[go: up one dir, main page]

JPH0598385A - High capacity cemented carbide alloy - Google Patents

High capacity cemented carbide alloy

Info

Publication number
JPH0598385A
JPH0598385A JP29086791A JP29086791A JPH0598385A JP H0598385 A JPH0598385 A JP H0598385A JP 29086791 A JP29086791 A JP 29086791A JP 29086791 A JP29086791 A JP 29086791A JP H0598385 A JPH0598385 A JP H0598385A
Authority
JP
Japan
Prior art keywords
cemented carbide
weight
alloy
coercive force
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29086791A
Other languages
Japanese (ja)
Inventor
Masao Maruyama
正男 丸山
Eiji Yamamoto
英司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP29086791A priority Critical patent/JPH0598385A/en
Publication of JPH0598385A publication Critical patent/JPH0598385A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】 【目的】 この発明は、合金の飽和磁気量理論比と抗磁
力を所定数値に限定することにより高硬度であると同時
に耐摩耗性にも優れた高性能超硬合金を提供することに
ある。 【構成】 WCを硬質相の主成分とし、結合相をCo1
1〜13重量%とし、且つVCを0.3〜0.5重量
%、Crを0.6〜1.0重量%含有する高性能超硬合
金であり、合金磁気特性は飽和磁気量の理論比(δ)が
0.82〜0.90で、且つ抗磁力(Hc )が345〜
420(Oe )である。この磁気特性を有する超硬合金
を用いてプリント基板の穴あけ用マイクロドリルを作成
すれば、ドリル折損や摩耗が著しく低下し、実用価値が
高められる。
(57) [Summary] [Object] The present invention provides a high-performance cemented carbide having a high hardness as well as an excellent wear resistance by limiting the theoretical saturation magnetic content ratio and the coercive force of the alloy to predetermined values. To provide. [Constitution] WC is the main component of the hard phase, and the binder phase is Co1.
It is a high-performance cemented carbide containing 1 to 13% by weight, VC of 0.3 to 0.5% by weight, and Cr of 0.6 to 1.0% by weight. The ratio (δ) is 0.82 to 0.90, and the coercive force (H c ) is 345 to 345.
It is 420 (O e ). If a microdrill for drilling a printed circuit board is prepared using a cemented carbide having this magnetic property, breakage and wear of the drill are significantly reduced, and the practical value is increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、特にプリント基板の
穴あけ用マイクロドリルの材質として最適に使用される
ほか、各種切削工具、鉱山用工具、耐摩耗部品などの材
質として使用される高性能超硬合金に関するものであ
る。
BACKGROUND OF THE INVENTION The present invention is particularly suitable for use as a material for micro drills for punching printed circuit boards, and also as a material for various cutting tools, mining tools, wear-resistant parts, etc. It concerns hard alloys.

【0002】[0002]

【従来の技術】近年、電子機器用のプリント基板の精密
穿孔には細径で深穴用のマイクロドリルの要望が高まっ
ており、これに超硬合金が使用される傾向にあり、通常
の超硬合金よりも高硬度で高靭性の合金が要望されてい
る。即ち、マイクロドリルは直径に対する長さの比が大
きく、例えば0.05〜0.5mmφの径で使用する細径
ドリルでは高速で穿孔するため、欠損事故が多く、機械
の稼動率を高くするため耐摩耗性が要求されている。
2. Description of the Related Art In recent years, there has been an increasing demand for micro drills for deep holes with a small diameter for precision drilling of printed circuit boards for electronic devices. An alloy having higher hardness and higher toughness than a hard alloy is desired. In other words, a microdrill has a large ratio of length to diameter. For example, a small-diameter drill used with a diameter of 0.05 to 0.5 mmφ drills at a high speed, so there are many loss accidents and a high operating rate of the machine. Abrasion resistance is required.

【0003】そこで、従来例として、例えば特願昭60
−36805号には、WC−Co系合金のWCの粒度を
0.6μ以下の微細にすると共に、原料WCに0.4〜
1.2重量%Crを含有せしめ、これを直接炭化法によ
って均一微粒物に調整したものを使用することによっ
て、高硬度でしかも高抗折力の合金を得られることが記
載されている。
Therefore, as a conventional example, for example, Japanese Patent Application No. 60
No. 36805, the grain size of WC of the WC-Co alloy is made finer than 0.6 μ, and the raw material WC is
It is described that an alloy having a high hardness and a high transverse rupture strength can be obtained by using a material containing 1.2 wt% Cr and adjusted to a uniform fine particle by a direct carbonization method.

【0004】[0004]

【発明が解決しようとする課題】ところで、WC−Co
系超硬合金において、高靭性を増すために抗折力を高め
ようとすれば硬度が低下し、一方、耐摩耗性を増すため
に硬度を高めようとすれば抗折力が低下し、上記従来の
超硬合金においても、抗折力と硬度の両方を高めるには
限度があった。
By the way, WC-Co
In a cemented carbide system, if the bending strength is increased to increase the toughness, the hardness decreases, while if the hardness is increased to increase wear resistance, the bending strength decreases. Even in the conventional cemented carbide, there is a limit in increasing both the transverse rupture strength and the hardness.

【0005】この発明は、上記従来の課題を解決するた
めになされたもので、合金の飽和磁気量理論比と抗磁力
を所定領域の数値に限定することにより、高硬度でしか
も抗折力の高い高性能超硬合金を提供することを目的と
する。
The present invention has been made in order to solve the above-mentioned conventional problems, and by limiting the theoretical ratio of saturation magnetic quantity and coercive force of the alloy to values within a predetermined range, high hardness and transverse rupture strength can be obtained. An object is to provide a high performance cemented carbide.

【0006】[0006]

【課題を解決するための手段】この発明者らは、鋭意研
究の末、WC−Co系超硬合金の磁気特性において、合
金の飽和磁気量(合金C値と正の相関)がγ相(結合
相)のW固溶度に相関し、γ相の耐摩耗性、耐熱性に寄
与することが判明したが、この飽和磁気量のみでは硬質
相とγ相、VC相の分散等が最適値を示すものではな
く、一方、合金の抗磁力(Hc )のみでは上記飽和磁気
量と直接の相関関係がなく、独立にコントロールされる
ものであることが判った。
As a result of earnest research, the inventors of the present invention have found that in the magnetic properties of WC--Co cemented carbide, the saturation magnetic content of the alloy (the positive correlation with the alloy C value) is γ phase ( It has been found that it correlates with the W solid solubility of the (bonding phase) and contributes to the wear resistance and heat resistance of the γ phase, but the dispersion of the hard phase, γ phase, and VC phase is the optimum value only with this saturation magnetic amount. On the other hand, it was found that the coercive force (H c ) of the alloy alone has no direct correlation with the saturation magnetic amount and is independently controlled.

【0007】さらに引き続く研究により、合金の飽和磁
気量がCo中のW固溶量と反比例関係にあり、抗磁力が
Co相の厚みと反比例関係にある点に着目し、飽和磁気
量と抗磁力の一定の範囲に超硬合金の高性能領域が存在
することを見出して、この発明を完成するに至ったもの
である。
[0007] Further continuing research pays attention to the fact that the saturation magnetic amount of the alloy is inversely proportional to the solid solution amount of W in Co and the coercive force is inversely proportional to the thickness of the Co phase. The inventors have found that the high-performance region of the cemented carbide exists within a certain range, and have completed the present invention.

【0008】即ち、この発明はWCを硬質相の主成分と
し、結合相としてCoを11〜13重量%とし、且つV
Cを0.3〜0.5重量%、Crを0.6〜1.0重量
%含有し、この合金磁気特性は飽和磁気量の理論比が
0.82〜0.90で、且つ抗磁力(Hc )が345〜
420(Oe )である高性能超硬合金である。
That is, in the present invention, WC is the main component of the hard phase, Co is 11 to 13% by weight as the binder phase, and V is V.
It contains 0.3 to 0.5% by weight of C and 0.6 to 1.0% by weight of Cr, and the magnetic properties of the alloy have a theoretical ratio of saturation magnetic amount of 0.82 to 0.90 and a coercive force. (H c ) is 345
It is a high performance cemented carbide with 420 (O e ).

【0009】[0009]

【作用】この発明の高性能超硬合金が得られる要件とし
ては、図1に示すように、合金の飽和磁気量の理論比
(δ)を0.82〜0.90の範囲とし、かつ抗磁力
(Hc )を345〜420(Oe )の範囲としたことで
ある。上記飽和磁気量はW/Co量が減少するにつれて
大きくなり、0.90を超えるとF.C(FreeCo
rbon)相が出現して、耐摩耗性が劣化して折損を生
じるおそれがある。また、0.82未満にするとη相
(金属間化合物)が出現する。
As shown in FIG. 1, the requirement for obtaining the high performance cemented carbide of the present invention is to set the theoretical ratio (δ) of the saturation magnetic amount of the alloy within the range of 0.82 to 0.90 and The magnetic force (H c ) is in the range of 345 to 420 (O e ). The saturated magnetic amount increases as the W / Co amount decreases, and when it exceeds 0.90, the F. C (FreeCo
rbon) phase may appear and wear resistance may be deteriorated to cause breakage. If it is less than 0.82, the η phase (intermetallic compound) appears.

【0010】上記超硬合金の製造方法としては、11〜
13重量%Co,0.3〜0.5重量%VC、0.6〜
1.0重量%Cr,残部がWCから成る微粒粉末を混合
し、プレス成型後に真空中で1300〜1450°程度
で約1時間焼結することによって、飽和磁気量理論比が
0.82〜0.90、抗磁力が345〜420の合金磁
気特性を有する高性能の超硬合金を得る。
As a method for producing the above cemented carbide, 11-
13 wt% Co, 0.3-0.5 wt% VC, 0.6-
Fine powder consisting of 1.0 wt% Cr and the balance WC was mixed, and after press molding, sintered in vacuum at about 1300 to 1450 ° for about 1 hour to give a theoretical saturation magnetic amount of 0.82 to 0. A high-performance cemented carbide having alloy magnetic properties of 0.90 and coercive force of 345 to 420 is obtained.

【0011】[0011]

【実施例】以下、実施例により詳細に説明する。EXAMPLES Hereinafter, examples will be described in detail.

【0012】(実施例1)微粒Wと炭素の所定混合物か
ら炭化炉にて0.85重量%Cr32 を含有する0.
5μのWCを作成し、これにVCを0.4重量%、Co
を12.0重量%加えて、ボールミルで湿式混合し、こ
の混合物を乾燥・造粒後に1.1T/cm2で13×13
×5mmにプレス成型し、さらに真空中で1400℃、1
時間焼結して超硬合金を得た。この合金の磁気特性を測
定した結果を図2に示す。同図において、高性能域にあ
るもの(b)〜(e)と、高性能域以外にあるもの
(a),(f),(g),(h)をそれぞれドリル径φ
0.4mm×刃長5.0mmとし、これを用いてガラスエポ
キシ樹脂基板1.6mmの4層の2枚重ねを穿孔したとこ
ろ、表1の結果が得られた。
EXAMPLE 1 A predetermined mixture of fine particles W and carbon was used in a carbonization furnace to contain 0.85 wt% Cr 3 C 2 .
Create a 5μ WC, and add 0.4% by weight of VC and Co
12.0% by weight, and wet-mixed with a ball mill. After drying and granulating the mixture, 13 × 13 at 1.1 T / cm 2
Press-molded to × 5 mm, and further in vacuum at 1400 ° C for 1
Sintered for a time to obtain a cemented carbide. The results of measuring the magnetic properties of this alloy are shown in FIG. In the figure, those (b) to (e) in the high performance range and those (a), (f), (g), and (h) outside the high performance range are respectively drill diameter φ.
When 0.4 mm × blade length was 5.0 mm and two layers of 4 layers each having a glass epoxy resin substrate of 1.6 mm were punched using this, the results shown in Table 1 were obtained.

【0013】[0013]

【表1】 [Table 1]

【0014】この表1の結果により、図2の高性能域内
の試料(b)〜(e)が抗折力が高く、しかも耐摩耗性
に優れていることが判る。
From the results shown in Table 1, it can be seen that the samples (b) to (e) in the high-performance region of FIG. 2 have high bending strength and excellent wear resistance.

【0015】(実施例2)実施例1中の原料微粒粉末の
配合を88.7重量%WC−0.3重量%VC−11.
0重量%Coとし、実施例1と同じ製造工程を経て超硬
合金を得て、図3に示す磁気特性を測定した。同図にお
いて、高性能域にあるもの(b)〜(f)と、高性能域
以外にあるもの(a),(g),(h),(i)をそれ
ぞれ実施例1の条件で穿孔したところ表2の結果が得ら
れた。
(Example 2) The raw material fine powder in Example 1 was mixed in an amount of 88.7% by weight WC-0.3% by weight VC-11.
The cemented carbide was obtained through the same manufacturing process as in Example 1 with 0 wt% Co, and the magnetic characteristics shown in FIG. 3 were measured. In the figure, those (b) to (f) in the high performance area and those (a), (g), (h), and (i) in the areas other than the high performance area are perforated under the conditions of Example 1, respectively. As a result, the results shown in Table 2 were obtained.

【0016】[0016]

【表2】 [Table 2]

【0017】上記表1及び表2の結果から、図2及び図
3の高性能域の磁気特性を有する超硬合金が抗折力が高
くしかも耐摩耗性に優れているのが確認できた。
From the results shown in Tables 1 and 2 above, it was confirmed that the cemented carbides having the magnetic characteristics in the high performance regions shown in FIGS. 2 and 3 had high transverse rupture strength and excellent wear resistance.

【0018】[0018]

【発明の効果】以上説明したように、この発明によれ
ば、超硬合金の高性能域が合金飽和磁気量理論比0.8
2〜0.90、抗磁力345〜490の範囲にあり、こ
の磁気特性を有する超硬合金をドルリ材質等に用いるこ
とにより、抗折力が高く且つ耐摩耗性に優れた工具を得
ることができる。
As described above, according to the present invention, the high-performance region of the cemented carbide has a theoretical alloy saturation magnetic amount ratio of 0.8.
It is in the range of 2 to 0.90 and coercive force of 345 to 490, and by using a cemented carbide having this magnetic property as a material for Druri, it is possible to obtain a tool having high bending resistance and excellent wear resistance. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】超硬合金の高性能域を示すグラフ。FIG. 1 is a graph showing the high performance range of cemented carbide.

【図2】実施例1における合金の磁気特性を示すグラ
フ。
2 is a graph showing magnetic characteristics of the alloy in Example 1. FIG.

【図3】実施例2における合金の磁気特性を示すグラ
フ。
FIG. 3 is a graph showing the magnetic characteristics of the alloy in Example 2.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 WCを硬質相の主成分とし、結合相をC
o11〜13重量%とし、且つVCを0.3〜0.5重
量%、Crを0.6〜1.0重量%含有する高性能超硬
合金であって、合金磁気特性は飽和磁気量の理論比が
0.82〜0.90で、且つ抗磁力(Hc )が345〜
420(Oe )であることを特徴とする高性能超硬合
金。
1. WC as a main component of a hard phase and C as a binder phase
It is a high-performance cemented carbide containing 0.1 to 13% by weight, VC of 0.3 to 0.5% by weight, and Cr of 0.6 to 1.0% by weight. The theoretical ratio is 0.82 to 0.90 and the coercive force (H c ) is 345 to 345.
420 (O e ), a high performance cemented carbide.
JP29086791A 1991-10-08 1991-10-08 High capacity cemented carbide alloy Pending JPH0598385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29086791A JPH0598385A (en) 1991-10-08 1991-10-08 High capacity cemented carbide alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29086791A JPH0598385A (en) 1991-10-08 1991-10-08 High capacity cemented carbide alloy

Publications (1)

Publication Number Publication Date
JPH0598385A true JPH0598385A (en) 1993-04-20

Family

ID=17761528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29086791A Pending JPH0598385A (en) 1991-10-08 1991-10-08 High capacity cemented carbide alloy

Country Status (1)

Country Link
JP (1) JPH0598385A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1043412A1 (en) * 1999-04-06 2000-10-11 Sandvik Aktiebolag Method of making a submicron cemented carbide with increased toughness
JP2000308916A (en) * 1999-03-26 2000-11-07 Sandvik Ab Cutting insert and manufacturing method thereof
JP2001115229A (en) * 1999-10-18 2001-04-24 Hitachi Tool Engineering Ltd Tough superfine cemented carbide
JP2003508242A (en) * 1999-09-01 2003-03-04 サンドビック アクティエボラーグ Coated grooving or cutting inserts
JP2008512262A (en) * 2005-01-31 2008-04-24 サンドビック インテレクチュアル プロパティー アクティエボラーグ Cemented carbide insert for short hole drilling that requires toughness
JP2008183708A (en) * 1995-11-30 2008-08-14 Sandvik Intellectual Property Ab Coated insert for milling and its manufacturing method
JP2020020017A (en) * 2018-08-02 2020-02-06 株式会社タンガロイ Hard alloy and coated hard alloy
JP2020082349A (en) * 2018-11-30 2020-06-04 コーロイ インコーポレーテッド Cutting insert for difficult-to-cut material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008183708A (en) * 1995-11-30 2008-08-14 Sandvik Intellectual Property Ab Coated insert for milling and its manufacturing method
JP2000308916A (en) * 1999-03-26 2000-11-07 Sandvik Ab Cutting insert and manufacturing method thereof
EP1043412A1 (en) * 1999-04-06 2000-10-11 Sandvik Aktiebolag Method of making a submicron cemented carbide with increased toughness
US6214287B1 (en) 1999-04-06 2001-04-10 Sandvik Ab Method of making a submicron cemented carbide with increased toughness
USRE40785E1 (en) 1999-04-06 2009-06-23 Sandvik Intellectual Property Aktiebolag Method of making a submicron cemented carbide with increased toughness
JP2003508242A (en) * 1999-09-01 2003-03-04 サンドビック アクティエボラーグ Coated grooving or cutting inserts
JP2001115229A (en) * 1999-10-18 2001-04-24 Hitachi Tool Engineering Ltd Tough superfine cemented carbide
JP2008512262A (en) * 2005-01-31 2008-04-24 サンドビック インテレクチュアル プロパティー アクティエボラーグ Cemented carbide insert for short hole drilling that requires toughness
JP2020020017A (en) * 2018-08-02 2020-02-06 株式会社タンガロイ Hard alloy and coated hard alloy
JP2020082349A (en) * 2018-11-30 2020-06-04 コーロイ インコーポレーテッド Cutting insert for difficult-to-cut material
US11123803B2 (en) 2018-11-30 2021-09-21 Korloy Inc. Cutting insert for hard-to-cut material

Similar Documents

Publication Publication Date Title
KR900000108B1 (en) Sintered hard metal having superior toughness
KR20010023664A (en) Tool for drilling/routing of printed circuit board materials
JP2010523355A (en) tool
JPS6112847A (en) Sintered hard alloy containing fine tungsten carbide particles
JPH0598385A (en) High capacity cemented carbide alloy
EP0181979B1 (en) High hardness sintered compact and process for producing the same
JP2004059946A (en) Ultra-fine grain hard metal
JP2839674B2 (en) Method for producing diamond-based sintered material with excellent wear resistance
JPH0681072A (en) Tungsten carbide base sintered hard alloy
JP4889198B2 (en) Cemented carbide, method for producing the same, and rotary tool using the same
JPS6176646A (en) Tungsten carbide based cemented carbide
JPH11181540A (en) Ultra fine cemented carbide
JPH0598384A (en) Tungsten carbide base sintered hard alloy having high strength and high hardness
JPH08118123A (en) High strength tungsten carbide group superhard alloy-made miniature drill
JP2803337B2 (en) High hardness tungsten carbide based cemented carbide
JP2004052110A (en) Hyper-fine grained cemented carbide
JPH09227981A (en) Cemented carbide
JP4540791B2 (en) Cermet for cutting tools
JPH10324942A (en) Ultra-fine cemented carbide, and its manufacture
JPS61194148A (en) Sintered hard alloy of super fine grains
JP2004162080A (en) Tough microparticulate cemented carbide
JPS6396244A (en) Sintered hard alloy for parts of tool for drilling in printed board
JP4154643B2 (en) Cemented carbide square end mill with excellent chipping resistance with high-speed cutting.
JPS61242954A (en) ceramic drill
JP2626863B2 (en) Cemented carbide and its manufacturing method