[go: up one dir, main page]

JPH0597436A - Tl-containing superconductor and its production - Google Patents

Tl-containing superconductor and its production

Info

Publication number
JPH0597436A
JPH0597436A JP4083361A JP8336192A JPH0597436A JP H0597436 A JPH0597436 A JP H0597436A JP 4083361 A JP4083361 A JP 4083361A JP 8336192 A JP8336192 A JP 8336192A JP H0597436 A JPH0597436 A JP H0597436A
Authority
JP
Japan
Prior art keywords
superconductor
based superconductor
purity
manufactured
contg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4083361A
Other languages
Japanese (ja)
Inventor
Shuichiro Shimoda
修一郎 下田
秀次 ▲くわ▼島
Hideji Kuwajima
Shozo Yamana
章三 山名
Toranosuke Ashizawa
寅之助 芦沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP4083361A priority Critical patent/JPH0597436A/en
Publication of JPH0597436A publication Critical patent/JPH0597436A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To control the evaporation of Tl at the time of firing, to facilitate the control of a compsn. having high homogeneity and nearly free from a foreign phase and to provide a Tl-contg. superconductor having grains easy to orient in the c-axis direction and ensuring high Jc. CONSTITUTION:A compsn. contg. Ba and/or Sr, Ca and Cu as essential components is melted, rapidly cooled, pulverized and mixed with a compd. contg. Tl or Tl and Pb. This mixture is molded and fired to obtain a Tl-contg. superconductor. A compsn. contg. Ba and/or Sr, Ca, Cu and Pb as essential components is melted, rapidly cooled, pulverized and mixed with a compd. contg. Tl or Tl and Pb. This mixture is molded and fired to obtain a Tl-contg. superconductor. Each of the Tl-contg. superconductors has platy grains whose aspect ratio is >=6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はTl系超電導体及びその
製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Tl superconductor and a method for manufacturing the same.

【0002】[0002]

【従来の技術】Tl系超電導体は、特開平1−2190
07号公報、特開平1−242418号公報、特開平2
−133305号公報、特開平3−208817号公報
等に示されており、これらの公報に示されるTl系超電
導体は、例えばM−Ca−Cu−O、M−Cu−O(た
だしMはBa及びSrから選ばれる1種以上)、Ca−
O、Cu−O等の化合物とTl化合物とを混合して超電
導体用原料とし、これを成形、焼成して得られる。
2. Description of the Related Art A Tl-based superconductor is disclosed in JP-A 1-2190.
No. 07, No. 1-242418, No. 2
-133305, JP-A-3-208817, etc., and the Tl-based superconductors disclosed in these publications are, for example, M-Ca-Cu-O and M-Cu-O (where M is Ba. And one or more selected from Sr), Ca-
A compound such as O or Cu-O and a Tl compound are mixed to obtain a raw material for a superconductor, which is molded and fired.

【0003】Tl系超電導体は、Tl 2層系のTl2
Ba2Ca1Cu28相(以下2212相とする)が10
5K以上、Tl2Ba2Ca2Cu310相(以下2223
相とする)が120K以上の高い臨界温度(以下TC
する)を有し、またTl 1層系のTl1Ba2Ca1
27(以下1212相とする)、Tl1Ba2Ca2
39(以下1223相とする)及びTl1Ba2Ca3
Cu411相(以下1224相とする)も90K以上の
Cを有することが知られている。さらにTlの一部を
Pbで置換することにより、高いTCを示すTl 1層
系のTl系超電導体が得られ易いことが、サイエンス
(Science、Vol.242、249頁、198
8年発行)により知られている。
The Tl-based superconductor is a Tl 2-layer system Tl 2
Ba 2 Ca 1 Cu 2 O 8 phase (hereinafter referred to as 2212 phase) is 10
5K or more, Tl 2 Ba 2 Ca 2 Cu 3 O 10 phase (below 2223
Has a high critical temperature of 120 K or more (hereinafter referred to as T C ) and has a Tl 1 layer system of Tl 1 Ba 2 Ca 1 C.
u 2 O 7 (hereinafter referred to as 1212 phase), Tl 1 Ba 2 Ca 2 C
u 3 O 9 (hereinafter referred to as 1223 phase) and Tl 1 Ba 2 Ca 3
It is known that the Cu 4 O 11 phase (hereinafter referred to as the 1224 phase) also has a T C of 90K or higher. By further substituting a part of Tl in Pb, high T C shown Tl 1 layer system Tl-based superconductors is that it is easy to obtain, Science (Science, pp Vol.242,249, 198
8 years).

【0004】またTl系超電導体を構成する結晶粒子の
ab面方向に電流が流れやすいことが知られている。従
って、臨界電流密度(以下JCとする)を高めるには結
晶粒子をab面方向に揃え、かつC軸方向に十分に配向
させることが重要である。
It is also known that an electric current easily flows in the ab plane direction of the crystal grains constituting the Tl superconductor. Therefore, in order to increase the critical current density (hereinafter referred to as J C ), it is important that the crystal grains are aligned in the ab plane direction and sufficiently oriented in the C axis direction.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記の方
法で作られたTl系超電導体は、そのほとんどが塊状、
柱状、不定形状等の様々な形状の結晶粒子で構成されて
いる。そのため結晶粒子をab面方向に揃え、かつC軸
方向に配向させることが難しく、高いJCが得られにく
い原因の一つでもあった。また焼成時にTl化合物が蒸
発しやすいため反応が不十分となり、超電導体相以外の
異相が生成または残存しやすいという欠点が生じると共
にTlの蒸発によって組成の制御が困難となる。このた
め焼結体に不均一な部分が出来やすく、超電導体体積
率、JC等の低下が生じる。さらにTl化合物は毒性を
有し高価であることからも、Tlの蒸発を抑制すること
が重要である。
However, most of the Tl-based superconductors produced by the above method are lumpy,
It is composed of crystal grains of various shapes such as columnar and irregular shapes. Therefore, it is difficult to align the crystal grains in the ab plane direction and to orient in the C-axis direction, which is one of the reasons why it is difficult to obtain a high J C. Further, since the Tl compound is likely to evaporate during firing, the reaction becomes insufficient, which causes a drawback that a heterogeneous phase other than the superconductor phase is likely to be generated or remain, and the evaporation of Tl makes it difficult to control the composition. Therefore, a non-uniform portion is likely to be formed in the sintered body, and the superconductor volume ratio, J C, etc. are reduced. Furthermore, since the Tl compound is toxic and expensive, it is important to suppress the evaporation of Tl.

【0006】本発明は焼成時のTlの蒸発を抑制し、均
質性が高く異相の少ない、組成の制御を容易にし、ab
面方向に揃え、かつC軸方向への結晶粒子の配向が容易
で高いJCを得られやすい板状の結晶粒子で構成される
Tl系超電導体及びその製造法を提供することを目的と
するものである。
The present invention suppresses evaporation of Tl during firing, facilitates composition control with high homogeneity and few heterogeneous phases, and ab
An object of the present invention is to provide a Tl-based superconductor composed of plate-like crystal grains which are aligned in the plane direction and in which the crystal grains can be easily oriented in the C-axis direction and a high J C can be easily obtained, and a manufacturing method thereof. It is a thing.

【0007】[0007]

【課題を解決するための手段】本発明者らは上記の欠点
を解決するため種々検討した結果、これまで板状の結晶
粒子で構成することが困難であったTl系超電導体にお
いて、M(ただしMはBa及びSrから選ばれる1種以
上の元素)、Ca及びCuを主成分とする組成物を溶融
状態で急冷し、これを粉砕した粉末とTlを含む化合物
又はTl及びPbを含む化合物とを混合した後、この混
合物を成形、焼成するか若しくはM(ただしMはBa及
びSrから選ばれる1種以上の元素)、Ca、Cu及び
Pbを主成分とする組成物を溶融状態で急冷し、これを
粉砕した粉末とTlを含む化合物又はTl及びPbを含
む化合物とを混合した後、この混合物を成形、焼成する
ことで、アスペクト比の大きい板状の超電導体結晶粒子
に成長することを見い出した。さらに、高価で毒性のあ
るTlの蒸発が抑制され、超電導体相以外の異相が生成
または残存しにくく、超電導体体積率等の向上に有効で
あることを見い出し本発明を完成するに至った。
DISCLOSURE OF THE INVENTION As a result of various studies to solve the above-mentioned drawbacks, the present inventors have found that in a Tl-based superconductor which has been difficult to be composed of plate-like crystal particles, M ( However, M is one or more elements selected from Ba and Sr), a composition containing Ca and Cu as the main components is rapidly cooled in a molten state, and a powder obtained by crushing this and a compound containing Tl or a compound containing Tl and Pb. After mixing with, the mixture is molded and fired, or a composition containing M (where M is at least one element selected from Ba and Sr), Ca, Cu and Pb as main components is rapidly cooled in a molten state. Then, a powder obtained by pulverizing this and a compound containing Tl or a compound containing Tl and Pb are mixed, and the mixture is molded and fired to grow into plate-shaped superconductor crystal particles having a large aspect ratio. To I began to have. Further, they have found that the evaporation of expensive and toxic Tl is suppressed, a heterogeneous phase other than the superconductor phase is unlikely to be generated or remain, and that it is effective for improving the superconductor volume ratio and the like, and completed the present invention.

【0008】本発明はアスペクト比が6以上の板状の結
晶粒子を有するTl系超電導体並びにM(ただしMはB
a及びSrから選ばれる1種以上の元素)、Ca及びC
uを主成分とする組成物を溶融状態で急冷し、これを粉
砕後Tlを含む化合物又はTl及びPbを含む化合物と
混合し、ついで成形、焼成するTl系超電導体の製造法
並びにM(ただしMはBa及びSrから選ばれる1種以
上の元素)、Ca、Cu及びPbを主成分とする組成物
を溶融状態で急冷し、これを粉砕後Tlを含む化合物又
はTl及びPbを含む化合物と混合し、ついで成形、焼
成するTl系超電導体の製造法に関する。
The present invention is a Tl-based superconductor having plate-like crystal grains with an aspect ratio of 6 or more, and M (where M is B).
one or more elements selected from a and Sr), Ca and C
A composition containing u as a main component is rapidly cooled in a molten state, pulverized and then mixed with a compound containing Tl or a compound containing Tl and Pb, and then molded and fired. M is one or more elements selected from Ba and Sr), a composition containing Ca, Cu and Pb as main components is rapidly cooled in a molten state, and after crushing this, a compound containing Tl or a compound containing Tl and Pb is added. The present invention relates to a method for producing a Tl-based superconductor in which mixing, molding and firing are performed.

【0009】本発明において、下記の数式(1)によっ
て決まるアスペクト比は6以上、好ましくは10以上と
され、6未満では結晶粒子をab面方向方面に揃え、か
つC軸方向に配向させることが難しく、高いJCが得ら
れにくいという欠点が生じる。
In the present invention, the aspect ratio determined by the following mathematical formula (1) is set to 6 or more, preferably 10 or more. If it is less than 6, the crystal grains can be aligned in the ab plane direction and oriented in the C-axis direction. The drawback is that it is difficult and it is difficult to obtain a high J C.

【数1】 [Equation 1]

【0010】板状の結晶粒子の割合は、50体積%以上
であれば実質的に板状の結晶粒子同士の接続が得られる
ので好ましく、60体積%以上あればさらに好ましい。
If the proportion of the plate-like crystal particles is 50% by volume or more, the plate-like crystal particles can be substantially connected to each other, and it is more preferably 60% by volume or more.

【0011】本発明になるTl系超電導体を構成する元
素としてはTl、M(ただしMはBa及びSrから選ば
れる1種以上の元素)、Ca及びCu又はTl、Pb、
M(ただしMはBa及びSrから選ばれる1種以上の元
素)、Ca及びCuが用いられるが、この他に必要に応
じ他の元素を添加してもよく、上記の元素の一部を他の
元素で置換、例えば、Caの一部をY、Sm等で置換し
て用いてもよい。上記に示す元素を含む原料(出発原
料)としては、例えば酸化物、炭酸塩、硝酸塩、しゅう
酸塩等の化合物を用いることができる。
The elements constituting the Tl-based superconductor according to the present invention include Tl, M (where M is at least one element selected from Ba and Sr), Ca and Cu or Tl, Pb,
M (where M is one or more elements selected from Ba and Sr), Ca and Cu are used, but other elements may be added if necessary, and some of the above elements may be replaced with other elements. The element may be replaced with, for example, part of Ca may be replaced with Y, Sm, or the like. As the raw material (starting raw material) containing the above-mentioned elements, for example, compounds such as oxides, carbonates, nitrates and oxalates can be used.

【0012】M(ただしBa及びSrから選ばれる1種
以上の元素)、Ca及びCuを主成分とする組成物又は
M(ただしBa及びSrから選ばれる1種以上の元
素)、Ca、Cu及びPbを主成分とする組成物を溶融
する温度については出発原料の種類や、配合組成によっ
て適宜選定されるが、その組成物が溶融し始める温度よ
りも50〜500℃位高い温度で溶融することが好まし
い。また炭酸塩、しゅう酸塩等を原料に用いる場合は、
溶融する前に十分熱処理して炭酸ガスの分解を進めてお
くことが望ましい。
M (provided that one or more elements selected from Ba and Sr), a composition containing Ca and Cu as main components or M (provided that at least one element selected from Ba and Sr), Ca, Cu and The temperature at which the composition containing Pb as the main component is melted is appropriately selected depending on the type of starting material and the compounding composition, but the composition should be melted at a temperature about 50 to 500 ° C. higher than the temperature at which the composition begins to melt. Is preferred. When using carbonates, oxalates, etc. as raw materials,
Before melting, it is desirable to sufficiently heat-treat and advance the decomposition of carbon dioxide gas.

【0013】溶融組成物の急冷方法については特に制限
はないが、例えばステンレス、銅等の金属性の板や双ロ
ールの上に瞬時に落とす方法、遠心噴霧法などが用いら
れる。なお急冷によって非晶質の前駆体を得ることが理
想的であるが、本発明者らのこれまでの実験から3,0
00℃/分以上の冷却速度であれば好ましい結果が得ら
れる。
The method of quenching the molten composition is not particularly limited, but for example, a method of instantly dropping it on a metallic plate such as stainless steel or copper or twin rolls, a centrifugal spraying method and the like are used. Although it is ideal to obtain an amorphous precursor by rapid cooling, it has been found from the experiments conducted by the inventors of the present invention that the amorphous precursor is 3,0
A favorable result is obtained if the cooling rate is 00 ° C./minute or more.

【0014】粉砕方法及び混合方法についても特に制限
はなく、例えば粉砕方法は、乳鉢などで粗粉砕した後、
らいかい機(自動混練機)、ボールミル等で乾式又は湿
式粉砕する方法があり、また混合方法は、上記と同様に
らいかい機、ボールミル等で乾式又は湿式混合する方法
がある。
The crushing method and the mixing method are not particularly limited, and the crushing method is, for example, after coarse crushing in a mortar or the like
There is a method of dry or wet pulverization with a raider (automatic kneader), a ball mill or the like, and as a mixing method, there is a method of dry or wet mixing with a raider or a ball mill similar to the above.

【0015】焼成はアルミナ、マグネシア等のセラミッ
クス製の容器を用い、蓋をして焼成することが好まし
い。焼成温度は各原料の配合割合などにより適宜選定さ
れるが、750〜1,000℃の範囲で焼成することが
好ましく、また焼成雰囲気については、酸素雰囲気中、
大気中、空気気流中、低酸素雰囲気中(酸素の含有量が
1〜20体積%、好ましくは2〜20体積%の範囲)な
どで焼成することが出来、特に制限はない。
For the firing, it is preferable to use a vessel made of ceramics such as alumina or magnesia, and cover with a lid to perform firing. The firing temperature is appropriately selected according to the mixing ratio of each raw material, etc., but it is preferable to perform firing in the range of 750 to 1,000 ° C., and the firing atmosphere is an oxygen atmosphere.
The firing can be performed in the air, an air stream, a low oxygen atmosphere (oxygen content is 1 to 20% by volume, preferably 2 to 20% by volume), and there is no particular limitation.

【0016】本発明になるTl系超電導体を構成する混
合物の配合割合については特に制限はなく、必要とする
結晶相に応じて適宜配合割合が調整され、例えば222
3相の超電導体を得る場合、元素がTl、Ba、Ca及
びCuを含む混合物は、Tl:Ba:Ca:Cuが原子
比で1.3〜2.1:1.6〜2.2:1.8〜2.
6:2.7〜3.6で、元素がTl、Ba、Sr、Ca
及びCuを含む混合物は、Tl:Ba:Sr:Ca:C
uが原子比で1.3〜2.1:A:B:1.8〜2.
6:2.7〜3.6(ただしA=1.2〜2、B≦1、
(A+B)≦2.4)であることが好ましい。2212
相の超電導体を得る場合、元素がTl、Ba、Ca及び
Cuを含む混合物は、Tl:Ba:Ca:Cuが原子比
で1.3〜2.2:1.7〜2.2:0.8〜1.4:
1.7〜2.4で、元素がTl、Ba、Sr、Ca及び
Cuを含む混合物は、Tl:Ba:Sr:Ca:Cuが
原子比で1.3〜2.2:D:E:0.8〜1.4:
1.7〜2.4(ただしD=1.2〜2、E≦1、(D
+E)≦2.4)であることが好ましい。また1223
相の超電導体を得る場合、Tl、Ba、Sr、Ca及び
Cuを含む混合物は、Tl:Ba:Sr:Ca:Cuが
原子比で0.6〜1.2:G:H:1.8〜2.6:
2.7〜3.6(ただしG≦0.8、H=1.2〜2.
2(G+H)≦2.4)であることが好ましい。
The mixing ratio of the mixture forming the Tl-based superconductor according to the present invention is not particularly limited, and the mixing ratio is appropriately adjusted depending on the required crystal phase, for example, 222.
When obtaining a three-phase superconductor, the mixture containing the elements Tl, Ba, Ca, and Cu has an atomic ratio of Tl: Ba: Ca: Cu of 1.3 to 2.1: 1.6 to 2.2: 1.8-2.
6: 2.7-3.6, elements Tl, Ba, Sr, Ca
And a mixture containing Cu is Tl: Ba: Sr: Ca: C
u is an atomic ratio of 1.3-2.1: A: B: 1.8-2.
6: 2.7-3.6 (where A = 1.2-2, B ≦ 1,
It is preferable that (A + B) ≦ 2.4). 2212
When obtaining a phase superconductor, the mixture containing the elements Tl, Ba, Ca and Cu has an atomic ratio of Tl: Ba: Ca: Cu of 1.3 to 2.2: 1.7 to 2.2: 0. .8-1.4:
In the mixture of 1.7 to 2.4, the elements include Tl, Ba, Sr, Ca and Cu, the atomic ratio of Tl: Ba: Sr: Ca: Cu is 1.3 to 2.2: D: E: 0.8-1.4:
1.7-2.4 (where D = 1.2-2, E ≦ 1, (D
It is preferable that + E) ≦ 2.4). See also 1223
To obtain a phase superconductor, a mixture containing Tl, Ba, Sr, Ca and Cu has a Tl: Ba: Sr: Ca: Cu atomic ratio of 0.6 to 1.2: G: H: 1.8. ~ 2.6:
2.7-3.6 (where G ≦ 0.8, H = 1.2-2.
It is preferable that 2 (G + H) ≦ 2.4).

【0017】さらに上記混合物の他にTlの一部をPb
で置換すれば高いTcを示すTl1層系のTl系超電導
体が得られ易い。即ちTl、Pb、Sr、Ca及びCu
を含む混合物は、(Tl+Pb):(Sr+Ca):C
u又は(Tl+Pb):(Sr+Ba+Ca):Cuが
原子比で1:4:3のときに1223相の超電導体、
1:3:2のときに1212相の超電導体及び1:5:
4のときに1234相の超電導体が得られ易い。
In addition to the above mixture, a part of Tl is added to Pb.
If replaced by, it is easy to obtain a Tl1 layer system Tl-based superconductor having a high Tc. That is, Tl, Pb, Sr, Ca and Cu
The mixture containing is (Tl + Pb) :( Sr + Ca): C
1223 phase superconductor when u or (Tl + Pb) :( Sr + Ba + Ca): Cu is 1: 4: 3 in atomic ratio,
12: 1 phase superconductor at 1: 3: 2 and 1: 5:
When 4, the 1234 phase superconductor is easily obtained.

【0018】本発明においてTlを含む化合物とは、T
lを含む酸化物、炭酸塩、硝酸塩、硫酸塩等を含む化合
物を示し、またPbを含む化合物とは、Pbを含む酸化
物、炭酸塩、硝酸塩、硫酸塩等を含む化合物を示す。T
lを含む化合物としては、Tl23、Tl2O、Tl2
3、TlNO3、Tl2SO4等の化合物が用いられ、P
bを含む化合物としては、PbO、PbO2、Pb
34、PbCO3、Pb(NO32、PbSO4等の化合
物が用いられる。
In the present invention, the compound containing Tl means T
Compounds containing oxides, carbonates, nitrates, sulfates, etc. containing 1 are shown, and compounds containing Pb are compounds containing oxides, carbonates, nitrates, sulfates, etc. containing Pb. T
Examples of the compound containing 1 include Tl 2 O 3 , Tl 2 O, and Tl 2 C.
Compounds such as O 3 , TlNO 3 , Tl 2 SO 4 are used, and P
Examples of the compound containing b include PbO, PbO 2 , Pb
Compounds such as 3 O 4 , PbCO 3 , Pb (NO 3 ) 2 and PbSO 4 are used.

【0019】[0019]

【実施例】以下本発明の実施例を説明する。 実施例1 バリウム、ストロンチウム、カルシウム及び銅の比率が
原子比で表1に示す組成になるように、BaO(高純度
化学研究所製、純度99%以上)、SrO(高純度化学
研究所製、純度99%以上)、CaO(高純度化学研究
所製、純度99.9%)及びCuO(高純度化学研究所
製、純度99.9%)を秤量し、出発原料とした。
EXAMPLES Examples of the present invention will be described below. Example 1 BaO (manufactured by Kojundo Chemical Lab, purity 99% or more), SrO (manufactured by Kojundo Chemical Lab, Purity 99% or more), CaO (manufactured by Kojundo Chemical Laboratory, purity 99.9%) and CuO (manufactured by Kojundo Chemical Laboratory, purity 99.9%) were weighed and used as starting materials.

【0020】この後上記の出発原料をらいかい機で30
分間混合した。該混合粉を電気炉を用いて大気中で90
0℃で10時間予備焼成し、ついでらいかい機で30分
間粉砕した。
After that, the starting materials mentioned above are crushed by a smashing machine.
Mix for minutes. 90% of the mixed powder in the atmosphere using an electric furnace
It was pre-baked at 0 ° C. for 10 hours and then crushed for 30 minutes with a clay mill.

【0021】得られた予備焼成粉を直径が10mm及び
高さが60mmの寸法に成形後、電気炉を用いて大気中
で1,500℃で溶融状態にし、ついでこの溶融物を銅
板の上に瞬時に落として、急冷した。
The preliminarily fired powder thus obtained is molded into a size having a diameter of 10 mm and a height of 60 mm, and then it is melted at 1,500 ° C. in the atmosphere using an electric furnace, and the melt is then placed on a copper plate. It was dropped instantly and cooled rapidly.

【0022】急冷した組成物を乳鉢で粗粉砕した後、ら
いかい機で十分に粉砕した。この溶融急冷粉について、
ICP発光分光法で組成の定量分析を行った。その結果
を表1に示す。
The rapidly cooled composition was roughly crushed in a mortar and then sufficiently crushed in a raker. About this melt-quenched powder,
Quantitative analysis of composition was performed by ICP emission spectroscopy. The results are shown in Table 1.

【0023】次にタリウム、バリウム、ストロンチウ
ム、カルシウム及び銅の比率が原子比で表2に示す組成
になるように、Tl23(高純度化学研究所製、純度9
9.9%)を秤量して上記で得た溶融急冷粉に添加し、
乳鉢で均一に混合、粉砕してTl系超電導体用混合物を
得た。
Next, Tl 2 O 3 (manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 9) was used so that the ratios of thallium, barium, strontium, calcium and copper in the atomic ratio were as shown in Table 2.
9.9%) and weighed and added to the molten quenched powder obtained above,
The mixture was uniformly mixed and pulverized in a mortar to obtain a Tl-based superconductor mixture.

【0024】得られたTl系超電導体用混合物を金型プ
レスで成形して直径が20mmで厚さが2mmの成形体
を得た。ついでこの成形体を蓋付きのアルミナ容器中
で、表2に示す温度と時間で焼成してTl系超電導体を
得た。
The resulting Tl-based superconductor mixture was molded by a die press to obtain a molded body having a diameter of 20 mm and a thickness of 2 mm. Then, this molded body was fired in an alumina container with a lid at the temperature and time shown in Table 2 to obtain a Tl-based superconductor.

【0025】上記で得たTl系超電導体の破面を走査型
電子顕微鏡(SEM)で観察した結果、一辺が10〜4
0μmで厚さが0.1〜3μmの板状の結晶粒子で構成
されていることが確認された。図1の(a)に試番1の
破面の結晶粒子のSEM写真を示す。また上記で得たT
l系超電導体のアスペクト比を求めたところ8〜300
であった。さらにエネルギー分散型X線分光法(ED
X)で組成の定量分析を行った結果、板状結晶粒子は超
電導体の組成であった。
As a result of observing the fracture surface of the Tl-based superconductor obtained above with a scanning electron microscope (SEM), one side is 10-4.
It was confirmed to be composed of plate-like crystal grains having a thickness of 0 μm and a thickness of 0.1 to 3 μm. FIG. 1 (a) shows an SEM photograph of the crystal grains on the fracture surface of sample No. 1. Also, the T obtained above
The aspect ratio of the l-based superconductor was calculated to be 8 to 300.
Met. Furthermore, energy dispersive X-ray spectroscopy (ED
As a result of the quantitative analysis of the composition in X), the plate-like crystal particles had a composition of a superconductor.

【0026】一方上記で得たTl系超電導体を乳鉢で粉
砕し、粉末にして以下の測定を行った。ICP発光分光
法で組成の定量分析、粉末X線回折法による結晶相の同
定、インダクタンス法から求めた90K(試番2及び4
の場合)と110K(試番1、3、5及び6の場合)で
の超電導体体積率の算出結果及び磁化法から求めた0.
5テスラ、77KでのJcを表2に示す。また試番1に
ついての交流帯磁率の温度変化を図2に示す。粉末X線
回折法の結果から、結晶粒子がab面方向に揃い、かつ
C軸方向に配向したX線回折図形が得られた。なお試番
2及び試番4の2223相、試番5の1234相、試番
6の1223相のピーク強度はわずかであった。
On the other hand, the Tl-based superconductor obtained above was crushed in a mortar and powdered, and the following measurements were carried out. 90K obtained by quantitative analysis of composition by ICP emission spectroscopy, identification of crystal phase by powder X-ray diffraction method, and inductance method (trial Nos. 2 and 4)
No.) and 110 K (for trial Nos. 1, 3, 5 and 6), the calculated results of the superconductor volume ratio and the 0.
Table 2 shows the Jc at 5 Tesla and 77K. Further, FIG. 2 shows the temperature change of the AC susceptibility for the trial number 1. From the result of the powder X-ray diffraction method, an X-ray diffraction pattern in which crystal grains were aligned in the ab plane direction and oriented in the C-axis direction was obtained. The peak intensities of the 2223 phase of trial number 2 and trial number 4, the 1234 phase of trial number 5 and the 1223 phase of trial number 6 were slight.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】実施例2 バリウム、カルシウム及び銅の比率が原子比で2:2:
3の組成になるように、BaCO3(和光純薬工業製、
純度99.9%)、CaCO3(高純度化学研究所製、
純度99.9%)及びCuO(高純度化学研究所製、純
度99.9%)を秤量し、出発原料とした。
Example 2 The atomic ratio of barium, calcium and copper is 2: 2 :.
BaCO 3 (manufactured by Wako Pure Chemical Industries,
Purity 99.9%), CaCO 3 (manufactured by Kojundo Chemical Laboratory,
Purity 99.9%) and CuO (manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.9%) were weighed and used as starting materials.

【0030】この後上記の出発原料を合成樹脂製のポッ
ト内に合成樹脂で被覆した鋼球ボール及びメタノールと
共に充てんし、毎分50回転の条件で60時間湿式混
合、粉砕した。乾燥後、電気炉を用いて大気中で900
℃で10時間予備焼成し、ついで乳鉢で粗粉砕後、ボー
ルミルで湿式粉砕し、乾燥した。
Thereafter, the above starting materials were filled in a synthetic resin pot together with a steel ball covered with the synthetic resin and methanol, and wet-mixed and pulverized for 60 hours under the condition of 50 rpm. After drying, 900 in air using an electric furnace
It was pre-baked at 10 ° C. for 10 hours, then roughly pulverized in a mortar, then wet pulverized in a ball mill and dried.

【0031】得られた予備焼成粉を実施例1と同様の条
件で成形後、溶融状態で急冷した。急冷した組成物を乳
鉢で粗粉砕した後、らいかい機で十分に粉砕した。この
溶融急冷粉についてICP発光分光法で組成の定量分析
を行った。その結果、Ba:Ca:Cuの比率は原子比
で2.00:2.01:3.00であった。
The preliminarily fired powder obtained was molded under the same conditions as in Example 1 and then rapidly cooled in a molten state. The rapidly cooled composition was roughly crushed in a mortar and then sufficiently crushed by a raker. The molten quenched powder was quantitatively analyzed for its composition by ICP emission spectroscopy. As a result, the atomic ratio of Ba: Ca: Cu was 2.00: 2.01: 3.00.

【0032】次にタリウム、バリウム、カルシウム及び
銅の比率が原子比で1.7:2.00:2.01:3の
組成になるように、Tl23(高純度化学研究所製、純
度99.9%)を秤量して上記で得た溶融急冷粉に添加
し、乳鉢で均一に混合、粉砕してTl系超電導体用混合
物を得た。
Next, Tl 2 O 3 (manufactured by Kojundo Chemical Laboratory Co., Ltd., so that the atomic ratio of thallium, barium, calcium and copper is 1.7: 2.00: 2.01: 3) is obtained. (Purity 99.9%) was weighed and added to the melt-quenched powder obtained above, uniformly mixed and pulverized in a mortar to obtain a Tl-based superconductor mixture.

【0033】得られたTl系超電導体用混合物を用い
て、焼成温度を850℃、焼成時間を10時間とした以
外は実施例1と同様の条件でTl系超電導体を得た。
Using the resulting Tl-based superconductor mixture, a Tl-based superconductor was obtained under the same conditions as in Example 1 except that the firing temperature was 850 ° C. and the firing time was 10 hours.

【0034】上記で得たTl系超電導体の破面を走査型
電子顕微鏡(SEM)で観察した結果、実施例1で得ら
れたTl系超電導体と同様に、一辺が10〜40μmで
厚さが0.1〜3μmの板状の結晶粒子で構成されてい
ることが確認された。またアスペクト比を求めたところ
12〜300であった。
As a result of observing the fracture surface of the Tl-based superconductor obtained above with a scanning electron microscope (SEM), one side has a thickness of 10 to 40 μm as in the case of the Tl-based superconductor obtained in Example 1. Was confirmed to be composed of plate-like crystal particles of 0.1 to 3 μm. The aspect ratio was determined to be 12 to 300.

【0035】次に上記で得たTl系超電導体を乳鉢で粉
砕し、粉末にして以下の測定を行った。ICP発光分光
法で組成の定量分析を行った結果、Tl:Ba:Ca:
Cuは原子比で1.61:1.98:1.99:3.0
0であった。
Next, the Tl-based superconductor obtained above was crushed in a mortar and powdered, and the following measurements were carried out. As a result of quantitative analysis of the composition by ICP emission spectroscopy, Tl: Ba: Ca:
Cu has an atomic ratio of 1.61: 1.98: 1.99: 3.0.
It was 0.

【0036】粉末X線回折法により結晶相を同定した結
果、2223相のピークのみが見られた。また実施例1
の結果と同様に結晶粒子がab面方向に揃い、かつC軸
方向に配向したX線回折図形が得られた。
As a result of identifying the crystal phase by the powder X-ray diffraction method, only the peak of 2223 phase was observed. Example 1
Similar to the result of 1., an X-ray diffraction pattern in which the crystal grains were aligned in the ab plane direction and oriented in the C-axis direction was obtained.

【0037】温度に対する交流帯磁率の変化を測定した
ところ、実施例1の試番1と同等の結果を示した。また
110Kでの超電導体体積率を算出した結果、87体積
%であった。
When the change of the AC susceptibility with respect to temperature was measured, the same result as the trial number 1 of Example 1 was shown. The calculated superconductor volume ratio at 110K was 87% by volume.

【0038】比較例1 バリウム、ストロンチウム、カルシウム及び銅の比率が
原子比で表3に示す組成になるように、実施例1と同様
の原料を用いて秤量し、出発原料とした。
Comparative Example 1 Barium, strontium, calcium and copper were weighed out using the same raw materials as in Example 1 so that the atomic ratios were as shown in Table 3, and the starting materials were used.

【0039】この後上記の出発原料を実施例1と同様の
条件で混合、予備焼成、粉砕した。次にタリウム、バリ
ウム、ストロンチウム、カルシウム及び銅の比率が原子
比で表3に示す組成になるように、Tl23(高純度化
学研究所製、純度99.9%)を秤量して上記粉砕物に
添加し、乳鉢で均一に混合、粉砕してTl系超電導体用
混合物を得た。
Thereafter, the above starting materials were mixed, pre-baked and pulverized under the same conditions as in Example 1. Next, Tl 2 O 3 (manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.9%) was weighed so that the ratio of thallium, barium, strontium, calcium, and copper was the composition shown in Table 3 in atomic ratio. The mixture was added to the pulverized product, uniformly mixed and pulverized in a mortar to obtain a Tl-based superconductor mixture.

【0040】得られたTl系超電導体用混合物を用い
て、表3に示す焼成温度及び時間とした以外は実施例1
と同様の条件で焼成してTl系超電導体を得た。
Example 1 was repeated, except that the obtained Tl-based superconductor mixture was used and the firing temperature and time shown in Table 3 were used.
By firing under the same conditions as above, a Tl-based superconductor was obtained.

【0041】上記で得たTl系超電導体の破面を走査型
電子顕微鏡(SEM)で観察した結果、板状結晶の成長
は見られず、塊状、柱状、不定形状等の様々な形状の結
晶粒子で構成されていることが確認された。図1の
(b)に試番7の破面の結晶粒子のSEM写真を示す。
なおアスペクト比は板状の結晶粒子が得られないため求
めなかった。
As a result of observing the fractured surface of the Tl-based superconductor obtained above with a scanning electron microscope (SEM), no growth of plate-like crystals was observed, and crystals of various shapes such as lumps, columns, and irregular shapes were observed. It was confirmed that it was composed of particles. FIG. 1 (b) shows an SEM photograph of the crystal grains on the fracture surface of sample No. 7.
The aspect ratio was not calculated because plate-shaped crystal particles could not be obtained.

【0042】一方上記で得たTl系超電導体を乳鉢で粉
砕し、粉末状にして次の測定を行った。ICP発光分光
法で組成の定量分析、粉末X線回折法による結晶相の同
定、インダクタンス法から求めた90K(試番9及び1
1の場合)、110K(試番7、8、10及び12の場
合)での超電導体体積率の算出結果及び磁化法から求め
た0.5テスラ、77KでのJcを表3に示す。また試
番7についての交流帯磁率の温度変化を図2に示す。粉
末X線回折法の結果から、C軸方向への結晶粒子の配向
は認められず、また試番12のように超電導体相以外の
結晶相が見られた。
On the other hand, the Tl-based superconductor obtained above was crushed in a mortar and made into powder, and the following measurements were carried out. 90K obtained by quantitative analysis of composition by ICP emission spectroscopy, identification of crystal phase by powder X-ray diffraction method, and inductance method (trial numbers 9 and 1
Table 3 shows the calculation results of the superconducting volume ratio at 110 K (in the case of 1) and 110 K (in the case of trial numbers 7, 8, 10 and 12) and Jc at 77 K at 0.5 Tesla obtained by the magnetization method. Further, FIG. 2 shows the temperature change of the AC susceptibility of the sample No. 7. From the results of the powder X-ray diffraction method, the orientation of the crystal grains in the C-axis direction was not recognized, and a crystal phase other than the superconductor phase was observed as in trial number 12.

【0043】以上のように比較例1においては、Tl系
超電導体を構成する結晶粒子は不定形状であり、また配
向しにくく、超電導体体積率も低い結果となった。
As described above, in Comparative Example 1, the crystal particles forming the Tl-based superconductor have an indefinite shape, are hard to be oriented, and have a low superconductor volume ratio.

【0044】[0044]

【表3】 [Table 3]

【0045】実施例3 ストロンチウム、バリウム、カルシウム、イットリウ
ム、サマリウム及び銅の比率が原子比で表4に示す組成
になるように、SrO(高純度化学研究所製、純度99
%以上)、BaO(高純度化学研究所製、純度99%以
上)、CaO(高純度化学研究所製、純度99.9
%)、Y23(信越化学工業製、純度99.9%)、S
23(高純度化学研究所製、純度99.9%)及びC
uO(高純度化学研究所製、純度99.9%)を秤量
し、出発原料とした。
Example 3 SrO (manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99) was used so that the ratio of strontium, barium, calcium, yttrium, samarium and copper in atomic ratio was as shown in Table 4.
% Or more), BaO (manufactured by Kojundo Chemical Laboratory, purity 99% or more), CaO (manufactured by Kojundo Chemical Laboratory, purity 99.9)
%), Y 2 O 3 (Shin-Etsu Chemical Co., Ltd., purity 99.9%), S
m 2 O 3 (manufactured by Kojundo Chemical Laboratory, purity 99.9%) and C
uO (manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.9%) was weighed and used as a starting material.

【0046】この後上記の出発原料をらいかい機で30
分間混合した。該混合粉を電気炉を用いて大気中で90
0℃で10時間予備焼成し、ついでらいかい機で30分
間粉砕した。
After that, the above starting materials are 30
Mix for minutes. 90% of the mixed powder in the atmosphere using an electric furnace
It was pre-baked at 0 ° C. for 10 hours and then crushed for 30 minutes with a clay mill.

【0047】得られた予備焼成粉を直径が8mm及び長
さが120mmの寸法に成形後、赤外集光炉を用いて大
気中で1,600℃(パイロメーターでの測定値)で溶
融状態にし、ついでこの溶融物を銅板の上に瞬時に落と
して、急冷した。
The preliminarily fired powder thus obtained was molded into a size having a diameter of 8 mm and a length of 120 mm, and then melted at 1,600 ° C. (measurement value with a pyrometer) in the atmosphere using an infrared concentrating furnace. Then, the melt was instantly dropped on a copper plate and quenched.

【0048】急冷した組成物を乳鉢で粗粉砕した後、ら
いかい機で十分に粉砕した。この溶融急冷粉について、
ICP発光分光法で組成の定量分析を行った。その結果
を表4に示す。
The rapidly cooled composition was roughly crushed in a mortar and then sufficiently crushed in a raider. About this melt-quenched powder,
Quantitative analysis of composition was performed by ICP emission spectroscopy. The results are shown in Table 4.

【0049】次にタリウム、鉛、ストロンチウム、バリ
ウム、カルシウム、イットリウム、サマリウム及び銅の
比率が原子比で表5に示す組成になるようにTl2
3(高純度化学研究所製、純度99.9%)及びPbO
(高純度化学研究所製、純度99.9%)を秤量して上
記で得た溶融急冷粉に添加し、乳鉢で均一に混合、粉砕
してTl系超電導体用混合物を得た。
Next, Tl 2 O was adjusted so that the ratio of thallium, lead, strontium, barium, calcium, yttrium, samarium, and copper would be the composition shown in Table 5.
3 (manufactured by Kojundo Chemical Laboratory, purity 99.9%) and PbO
(Manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.9%) was weighed and added to the molten quenched powder obtained above, uniformly mixed and pulverized in a mortar to obtain a Tl-based superconductor mixture.

【0050】得られたTl系超電導体用混合物を金型プ
レスで直径が20mmで厚さが2mmの寸法に成形後、
表5に示す温度で10時間、空気気流中で焼成してTl
系超電導体を得た。得られたTl系超電導体について、
ICP発光分光法で組成の定量分析を行った。その結果
を表5に示す。
The obtained Tl-based superconductor mixture was molded into a dimension of 20 mm in diameter and 2 mm in thickness by a die press,
Tl after firing in air stream for 10 hours at the temperature shown in Table 5
A superconductor was obtained. About the obtained Tl-based superconductor,
Quantitative analysis of composition was performed by ICP emission spectroscopy. The results are shown in Table 5.

【0051】上記で得たTl系超電導体の破面を走査型
電子顕微鏡(SEM)で観察した結果、図1の(a)に
示される実施例1で得たTl系超電導体と同様に、一辺
が10〜40μmで厚さが0.1〜3μmの板状の結晶
粒子で構成されていることが確認された。またアスペク
ト比を求めたところ10〜280であった。さらにエネ
ルギー分散型X線分光法(EDX)で組成の定量分析を
行った結果、板状結晶粒子は超電導体の組成であった。
As a result of observing the fracture surface of the Tl-based superconductor obtained above with a scanning electron microscope (SEM), as in the case of the Tl-based superconductor obtained in Example 1 shown in FIG. It was confirmed that it was composed of plate-like crystal particles having a side of 10 to 40 μm and a thickness of 0.1 to 3 μm. The aspect ratio was determined to be 10 to 280. Further, as a result of quantitative analysis of the composition by energy dispersive X-ray spectroscopy (EDX), the plate crystal particles had a composition of a superconductor.

【0052】四端子法により測定した電気抵抗がゼロに
なる温度(以下Tc0とする)、粉末X線回折法による
結晶相の同定、磁化法により0.5テスラ、77Kでの
Jcを求めた結果及びインダクタンス法から求めた77
Kでの超電導体体積率の算出結果を表6に示す。粉末X
線回折法の結果から、結晶粒子がab面方向に揃い、か
つC軸方向に配向したX線回折図形が得られた。
The temperature at which the electric resistance measured by the four probe method becomes zero (hereinafter referred to as Tc 0 ), the crystal phase was identified by the powder X-ray diffraction method, and the Jc at 77 K at 0.5 Tesla was obtained by the magnetization method. 77 obtained from the result and the inductance method
Table 6 shows the calculation results of the superconductor volume ratio in K. Powder X
As a result of the line diffraction method, an X-ray diffraction pattern in which the crystal grains were aligned in the ab plane direction and oriented in the C-axis direction was obtained.

【0053】[0053]

【表4】 [Table 4]

【0054】[0054]

【表5】 [Table 5]

【0055】[0055]

【表6】 [Table 6]

【0056】比較例2 ストロンチウム、バリウム、カルシウム、イットリウ
ム、サマリウム及び銅の比率が原子比で表7に示す組成
になるように、SrO(高純度化学研究所製、純度99
%以上)、BaO(高純度化学研究所製、純度99%以
上)、CaO(高純度化学研究所製、純度99.9
%)、Y23(信越化学工業製、純度99.9%)、S
23(高純度化学研究所製、純度99.9%)及びC
uO(高純度化学研究所製、純度99.9%)を秤量
し、出発原料とした。
Comparative Example 2 SrO (manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99) was prepared so that the atomic ratios of strontium, barium, calcium, yttrium, samarium and copper were as shown in Table 7.
% Or more), BaO (manufactured by Kojundo Chemical Laboratory, purity 99% or more), CaO (manufactured by Kojundo Chemical Laboratory, purity 99.9)
%), Y 2 O 3 (Shin-Etsu Chemical Co., Ltd., purity 99.9%), S
m 2 O 3 (manufactured by Kojundo Chemical Laboratory, purity 99.9%) and C
uO (manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.9%) was weighed and used as a starting material.

【0057】この後、上記の出発原料を実施例1と同様
の条件で混合、予備焼成、粉砕した後、タリウム、鉛、
ストロンチウム、バリウム、カルシウム、イットリウ
ム、サマリウム及び銅の比率が原子比で表7に示す組成
になるように、Tl23(高純度化学研究所製、純度9
9.9%)及びPbO(高純度化学研究所製、純度9
9.9%)を秤量して上記粉砕物に添加し、乳鉢で均一
に混合、粉砕してTl系超電導体用混合物を得た。得ら
れたTl系超電導体用混合物を用いて、焼成温度を表7
に示す温度とした以外は実施例3と同様の条件で成形、
焼成してTl系超電導体を得た。得られたTl系超電導
体について、ICP発光分光法で組成の定量分析を行っ
た。その結果を表7に示す。
Thereafter, the above starting materials were mixed, pre-baked and pulverized under the same conditions as in Example 1, thallium, lead,
The atomic ratio of strontium, barium, calcium, yttrium, samarium and copper is Tl 2 O 3 (manufactured by Kojundo Chemical Research Institute, purity 9
9.9%) and PbO (manufactured by Kojundo Chemical Laboratory, purity 9)
9.9%) was weighed and added to the pulverized product, uniformly mixed and pulverized in a mortar to obtain a Tl-based superconductor mixture. Using the obtained mixture for Tl-based superconductor, the firing temperature is shown in Table 7.
Molding under the same conditions as in Example 3 except that the temperature shown in
Firing was performed to obtain a Tl-based superconductor. The composition of the obtained Tl-based superconductor was quantitatively analyzed by ICP emission spectroscopy. The results are shown in Table 7.

【0058】上記で得たTl系超電導体の破面を走査型
電子顕微鏡(SEM)で観察した結果、図1の(b)に
示される比較例1で得たTl系超電導体と同様に板状結
晶の成長は見られず、塊状、柱状、不定形状等の様々な
形状の結晶粒子で構成されていることが確認された。な
おアスペクト比は板状の結晶粒子が得られないため求め
なかった。
As a result of observing the fracture surface of the Tl-based superconductor obtained above with a scanning electron microscope (SEM), a plate similar to the Tl-based superconductor obtained in Comparative Example 1 shown in FIG. It was confirmed that the crystalline crystals did not grow, and were composed of crystal grains of various shapes such as lumps, columns, and irregular shapes. The aspect ratio was not calculated because plate-shaped crystal particles could not be obtained.

【0059】Tc0、粉末X線回折法による結晶相の同
定、磁化法により0.5テスラ、77KでのJcを求め
た結果及びインダクタンス法から求めた77Kでの超電
導体体積率の算出結果を表8に示す。粉末X線回折法の
結果から、C軸方向への結晶粒子の配向は認められなか
った。
Tc 0 , the identification of the crystal phase by the powder X-ray diffraction method, the result of Jc at 77 K at 0.5 Tesla by the magnetization method, and the calculation result of the superconductor volume ratio at 77 K obtained by the inductance method. It shows in Table 8. From the results of the powder X-ray diffraction method, the orientation of crystal grains in the C-axis direction was not recognized.

【0060】以上のように比較例2においては、Tl系
超電導体を構成する結晶粒子は不定形状で、Jcは0で
あり、また配向しにくく、超電導体体積率も低い結果と
なった。
As described above, in Comparative Example 2, the crystal particles constituting the Tl-based superconductor had an indefinite shape, Jc was 0, the orientation was difficult, and the superconductor volume ratio was low.

【0061】[0061]

【表7】 [Table 7]

【0062】[0062]

【表8】 [Table 8]

【0063】実施例4 鉛、ストロンチウム、バリウム、カルシウム、イットリ
ウム、サマリウム及び銅の比率が原子比で表9に示す組
成になるように、PbO(高純度化学研究所製、純度9
9.9%)、SrO(高純度化学研究所製、純度99%
以上)、BaO(高純度化学研究所製、純度99%以
上)、CaO(高純度化学研究所製、純度99.9
%)、Y23(信越化学工業製、純度99.9%)、S
23(高純度化学研究所製、純度99.9%)及びC
uO(高純度化学研究所製、純度99.9%)を秤量
し、出発原料とした。
Example 4 PbO (manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 9) was used so that the ratios of lead, strontium, barium, calcium, yttrium, samarium and copper in the atomic ratio were as shown in Table 9.
9.9%), SrO (manufactured by Kojundo Chemical Laboratory, purity 99%)
Above), BaO (manufactured by Kojundo Chemical Laboratory, purity 99% or more), CaO (manufactured by Kojundo Chemical Laboratory, purity 99.9)
%), Y 2 O 3 (Shin-Etsu Chemical Co., Ltd., purity 99.9%), S
m 2 O 3 (manufactured by Kojundo Chemical Laboratory, purity 99.9%) and C
uO (manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.9%) was weighed and used as a starting material.

【0064】この後上記の出発原料を実施例3と同様の
条件で混合、予備焼成、粉砕した。以下実施例3と同様
の工程を経て溶融急冷粉を得た。得られた溶融急冷粉に
ついて、ICP発光分光法で組成の定量分析を行った。
その結果を表9に示す。
Thereafter, the above starting materials were mixed, pre-baked and pulverized under the same conditions as in Example 3. Then, the same process as in Example 3 was performed to obtain a melt-quenched powder. The composition of the obtained melt-quenched powder was quantitatively analyzed by ICP emission spectroscopy.
The results are shown in Table 9.

【0065】次にタリウム、鉛、ストロンチウム、バリ
ウム、カルシウム、イットリウム、サマリウム及び銅の
比率が原子比で表10に示す組成になるようにTl23
(高純度化学研究所製、純度99.9%)を秤量して上
記で得た溶融急冷粉に添加し、乳鉢で均一に混合、粉砕
してTl系超電導体用混合物を得た。
Next, Tl 2 O 3 was used so that the ratio of thallium, lead, strontium, barium, calcium, yttrium, samarium, and copper would be the composition shown in Table 10.
(Manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.9%) was weighed and added to the molten quenched powder obtained above, uniformly mixed and pulverized in a mortar to obtain a Tl-based superconductor mixture.

【0066】得られたTl系超電導体用混合物を用い
て、焼成温度を表10に示す温度とした以外は実施例3
と同様の条件で成形、焼成してTl系超電導体を得た。
得られたTl系超電導体について、ICP発光分光法で
組成の定量分析を行った。その結果を表10に示す。
Example 3 was repeated except that the firing temperature was changed to that shown in Table 10 by using the obtained Tl-based superconductor mixture.
It was molded and fired under the same conditions as above to obtain a Tl-based superconductor.
The composition of the obtained Tl-based superconductor was quantitatively analyzed by ICP emission spectroscopy. The results are shown in Table 10.

【0067】上記で得たTl系超電導体の破面を走査型
電子顕微鏡(SEM)で観察した結果、図1の(a)に
示される実施例1で得たTl系超電導体と同様に、一辺
が10〜40μmで厚さが0.1〜3μmの板状の結晶
粒子で構成されていることが確認された。またアスペク
ト比を求めたところ10〜280であった。さらにエネ
ルギー分散型X線分光法(EDX)で組成の定量分析を
行った結果、板状結晶粒子は超電導体の組成であった。
As a result of observing the fracture surface of the Tl-based superconductor obtained above with a scanning electron microscope (SEM), like the Tl-based superconductor obtained in Example 1 shown in FIG. It was confirmed that it was composed of plate-like crystal particles having a side of 10 to 40 μm and a thickness of 0.1 to 3 μm. The aspect ratio was determined to be 10 to 280. Further, as a result of quantitative analysis of the composition by energy dispersive X-ray spectroscopy (EDX), the plate crystal particles had a composition of a superconductor.

【0068】Tc0、粉末X線回折法による結晶相の同
定、磁化法により0.5テスラ、77KでのJcを求め
た結果及びインダクタンス法から求めた77Kでの超電
導体体積率の算出結果を表11に示す。粉末X線回折法
の結果から、結晶粒子がab面方向に揃い、かつC軸方
向に配向したX線回折図形が得られた。
Tc 0 , the identification of the crystal phase by the powder X-ray diffraction method, the result of determining Jc at 77 K by 0.5 Tesla by the magnetizing method, and the calculation result of the superconductor volume ratio at 77 K by the inductance method. It shows in Table 11. From the result of the powder X-ray diffraction method, an X-ray diffraction pattern in which crystal grains were aligned in the ab plane direction and oriented in the C-axis direction was obtained.

【0069】[0069]

【表9】 [Table 9]

【0070】[0070]

【表10】 [Table 10]

【0071】[0071]

【表11】 [Table 11]

【0072】比較例3 鉛、ストロンチウム、バリウム、カルシウム、イットリ
ウム、サマリウム及び銅の比率が原子比で表12に示す
組成になるように、PbO(高純度化学研究所製、純度
99.9%)、SrO(高純度化学研究所製、純度99
%以上)、BaO(高純度化学研究所製、純度99%以
上)、CaO(高純度化学研究所製、純度99.9%)
及びCuO(高純度化学研究所製、純度99.9%)を
秤量し、出発原料とした。
Comparative Example 3 PbO (manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.9%) so that the ratio of lead, strontium, barium, calcium, yttrium, samarium and copper in the atomic ratio is as shown in Table 12. , SrO (manufactured by Kojundo Chemical Laboratory, purity 99
% Or more), BaO (manufactured by Kojundo Chemical Laboratory, purity 99% or more), CaO (manufactured by Kojundo Chemical Laboratory, purity 99.9%)
And CuO (manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.9%) were weighed and used as starting materials.

【0073】この後、上記の出発原料を実施例1と同様
の条件で混合、予備焼成、粉砕した後、タリウム、鉛、
ストロンチウム、カルシウム、イットリウム、サマリウ
ム及び銅の比率が原子比で表12に示す組成になるよう
に、Tl23(高純度化学研究所製、純度99.9%)
を秤量して上記粉砕物に添加し、乳鉢で均一に混合、粉
砕してTl系超電導体用混合物を得た。
Thereafter, the above-mentioned starting materials were mixed, pre-baked and pulverized under the same conditions as in Example 1, thallium, lead,
The atomic ratio of strontium, calcium, yttrium, samarium, and copper is Tl 2 O 3 (manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.9%).
Was weighed and added to the pulverized product, uniformly mixed and pulverized in a mortar to obtain a Tl-based superconductor mixture.

【0074】得られたTl系超電導体用混合物を用い
て、焼成温度を表12に示す温度とした以外は実施例3
と同様の条件で成形、焼成してTl系超電導体を得た。
得られたTl系超電導体について、ICP発光分光法で
組成の定量分析を行った。その結果を表13に示す。
Example 3 was repeated except that the firing temperature was changed to that shown in Table 12 using the obtained Tl-based superconductor mixture.
It was molded and fired under the same conditions as above to obtain a Tl-based superconductor.
The composition of the obtained Tl-based superconductor was quantitatively analyzed by ICP emission spectroscopy. The results are shown in Table 13.

【0075】上記で得たTl系超電導体の破面を走査型
電子顕微鏡(SEM)で観察した結果、図1の(b)に
示される比較例1で得たTl系超電導体と同様に、板状
の結晶成長は見られず、塊状、柱状、不定形状等の様々
な形状の結晶粒子で構成されていることが確認された。
なおアスペクト比は板状の結晶粒子が得られないため求
めなかった。
As a result of observing the fractured surface of the Tl-based superconductor obtained above with a scanning electron microscope (SEM), it was found that, like the Tl-based superconductor obtained in Comparative Example 1 shown in FIG. No plate-like crystal growth was observed, and it was confirmed to be composed of crystal grains of various shapes such as lumps, columns, and irregular shapes.
The aspect ratio was not calculated because plate-shaped crystal particles could not be obtained.

【0076】Tc0、粉末X線回折法による結晶相の同
定、磁化法により0.5テスラ、77KでのJcを求め
た結果及びインダクタンス法から求めた77Kでの超電
導体体積率を表13に示す。粉末X線回折法の結果か
ら、C軸方向への結晶粒子の配向は認められなかった。
Table 13 shows Tc 0 , the identification of the crystal phase by the powder X-ray diffraction method, the result of determining Jc at 77 K by 0.5 Tesla by the magnetizing method, and the superconductor volume ratio at 77 K determined by the inductance method. Show. From the results of the powder X-ray diffraction method, the orientation of crystal grains in the C-axis direction was not recognized.

【0077】以上のように比較例3においては、Tl系
超電導体を構成する結晶粒子は不定形状で、Jcは0で
あり、また配向しにくく、超電導体体積率も低い結果と
なった。
As described above, in Comparative Example 3, the crystal particles constituting the Tl-based superconductor had an indefinite shape, Jc was 0, orientation was difficult, and the superconductor volume ratio was low.

【0078】[0078]

【表12】 [Table 12]

【0079】[0079]

【表13】 [Table 13]

【0080】各実施例及び各比較例の結果から、本発明
になるTl系超電導体は、比較例のTl系超電導体に比
較してTlの蒸発が少なく、超電導体体積率が高いこと
がわかる。また本発明になるTl系超電導体は比較例の
Tl系超電導体に比較してJcの高いことが示される。
From the results of Examples and Comparative Examples, it can be seen that the Tl-based superconductor according to the present invention has less evaporation of Tl and a higher superconductor volume ratio than the Tl-based superconductor of the Comparative Example. .. It is also shown that the Tl-based superconductor according to the present invention has a higher Jc than the Tl-based superconductor of the comparative example.

【0081】さらに図2に示されるように、比較例1の
試番7に比較して、実施例1の試番1は交流帯磁率の変
化が大きく、超電導体体積率が高いことが明らかであ
る。
Further, as shown in FIG. 2, in comparison with the trial number 7 of the comparative example 1, it is clear that the trial number 1 of the example 1 has a large change in AC susceptibility and a high superconductor volume ratio. is there.

【0082】[0082]

【発明の効果】本発明になるTl系超電導体は、アスペ
クト比が6以上の板状の超電導体結晶粒子で構成されて
いるため、結晶粒子を超電導電流の流れやすいab面方
向に揃え、かつC軸方向に配向させることが容易であ
り、またTlが蒸発しにくく、超電導体体積率も高く、
さらに高いJcが得られ、工業的に極めて好敵なTl系
超電導体である。
Since the Tl-based superconductor according to the present invention is composed of plate-shaped superconductor crystal particles having an aspect ratio of 6 or more, the crystal particles are aligned in the ab plane direction in which the superconducting current easily flows, and It is easy to orient in the C-axis direction, Tl is hard to evaporate, and the superconductor volume ratio is high.
It is a Tl-based superconductor that has a very high Jc and is extremely favorable in industry.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は実施例1における試番1の破面の結晶
粒子のSEM写真、(b)は比較例1における試番7の
破面の結晶粒子のSEM写真である。
FIG. 1A is a SEM photograph of a crystal grain on a fracture surface of trial No. 1 in Example 1, and FIG. 1B is a SEM photograph of a crystal grain on a fracture surface of trial No. 7 in Comparative Example 1.

【図2】交流帯磁率と温度との関係を示すグラフであ
る。
FIG. 2 is a graph showing the relationship between AC magnetic susceptibility and temperature.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 39/24 ZAA Z 8728−4M (72)発明者 芦沢 寅之助 茨城県日立市東町四丁目13番1号 日立化 成工業株式会社茨城研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical display location H01L 39/24 ZAA Z 8728-4M (72) Inventor Toshinosuke Ashizawa 4-13 Higashimachi, Hitachi City, Ibaraki Prefecture No. 1 Inside Hitachi Chemical Co., Ltd. Ibaraki Research Center

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 アスペクト比が6以上の板状の結晶粒子
を有するTl系超電導体。
1. A Tl-based superconductor having plate-like crystal grains having an aspect ratio of 6 or more.
【請求項2】 M(ただしMはBa及びSrから選ばれ
る1種以上の元素)、Ca及びCuを主成分とする組成
物を溶融状態で急冷し、これを粉砕後Tlを含む化合物
又はTl及びPbを含む化合物と混合し、ついで成形、
焼成することを特徴とするTl系超電導体の製造法。
2. A composition containing M (where M is at least one element selected from Ba and Sr), Ca and Cu as the main components, is rapidly cooled in a molten state, and after crushing the composition, a compound containing Tl or Tl. And a compound containing Pb, and then molded,
A method for producing a Tl-based superconductor characterized by firing.
【請求項3】 M(ただしMはBa及びSrから選ばれ
る1種以上の元素)、Ca、Cu及びPbを主成分とす
る組成物を溶融状態で急冷し、これを粉砕後Tlを含む
化合物又はTl及びPbを含む化合物と混合し、ついで
成形、焼成することを特徴とするTl系超電導体の製造
法。
3. A compound containing M1 (where M is at least one element selected from Ba and Sr), Ca, Cu and Pb as a main component, is rapidly cooled in a molten state, and is pulverized to contain Tl. Alternatively, a method for producing a Tl-based superconductor, which comprises mixing with a compound containing Tl and Pb, followed by molding and firing.
JP4083361A 1991-05-23 1992-03-05 Tl-containing superconductor and its production Pending JPH0597436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4083361A JPH0597436A (en) 1991-05-23 1992-03-05 Tl-containing superconductor and its production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-146542 1991-05-23
JP14654291 1991-05-23
JP4083361A JPH0597436A (en) 1991-05-23 1992-03-05 Tl-containing superconductor and its production

Publications (1)

Publication Number Publication Date
JPH0597436A true JPH0597436A (en) 1993-04-20

Family

ID=26424396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4083361A Pending JPH0597436A (en) 1991-05-23 1992-03-05 Tl-containing superconductor and its production

Country Status (1)

Country Link
JP (1) JPH0597436A (en)

Similar Documents

Publication Publication Date Title
CN1028390C (en) Improved process for making 90K superconductors
KR970007765B1 (en) Superconducting wire and method of manufacturing the same
JP3332334B2 (en) Superconductor and method of manufacturing the same
US4861753A (en) Process for making superconductors using barium nitrate
EP0354537B1 (en) Method of manufacturing a powder of bi-based superconductive oxide containing lead and method of manufacturing of a sintered body therefrom
JPH0597436A (en) Tl-containing superconductor and its production
WO1988010515A1 (en) Improved process for making 90 k superconductors
US5079217A (en) Process for preparing homogenous superconductors by heating in a nitrogen dioxide containing atmosphere
Hwang et al. Crystallization of a Bi-Pb-Sr-Ca-Cu-O system prepared by a melt process
CA1341621C (en) Superconductivity in an oxide compound system without rare earth
US5036043A (en) Process for making 90 K superconductors
Trivijitkasem et al. Superconducting Properties of (Bi, Pb)-Sr-Ca-Cu-O Ceramics
WO1988009555A1 (en) Improved process for making 90 k superconductors
JP2504824B2 (en) Method for manufacturing superconducting ceramics
JP2518043B2 (en) Method for producing ceramics by melt solidification method
JP3157183B2 (en) Manufacturing method of oxide superconductor
JP3159764B2 (en) Manufacturing method of rare earth superconductor
JP2555734B2 (en) Production method of superconducting material
JPH061611A (en) Production of ti superconductor
JPH0354103A (en) Production of oxide superconductor
EP0321862A2 (en) Use of barium peroxide in superconducting Y1Ba2Cu3Ox and related materials
Cloots Powder processing techniques
US5346538A (en) Molding of sintered strontium/calcium indate and the use thereof
JPH0574549B2 (en)
Kirschner et al. Dependence of characteristic properties of Hg–Ba–Ca–Cu–O superconductors on the preparation process