
ら受ける垂直方向の反力をN,後輪の径をr,車両の走
行抵抗をR,として、車両進行方向 (x軸方向),垂直
方向 (y軸方向) ,駆動輪の回転方向 (z軸回り方向)
の運動方程式を立てると以下のようになる。
If it is determined in step 6 that it is the first time, it is determined that the axial torque T e has decreased as a result of slippage of the rear wheels 7, and the previous detected value T W-1 of the axial torque is the current value. Since it is the maximum axial torque that can be generated with respect to the friction coefficient μ of the traveling road surface, the friction coefficient μ is calculated back in step 7 as follows. As shown in FIG. 3, vehicle body weight is m, vehicle body running acceleration is a, vehicle weight applied to rear wheels (driving wheels) is m W , rear wheel angular acceleration is α, gravitational acceleration is g, and rear wheel axle torque detection is performed. Section, the moment of inertia from the rear wheel contact surface is I, the frictional force generated on the rear wheel contact surface is F, the vertical reaction force that the rear wheel receives from the contact surface is N, the rear wheel diameter is r, and the vehicle travels. Resistance is R, vehicle traveling direction (x-axis direction), vertical direction (y-axis direction), drive wheel rotation direction (z-axis rotation direction)
The equation of motion of is set as follows.

【0018】 x軸方向:ma=μmg−R ・・・(1) y軸方向:mW g=N ・・・(2) z軸回り方向:Iα=TW −Fr ・・・(3) 後輪がスリップする直前 (グリップ時) は、FMAX =μ
N=μmW g・・(4)またグリップ時はa=rα・・・
(5) が成立するので、(1),(4),(5) 式より、 FMAX =ma+R=mrα+R=μmW g・・・(6) (3),(4)式より、 FMAX = (TWP−Iα) /r=μmW g ・・・(7) ∴μ= (mrα+R)/mW g= (TWP−Iα)/mW gr・・・(8) また、(6),(7) 式より、 (mrα+R) r=TWP−Iα → (mr2 +I) α=TWP−Rr →α= (TWP−Rr)/(mr2 +I) ・・・(9) となり、(9) 式を(8) 式に代入すると、 μ=[ (mr2 +I) TWP−I (TWP−Rr) ]/mW g (mr2 +I) ∴μ= (mrTWP+IR) /mW g (mr2 +I) ・・・(10) したがって、駆動輪の接地面に発生するグリップ限界ト
ルクTWPと、その時の走行抵抗とが分かれば、予め分か
っている車両の諸元を用いて摩擦係数μを演算すること
ができることが明らかである。
X-axis direction: ma = μmg−R (1) y-axis direction: m W g = N (2) z-axis rotation direction: Iα = T W −Fr (3) Just before the rear wheel slips (during grip), F MAX = μ
N = μm W g ··· (4) When gripping, a = rα ...
Since (5) holds, F MAX = ma + R = mrα + R = μm W g (6) From formulas (1), (4) and (5), (6) From formulas (3) and (4), F MAX = The (T WP -Iα) / r = μm W g ··· (7) ∴μ = (mrα + R) / m W g = (T WP -Iα) / m W gr ··· (8), (6 ), (7), (mrα + R) r = T WP −Iα → (mr 2 + I) α = T WP −Rr → α = (T WP −Rr) / (mr 2 + I) (9) Then, substituting equation (9) into equation (8), μ = [(mr 2 + I) T WP −I (T WP −Rr)] / m W g (mr 2 + I) ∴μ = (mr T WP + IR ) / M W g (mr 2 + I) (10) Therefore, if the grip limit torque T WP generated on the contact surface of the drive wheels and the running resistance at that time are known, the specifications of the vehicle that are known in advance can be obtained. It is clear that can be used to calculate the coefficient of friction μ.

【0019】ここで、走行抵抗として最も影響が大きい
のは転がり抵抗であり、これは車速によって変化する
が、実験により予め車速に対する値を求めてRAMにマ
ップとして記憶しておくことにより、前記車速センサ10
によって検出された車速に対応する値を前記マップから
の検索により求めることができる。また、路面が傾斜し
た坂道では路面に沿った方向に重力の分力が作用し、登
り斜面では該分力が走行抵抗を増大させ、下り斜面では
走行抵抗を減少させるように作用するので、加速度セン
サを設けて斜面に作用する分力を検出して増減補正する
ようにすれば、坂道の路面摩擦係数も正確に求めること
ができる。
Here, the rolling resistance has the greatest effect as the running resistance, which changes depending on the vehicle speed. However, the value for the vehicle speed is experimentally obtained in advance and stored in the RAM as a map, so that the vehicle speed can be improved. Sensor 10
A value corresponding to the vehicle speed detected by can be obtained by searching the map. In addition, the component of gravity acts in the direction along the road on a sloped road, and the component increases the running resistance on the upslope and decreases the running resistance on the downslope. If a sensor is provided and the component force acting on the slope is detected and the increase / decrease is corrected, the road surface friction coefficient on the slope can also be accurately obtained.

【0020】尚、駆動輪の回転速度を検出するセンサを
設ければ、駆動輪の角加速度αを直接的に検出できるの
で、(8) のαを用いた式μ= (TWP−Iα)/mW grで
そのままμを求めることができるが、走行抵抗を用いて
換算することにより加速度センサを備えなくても車速の
検出のみで略同等の慣性モーメントと角加速度との積で
求まる損失トルクを考慮した接地面トルクに基づいた路
面摩擦係数μを検出することができる。
If a sensor for detecting the rotational speed of the driving wheel is provided, the angular acceleration α of the driving wheel can be directly detected. Therefore, the expression μ using α in (8) μ = (T WP -Iα) μ can be obtained as is with / m W gr, but by converting it using running resistance, loss torque obtained by multiplying the moment of inertia and angular acceleration, which is approximately the same, only by detecting the vehicle speed without an acceleration sensor. It is possible to detect the road surface friction coefficient μ based on the contact surface torque considering

【0021】次いでステップ8へ進み、後述するように
トラクション制御用の目標トルクを初期値から漸増させ
る増大割合Δμを設定する。これは、図4に示すように
ステップ6で求めたμの値か、又は該μに関連する値と
して車両の走行加速度aや前記軸トルクTW-1 に対して
予め設定されたマップからの検索等により設定する。
尚、Δμは、前記各値が大きい時ほど大きく設定されて
いる。
Next, the routine proceeds to step 8, where an increasing rate Δμ for gradually increasing the target torque for traction control from the initial value is set as described later. This is the value of μ obtained in step 6 as shown in FIG. 4, or from the map preset for the vehicle running acceleration a and the axial torque T W-1 as a value related to the μ. Set by searching.
It should be noted that Δμ is set to be larger as each of the above values is larger.

【0022】ステップ9では、ステップ7で求められた
摩擦係数μに対して、トラクション制御用の第2の目標
トルクT2 を次式により設定する。 T2 =Ks μmW g/i 但し、Ks はトルク過剰率であり、発生しうる最大軸ト
ルクに対して後輪7のスリップ率を最適に保持するよう
にエンジントルクを出力すべく、1より小の適度な値に
設定されている。また、i=最終ギア比× (自動変速機
のギア比) × (トルクコンバータのトルク比) である。
At step 9, the second target torque T 2 for traction control is set by the following equation with respect to the friction coefficient μ obtained at step 7. T 2 = K s μm W g / i However, K s is a torque excess rate, and in order to output the engine torque so as to optimally maintain the slip rate of the rear wheel 7 with respect to the maximum axial torque that can be generated, It is set to an appropriate value smaller than 1. Further, i = final gear ratio × (gear ratio of automatic transmission) × (torque ratio of torque converter).

【0023】また、ステップ4の判定がYES,ステッ
プ5の判定がNO,ステップ6の判定がNOのいずれか
の場合、つまり後輪7にスリップを生じた直後以外のと
きはステップ10へ進み、前記ステップ7で設定された増
大割合Δμをμに加算した値でμを更新した後ステップ
9へ進んで前述の演算式により第2の目標トルクT2
設定更新する。
If the determination in step 4 is YES, the determination in step 5 is NO, or the determination in step 6 is NO, that is, except immediately after the rear wheel 7 slips, proceed to step 10. After μ is updated with the value obtained by adding the increase rate Δμ set in step 7 to μ, the process proceeds to step 9 and the second target torque T 2 is set and updated by the above-described arithmetic expression.

【0024】尚、ステップ9の機能がトラクション制御
用目標トルク設定手段に相当する。次にステップ11で
は、ステップ1で求めたアクセル操作量に対する第1の
目標トルクT1 と、前記ステップ9で求めたトラクショ
ン制御用の第2の目標トルクT2 との大小を比較判定
し、T1 ≦T2 の時はステップ12へ進んでT1 を選択し
1 >T2 のときはステップ13へ進んでT2 を選択して
夫々出力すべき目標トルクTとしてセットする。
The function of step 9 corresponds to traction control target torque setting means. Next, at step 11, the magnitude of the first target torque T 1 for the accelerator operation amount obtained at step 1 and the second target torque T 2 for traction control obtained at step 9 are compared and judged, and 1 ≦ T when 2 is set as the target torque T to be respectively output by selecting T 2 proceeds to step 13 when the select T 1 proceeds to step 12 T 1> T 2.

【0025】ステップ14では、前記目標トルクTに応じ
たスロットル弁開度となるように、アクチュエータ3に
駆動信号を出力する。このようにすれば、走行路面の摩
擦係数μを軸トルク検出部から駆動輪の接地面までの慣
性モーメントにより作用する損失トルクを考慮して正確
に検出できるため、路面状況に対応して最適なトラクシ
ョン制御性能が得られる。図5は、本実施例によるトラ
クション制御時の各種状態量の変化を示したものであ
る。
In step 14, a drive signal is output to the actuator 3 so that the throttle valve opening degree will correspond to the target torque T. In this way, the friction coefficient μ of the traveling road surface can be accurately detected in consideration of the loss torque acting due to the moment of inertia from the shaft torque detection unit to the ground contact surface of the drive wheel, and therefore, it is optimal for the road surface condition. Traction control performance is obtained. FIG. 5 shows changes in various state quantities during traction control according to this embodiment.

【0026】[0026]

【発明の効果】以上説明したように本発明によれば、駆
動輪の軸トルクの変化を検出しつつ走行路面の摩擦係数
を検出することができ、かつ、軸トルクの検出部から駆
動輪の接地面までの慣性モーメントと駆動輪の角加速度
の積として発生する損失トルクを考慮して得られた接地
面のトルクに基づいて、より正確に路面摩擦係数を検出
することができる。
As described above, according to the present invention, it is possible to detect the friction coefficient of the traveling road surface while detecting the change in the axial torque of the driving wheels, and the axial torque detecting unit detects the driving wheels. The road surface friction coefficient can be detected more accurately based on the torque of the contact surface obtained by taking into consideration the loss torque generated as the product of the moment of inertia up to the contact surface and the angular acceleration of the drive wheels.

【0027】また、駆動輪の角加速度を軸トルクと走行
抵抗を用いて換算すれば直接角加速度を検出するための
センサを設けることなく、路面摩擦係数を検出すること
ができる。そして、かかる路面摩擦係数を用いてトラク
ション制御等を行えば、制御性能を高めることができ
る。
If the angular acceleration of the drive wheels is converted using the axial torque and the running resistance, the road surface friction coefficient can be detected without providing a sensor for directly detecting the angular acceleration. If traction control or the like is performed using such a road surface friction coefficient, control performance can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すシステム図FIG. 1 is a system diagram showing an embodiment of the present invention.

【図2】同上実施例の路面摩擦係数の検出及びエンジン
トルク制御を示すフローチャート
FIG. 2 is a flowchart showing detection of a road surface friction coefficient and engine torque control according to the embodiment.

【図3】駆動輪に生じる各種の力の状態を示す図FIG. 3 is a diagram showing states of various forces generated on a driving wheel.

【図4】同上実施例の摩擦係数の増大割合設定のための
各種マップ
[Fig. 4] Various maps for setting the increasing rate of the friction coefficient in the above embodiment.

【図5】同上実施例の各種状態量の変化を示すグラフFIG. 5 is a graph showing changes in various state quantities according to the above embodiment.

【符号の説明】[Explanation of symbols]

1 エンジン 5 コントロールユニット 7 後輪 8 トルクセンサ 10 車速センサ 1 Engine 5 Control Unit 7 Rear Wheel 8 Torque Sensor 10 Vehicle Speed Sensor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 保科 敦巳 群馬県伊勢崎市粕川町1671番地1 日本電 子機器株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Atsumi Hoshina 1671 Kasukawacho, Isesaki City, Gunma Prefecture 1 NIPPON ELECTRONIC DEVICE CO., LTD.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】車両に搭載されたエンジンのトルク及び車
両の駆動輪に連結された駆動軸のトルクを夫々検出し、
エンジントルクの非減少時に軸トルクが減少した時に、
該減少直前に検出された軸トルクと、前記駆動軸のトル
ク検出部から前記駆動輪の接地面までの部分の慣性モー
メントと駆動輪の角加速度との積として求まる損失トル
クと、車両の諸元とに基づいて走行路面の摩擦係数を演
算により検出することを特徴とする路面摩擦係数の検出
方法。
1. A torque of an engine mounted on a vehicle and a torque of a drive shaft connected to drive wheels of the vehicle are respectively detected,
When the shaft torque decreases when the engine torque is not decreasing,
The shaft torque detected immediately before the decrease, the loss torque obtained as the product of the moment of inertia of the portion from the torque detection portion of the drive shaft to the ground contact surface of the drive wheel, and the angular acceleration of the drive wheel, and the specifications of the vehicle. A method for detecting a road surface friction coefficient, characterized by detecting the friction coefficient of a traveling road surface based on the following.
【請求項2】駆動輪の角加速度は、検出された軸トルク
と、車速の検出値から求めた車両の走行抵抗と、車両の
諸元とに基づいて推定演算されてなる請求項1に記載の
路面摩擦係数の検出方法。
2. The angular acceleration of the drive wheels is estimated and calculated on the basis of the detected axial torque, the running resistance of the vehicle obtained from the detected value of the vehicle speed, and the specifications of the vehicle. Method for detecting road friction coefficient.
JP3262257A 1991-10-09 1991-10-09 Detection method for frictional factor on road surface Pending JPH0599014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3262257A JPH0599014A (en) 1991-10-09 1991-10-09 Detection method for frictional factor on road surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3262257A JPH0599014A (en) 1991-10-09 1991-10-09 Detection method for frictional factor on road surface

Publications (1)

Publication Number Publication Date
JPH0599014A true JPH0599014A (en) 1993-04-20

Family

ID=17373271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3262257A Pending JPH0599014A (en) 1991-10-09 1991-10-09 Detection method for frictional factor on road surface

Country Status (1)

Country Link
JP (1) JPH0599014A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5754967A (en) * 1994-12-16 1998-05-19 Mitsubishi Denki Kabushiki Kaisha Torque detection apparatus for controlling a vehicle
JP2000130206A (en) * 1998-10-26 2000-05-09 Robert Bosch Gmbh Evaluating method of automobile driving torque capable of maximum output and device therefor
WO2003053747A1 (en) * 2001-12-21 2003-07-03 Kabushiki Kaisha Bridgestone Method and apparatus for estimating road surface state and tire running state, abs and vehicle control using the same
JP2009035100A (en) * 2007-08-01 2009-02-19 Hino Motors Ltd Automatic brake control device
JP2020104747A (en) * 2018-12-27 2020-07-09 ダイハツ工業株式会社 Control device for vehicle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5754967A (en) * 1994-12-16 1998-05-19 Mitsubishi Denki Kabushiki Kaisha Torque detection apparatus for controlling a vehicle
DE19540899B4 (en) * 1994-12-16 2012-06-14 Mitsubishi Denki K.K. Torque detecting device for slip-controlled brake systems
JP2000130206A (en) * 1998-10-26 2000-05-09 Robert Bosch Gmbh Evaluating method of automobile driving torque capable of maximum output and device therefor
WO2003053747A1 (en) * 2001-12-21 2003-07-03 Kabushiki Kaisha Bridgestone Method and apparatus for estimating road surface state and tire running state, abs and vehicle control using the same
US7203579B2 (en) 2001-12-21 2007-04-10 Kabushiki Kaisha Bridgestone Method and apparatus for estimating road surface state and tire running state, ABS and vehicle control using the same
JP2009035100A (en) * 2007-08-01 2009-02-19 Hino Motors Ltd Automatic brake control device
JP2020104747A (en) * 2018-12-27 2020-07-09 ダイハツ工業株式会社 Control device for vehicle

Similar Documents

Publication Publication Date Title
US6729426B2 (en) Driving force controlling apparatus and method for four-wheel drive vehicle
US6575870B2 (en) Driving force control system for front-and-rear wheel drive vehicles
JP2001138764A (en) Hybrid vehicle
JP2946251B2 (en) Drive wheel torque control device for vehicle
JP2519960B2 (en) Vehicle traction control method
JP2704774B2 (en) Vehicle drive wheel slip control system
JP3475559B2 (en) Vehicle driving force control device
JPH0599014A (en) Detection method for frictional factor on road surface
CN101048291A (en) Automobile and control method of automobile
JP2910877B2 (en) Vehicle power train control device and method
JPH1178818A (en) Brake controller for vehicle
JPH0516686A (en) Device for judging running condition of vehicle and controller for power transmission of vehicle
JP4269901B2 (en) Vehicle behavior control device and program
JP2932103B2 (en) Road surface friction coefficient detecting device, engine torque control device using the same, and vehicle shift control device
JPH07108631B2 (en) Vehicle drive force control device
JPS6312839A (en) Drive force control device for vehicle
US20030214181A1 (en) Traction control system including automatic engine torque increase during mu-split starting operations
JP2796878B2 (en) Vehicle driving force control device
JP3010956B2 (en) Drive wheel slip control device
JP2950060B2 (en) Drive wheel slip control device
JPH11200910A (en) Vehicular driving force control device
JPH07127492A (en) Driving torque control device for vehicle
JPH06100112B2 (en) Vehicle drive force control device
JPH09170916A (en) Apparatus for estimating state of road surface
JP4424195B2 (en) Vehicle control device