JPH0595878A - Control device for vacuum cleaner - Google Patents
Control device for vacuum cleanerInfo
- Publication number
- JPH0595878A JPH0595878A JP3257538A JP25753891A JPH0595878A JP H0595878 A JPH0595878 A JP H0595878A JP 3257538 A JP3257538 A JP 3257538A JP 25753891 A JP25753891 A JP 25753891A JP H0595878 A JPH0595878 A JP H0595878A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- change amount
- vacuum cleaner
- floor
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Electric Vacuum Cleaner (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、単位時間内の圧力変化
量を累計して掃除する床質を識別し、その床質情報を記
憶し、電動送風機の入力制御方法、床用吸い込み具の回
転ブラシの回転数制御方法を学習していく電気掃除機に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention identifies the floor quality to be cleaned by accumulating the pressure change amount within a unit time, stores the floor quality information, and controls the input control method of the electric blower and the floor suction tool. The present invention relates to an electric vacuum cleaner that learns how to control the rotation speed of a rotating brush.
【0002】[0002]
【従来の技術】近年、電気掃除機は掃除する床面、塵埃
量などにより電動送風機の入力を自動的に制御して吸込
力を制御することが求められている。2. Description of the Related Art In recent years, electric vacuum cleaners are required to automatically control the input of an electric blower according to the floor surface to be cleaned, the amount of dust, etc. to control the suction force.
【0003】従来、この種の電気掃除機は図8に示すよ
うな構成が一般的であった。以下、その構成について説
明する。Conventionally, this type of vacuum cleaner generally has a structure as shown in FIG. The configuration will be described below.
【0004】図に示すように、掃除機本体(以下、本体
という)1は電動送風機2を内蔵しており、吸い込み口
3にホース4、延長管5および回転ブラシ6を有する電
動式床用吸い込み具7を接続している。ホース4の先端
部には手元スイッチ8を設け、手元スイッチ8を操作す
ることで本体1内に配設した電動送風機2の回転数制御
を行うようにしていた。As shown in the figure, a cleaner body (hereinafter referred to as a body) 1 has a built-in electric blower 2, and has a suction port 3 having a hose 4, an extension tube 5 and a rotating brush 6 for electric floor suction. The tool 7 is connected. A hand switch 8 is provided at the tip of the hose 4, and the rotation speed of the electric blower 2 arranged in the main body 1 is controlled by operating the hand switch 8.
【0005】[0005]
【発明が解決しようとする課題】このような従来の電気
掃除機では、掃除する床面を使用者が判断し、床面に応
じて手動で手元スイッチ7の操作により入力(回転数)
を変化させて吸込力を変化させていた。そのため、操作
が面倒であるという問題を有していた。In such a conventional electric vacuum cleaner, the user determines the floor surface to be cleaned, and manually operates the hand switch 7 according to the floor surface (rotation speed).
Was changed to change the suction force. Therefore, there is a problem that the operation is troublesome.
【0006】本発明は上記従来の課題を解決するもの
で、掃除機本体内の圧力を検知するセンサの出力から学
習則により最適化されたニューロ・ファジィ推論器を用
いてきめ細かな電動送風機の入力制御と電動式床用吸い
込み具の回転ブラシの回転数制御を行ない、使い勝手を
向上することを目的としている。The present invention is to solve the above-mentioned conventional problems, and uses a neuro-fuzzy reasoning device optimized by a learning rule from the output of a sensor for detecting the pressure inside the cleaner body to input the fine electric blower. Control and rotation speed control of the rotating brush of the electric floor suction tool are intended to improve usability.
【0007】[0007]
【課題を解決するための手段】本発明は上記目的を達成
するために、吸引のための電動送風機と、掃除機本体内
の圧力を検知する圧力センサと、前記圧力センサのアナ
ログ出力をデジタル信号に変換するA/D変換手段と、
前記A/D変換手段からのデジタル量を単位時間内で平
均し圧力絶対値を演算する圧力絶対値検出手段と、前記
A/D変換手段からのデジタル量の単位時間内での変化
量を平均し圧力変化量を得る圧力変化量検出手段と、電
源オフ時でも記憶可能な記憶手段と、前記電動送風機の
入力を決定するファジィ推論器とを備え、前記ファジィ
推論器は、前記記憶手段に記憶された圧力絶対値と圧力
変化量の両情報から集塵室内のごみ量と床質とを掃除機
の使用環境に合わせて間接的に逐次学習し、前記電動送
風機の入力を決定するようにしたことを第1の課題解決
手段としている。In order to achieve the above object, the present invention provides an electric blower for suction, a pressure sensor for detecting the pressure in the cleaner body, and a digital signal for the analog output of the pressure sensor. A / D conversion means for converting to
A pressure absolute value detection means for averaging digital amounts from the A / D converting means within a unit time to calculate a pressure absolute value, and an average amount of change in digital amount from the A / D converting means within a unit time. A pressure change amount detection means for obtaining a pressure change amount, a storage means capable of storing even when the power is off, and a fuzzy inference device for determining an input of the electric blower, and the fuzzy inference device is stored in the storage device. Based on both the information of the absolute pressure value and the amount of pressure change, the amount of dust in the dust collection chamber and the floor quality are indirectly and sequentially learned according to the usage environment of the vacuum cleaner, and the input of the electric blower is determined. This is the first means for solving the problem.
【0008】また、上記第1の課題解決手段の電動送風
機に加えて、床用吸い込み具内に回転ブラシを備え、フ
ァジィ推論器により前記回転ブラシの回転数を決定する
ようにしたことを第2の課題解決手段としている。In addition to the electric blower of the first problem solving means, a rotary brush is provided in the floor suction tool, and the number of rotations of the rotary brush is determined by a fuzzy reasoner. Is used as a means for solving the problem.
【0009】さらに、上記第1の課題解決手段のファジ
ィ推論器は、ニュ−ロ技術の最急降下法などの学習則に
よりファジィ推論の各種パラメータを最適化し、各種パ
ラメータとして、前件部メンバーシップ関数と後件部メ
ンバーシップ関数の形状、推論ルール数を最適化したこ
とを第3の課題解決手段としている。Further, the fuzzy reasoner of the first problem solving means optimizes various parameters of fuzzy reasoning by a learning rule such as the steepest descent method of the neuro technique, and uses the antecedent part membership function as various parameters. The third problem solving means is that the shape of the consequent part membership function and the number of inference rules are optimized.
【0010】[0010]
【作用】本発明は上記した第1の課題解決手段により、
圧力を検知するセンサの出力を累計することにより集塵
室内の塵挨量や床質(木床・絨毯など)情報を間接的に
得ることができ、これらの情報を累計記憶させ、記憶し
た床質情報とリアルタイムの床質情報と集塵室内塵埃量
とにより床面と塵埃量に応じた適切な電動送風機の入力
になるよう制御できる。According to the first means for solving the above problems, the present invention provides:
By accumulating the outputs of the sensors that detect pressure, you can indirectly obtain information on the amount of dust in the dust collection chamber and the floor quality (wood floor, carpet, etc.). The quality information, the real-time floor quality information, and the amount of dust in the dust collection chamber can be controlled so that the input of the electric blower is appropriate according to the floor surface and the amount of dust.
【0011】また、第2の課題解決手段により、床用吸
い込み具の回転ブラシの回転数も床質に応じて適切に制
御ができ、使い勝手を向上できる。Further, according to the second means for solving the problem, the number of rotations of the rotary brush of the floor suction tool can be appropriately controlled according to the quality of the floor, and the usability can be improved.
【0012】さらに、第3の課題解決手段により、ファ
ジィ推論器はニュ−ロ技術の最急降下法等の学習則によ
り、前件部メンバーシップ関数及び、後件部メンバーシ
ップ関数の形状、推論ルール数を最適化したものを有し
ているため、掃除の勘やこつといった定性的な情報が最
適にチュ−ニングされてファジィ推論器の中に盛り込ま
れ、使用者に合った掃除ができるようになる。Further, according to the third means for solving the problem, the fuzzy reasoner uses the learning rule such as the steepest descent method of the neuro technique and the shape of the antecedent part membership function and the consequent part membership function, and the inference rule. Since we have the number optimized, qualitative information such as intuition and tips for cleaning is optimally tuned and incorporated into the fuzzy reasoner so that cleaning can be done according to the user. Become.
【0013】[0013]
【実施例】以下、本発明の一実施例について図1から図
3を参照しながら説明する。なお、従来例と同じ構成の
ものは同一符号を付して説明を省略する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. The same components as those in the conventional example are designated by the same reference numerals and the description thereof will be omitted.
【0014】図に示すように、センサ9は本体1の集塵
室10と電動送風機2との間に設けられており、負圧量
の絶対値と変化量を検出するようにしている。圧力セン
サ9の信号は増幅器11で増幅し、A/D変換手段12
でデジタル信号に変換し、マイクロコンピュータ13に
入力する。マイクロコンピュータ13は、A/D変換手
段12からのデジタル量を単位時間内で平均し圧力絶対
値を演算する圧力絶対値検出手段14と圧力の単位時間
内での変化量を平均し圧力変化量を得る圧力変化量検出
手段15とファジィ推論器16とを備えている。また、
記憶手段17は、マイクロコンピュータ13に接続さ
れ、制御系の電源がオフ状態となっても情報が消えない
不揮発性のメモリで構成している。記憶手段17には一
定時間ごとの圧力絶対値と変化量の累積値・平均値など
の情報が記憶される。マイクロコンピュータ13の出力
は位相制御手段18に入力し、電動送風機2の入力制御
を行う。ファジィ推論器16は圧力変化量検出手段15
により得られた床質情報と圧力絶対値検出手段14によ
り得られた集塵室10内の塵挨量と記憶手段17の出力
とにより電動送風機2の入力を推論する。As shown in the figure, the sensor 9 is provided between the dust collection chamber 10 of the main body 1 and the electric blower 2 so as to detect the absolute value and change amount of the negative pressure amount. The signal of the pressure sensor 9 is amplified by the amplifier 11, and the A / D conversion means 12
Is converted into a digital signal and input to the microcomputer 13. The microcomputer 13 averages the digital values from the A / D conversion means 12 within a unit time to calculate the pressure absolute value, and the pressure absolute value detection means 14 and the pressure change amount within a unit time to average the pressure change amount. The pressure change amount detecting means 15 and the fuzzy reasoner 16 are provided. Also,
The storage means 17 is connected to the microcomputer 13 and is composed of a non-volatile memory in which information is not lost even when the power supply of the control system is turned off. The storage means 17 stores information such as the absolute value of pressure and the cumulative value / average value of the amount of change for each fixed time. The output of the microcomputer 13 is input to the phase control means 18 to control the input of the electric blower 2. The fuzzy reasoner 16 is a pressure change amount detecting means 15
The input of the electric blower 2 is inferred from the bed quality information obtained by the above, the amount of dust in the dust collection chamber 10 obtained by the absolute pressure value detection means 14, and the output of the storage means 17.
【0015】ファジィ推論器16は図3に示すように構
成しており、前件部メンバーシップ関数記憶手段19
は、集塵室10内の塵挨量、床質情報、記憶床質情報に
関するメンバーシップ関数を記憶している。塵挨量適合
度演算手段20、床質情報適合度演算手段21、記憶床
質情報適合度演算手段22は、それぞれ前件部メンバー
シップ関数記憶手段19に記憶されている集塵室内塵挨
量、床質情報、記憶床質情報に関するメンバーシップ関
数と入力である集塵室内塵挨量、床質情報、記憶床質情
報との適合度を演算する。前件部ミニマム演算手段23
は、塵挨量適合度演算手段20、床質情報適合度演算手
段21、記憶床質情報適合度演算手段22の出力である
3つの適合度のMINをとり前件部の結論とする。吸い
込み力推論ルール記憶手段24は、吸い込み力に関する
推論ルールを記憶している。吸い込み力メンバーシップ
関数記憶手段25は、後件部の吸い込み力に関するメン
バーシップ関数を記憶している。後件部ミニマム演算手
段26は、吸い込み力推論ルール記憶手段24に記憶さ
れている推論ルールに従い、前件部結論と吸い込み力メ
ンバーシップ関数記憶手段25に記憶されている後件部
の吸い込み力メンバーシップ関数のMINをとってその
ルールの結論とする。重心手段27は、すべてのルール
についてそれぞれの結論を求めたのち全結論のMAXを
とり、その重心を計算することにより、最終的に吸い込
み力を求める。位相制御手段18では、決定された入力
に基づき、電動送風機2の位相制御量を算出し制御を行
う。The fuzzy reasoner 16 is constructed as shown in FIG. 3, and the antecedent part membership function storage means 19 is provided.
Stores a membership function relating to the amount of dust in the dust collection chamber 10, floor quality information, and storage floor quality information. The dust amount compatibility degree computing means 20, the floor quality information fitness degree computing means 21, and the storage floor quality information fitness degree computing means 22 are respectively the dust volume in the dust collection chamber stored in the antecedent part membership function storage means 19. , The floor function information, the membership function relating to the memory floor quality information, and the compatibility with the dust collection room dust amount, the floor quality information, and the memory floor quality information which are inputs. Antecedent part minimum calculation means 23
Is the conclusion of the antecedent part by taking the MINs of the three conformance levels which are the outputs of the dust quantity conformity degree calculation means 20, the floor quality information conformity degree calculation means 21, and the storage floor quality information conformity degree calculation means 22. The suction force inference rule storage means 24 stores the inference rule regarding the suction force. The suction force membership function storage means 25 stores the membership function regarding the suction force of the consequent part. The consequent part minimum calculation means 26 follows the inference rule stored in the suction force inference rule storage means 24 and draws the suction force member of the consequent part stored in the antecedent part conclusion and suction force membership function storage means 25. The MIN of the ship function is taken to conclude the rule. The center-of-gravity means 27 finally obtains the suction force by obtaining the respective conclusions for all the rules, then taking the MAX of all the conclusions, and calculating the center of gravity thereof. The phase control unit 18 calculates and controls the phase control amount of the electric blower 2 based on the determined input.
【0016】また、ファジィ推論器16は、ニュ−ロ技
術の最急降下法などの学習則によりファジィ推論の各種
パラメータを最適化したニューロ・ファジィ推論器で構
成されている。このニューロ・ファジィ推論器はマイク
ロコンピュータ13により容易に実現できる。ニューロ
・ファジィ推論器に含まれる前件部メンバーシップ関数
記憶手段19と吸い込み力推論ルール記憶手段24、吸
い込み力メンバーシップ関数記憶手段24に記憶されて
いるメンバーシップ関数および推論ルールは集塵室塵挨
量と床質情報と記憶床質情報のデータと掃除するときの
操作感を考慮した設定すべき電動送風機2の入力のデー
タから、予め最急降下法(ニューラルネットワークに用
いられる学習則の1つで、誤差関数を最小にする方法で
ある)などの学習則によって最適に設定されている。The fuzzy reasoner 16 is composed of a neuro-fuzzy reasoner that optimizes various parameters of fuzzy reasoning by a learning rule such as the steepest descent method of the neuro technique. This neuro-fuzzy reasoner can be easily realized by the microcomputer 13. The antecedent part membership function storage means 19 and suction force inference rule storage means 24 included in the neuro-fuzzy inference device, and the suction force membership function storage means 24 have membership functions and inference rules stored in the dust chamber dust. From the data of the dust amount, the floor quality information, the memory floor quality information, and the input data of the electric blower 2 which should be set in consideration of the operation feeling when cleaning, the steepest descent method (one of the learning rules used in the neural network is set in advance. , Which is a method of minimizing the error function), and is optimally set by a learning rule such as.
【0017】上記構成において動作を説明すると、圧力
絶対値検出手段14では、圧力センサ9で検出した圧力
値を所定時間積算し平均値を求め、圧力絶対値から集塵
室10内の塵挨の詰まり量がわかる。また、圧力の単位
時間内での変化量を平均し圧力変化量を得る圧力変化量
検出手段15によってその時点の床面の質が判る。これ
ら2つの情報量をファジィ推論の入力とする。To explain the operation in the above structure, the pressure absolute value detecting means 14 integrates the pressure values detected by the pressure sensor 9 for a predetermined time to obtain an average value, and the dust in the dust collecting chamber 10 is detected from the absolute pressure value. Know the amount of clogging. Further, the quality of the floor surface at that time can be known by the pressure change amount detecting means 15 which obtains the pressure change amount by averaging the change amount of the pressure within the unit time. These two pieces of information are used as inputs for fuzzy inference.
【0018】図4は、掃除を継続して行っている場合の
圧力値の変化の度合いを示している。図4において掃除
面が木床やクッションフロアなどの密着性が少ない床は
圧力絶対値は低く、平面に近い床材であるため変化量は
小さい関係がある。また、床面が絨毯の場合は、床用吸
い込み具7と絨毯との密着性は高いため圧力絶対値は高
く、圧力変化量は大きい関係がある。このように圧力絶
対値と圧力変化量を検出することにより集塵室10内の
塵挨量と現在掃除をしている床面の質とを推定すること
ができる。ここで、床面情報としては指数化した値(た
とえば0〜7)を設定する。この指数をファジィ推論の
一つの入力とする。圧力変化量が小さいというのは、木
床などの平坦な床面であることを示しており、圧力変化
量が大きいというのは、毛足の長い凹凸絨毯面であると
いうことを示している。FIG. 4 shows the degree of change in pressure value when cleaning is continuously performed. In FIG. 4, the absolute value of the pressure is low on a floor having a small cleaning surface such as a wooden floor or a cushion floor, and since the floor material is close to a flat surface, the change amount is small. Further, when the floor surface is a carpet, the adhesion between the floor suction tool 7 and the carpet is high, so that the absolute pressure value is high and the pressure change amount is large. By detecting the absolute pressure value and the pressure change amount in this way, it is possible to estimate the amount of dust in the dust collection chamber 10 and the quality of the floor surface currently being cleaned. Here, an indexed value (for example, 0 to 7) is set as the floor information. This index is used as one input for fuzzy reasoning. A small amount of change in pressure indicates that the surface is a flat floor such as a wooden floor, and a large amount of change in pressure indicates that the surface of the rugged carpet has long hair.
【0019】また、圧力変化量検出手段15から得られ
る床質情報を定期的に記憶手段17に記憶する。この記
憶手段17は電源をオフしても記憶内容が残る不揮発性
メモリなどを用い、本体1が使用された都度、床面情報
の指数ごとに度数が加えられ、掃除機を使用したすべて
の床面の情報が得られる。記憶床面情報適合度手段22
で適合度を求める前処理として、たとえば記憶床面情報
の指数とその度数より平均床質情報を求め、ファジィ推
論の他の入力とする。The bed quality information obtained from the pressure change amount detecting means 15 is periodically stored in the storing means 17. This storage means 17 uses a non-volatile memory or the like that retains stored contents even when the power is turned off, and a frequency is added to each floor information index every time the main body 1 is used, and all floors using a vacuum cleaner are added. Surface information is obtained. Memory floor information compatibility means 22
As a pre-process for obtaining the goodness of fit, for example, the average floor quality information is obtained from the index of the storage floor surface information and the frequency, and is used as another input for fuzzy reasoning.
【0020】掃除を行う場合の最適な吸い込み力は、床
面の特性などによって決まるものであり、圧力絶対値検
出手段14と圧力変化量検出手段15と記憶手段17の
出力からファジィ推論器16で推論する。The optimum suction force for cleaning is determined by the characteristics of the floor surface, etc., and the fuzzy reasoner 16 uses the outputs of the absolute pressure value detecting means 14, the pressure change amount detecting means 15, and the storing means 17 to perform the cleaning. Reason.
【0021】つぎに、吸い込み力の推論の過程について
説明する。本実施例のファジィ推論の推論ルールは「圧
力絶対値が低め(集塵室内のごみ詰まり量が少ない状
態)で、圧力変化量が小さい床質(木床やクッションフ
ロアなどの平坦な床)で、過去掃除を行った床面も比較
的圧力変化量が小さい床質が多ければ、吸い込み力をと
ても低く設定する」といった一般的な判断を基に形成さ
れている。圧力絶対値が「低め」とか、圧力変化量が
「小さい」とか、吸い込み力を「とても高く」といった
定性的な概念は図5(a)、(b)、(c)に示すようなメンバ
ーシップ関数により定量的に表現される。塵挨量適合度
演算手段20では、圧力絶対値検出手段14からの入力
と前件部メンバーシップ関数記憶手段19に記憶されて
いるごみ量に関するメンバーシップ関数に対する適合度
を両者のMAXをとることにより求める。床質情報適合
度演算手段21では、圧力変化量検出手段15からの入
力と前件部メンバーシップ関数記憶手段19に記憶され
ているごみ変化率のメンバーシップ関数に関して同様に
適合度を求める。記憶床質情報適合度演算手段22で
は、記憶手段17からの入力と前件部メンバーシップ関
数記憶手段19に記憶されている記憶床面情報のメンバ
ーシップ関数に関して同様に適合度を求める。前件部ミ
ニマム演算手段23では、これら3つの適合度のMIN
をとり前件部の結論とする。後件部ミニマム演算手段2
6では、吸い込み力推論ルール記憶手段24に記憶され
ているルールに従い、前件部結論と吸い込み力メンバー
シップ関数記憶手段25に記憶されている後件部の吸い
込み力メンバーシップ関数のMINをとってそのルール
の結論とする。すべてのルールについて、それぞれの結
論を求めたのち、重心演算手段27では全結論のMAX
をとり、その重心を計算することにより、最終的に吸い
込み力が求まる。位相制御手段18では決定された吸い
込み力に基づき、電動送風機2の位相制御量を算出し制
御を行う。Next, the process of inferring the suction force will be described. The inference rule of the fuzzy inference according to the present embodiment is “the pressure absolute value is low (the amount of dust clogging in the dust collection chamber is small) and the amount of pressure change is small (a flat floor such as a wooden floor or a cushion floor), The floor surface that has been cleaned in the past also has a relatively small change in pressure, and if the floor quality is large, the suction force is set to be very low. " Qualitative concepts such as "absolute pressure" is "low", pressure change is "small", and suction force is "very high". Membership as shown in Figure 5 (a), (b), (c) It is expressed quantitatively by a function. The dust amount compatibility calculating means 20 obtains both of the compatibility from the absolute pressure value detecting means 14 and the membership function relating to the amount of dust stored in the antecedent part membership function storing means 19 as MAX. Ask by. The floor quality information adaptability calculating means 21 similarly obtains the adaptability with respect to the input from the pressure change amount detecting means 15 and the membership function of the waste change rate stored in the antecedent part membership function storing means 19. The memory floor quality information fitness degree calculating means 22 similarly obtains the fitness degree with respect to the input from the memory means 17 and the membership function of the memory floor surface information stored in the antecedent part membership function memory means 19. In the antecedent part minimum computing means 23, the MIN of these three fitness levels is
Take the conclusion of the antecedent section. Consequent part Minimum calculation means 2
In step 6, in accordance with the rule stored in the suction force inference rule storage means 24, the MIN of the antecedent part conclusion and the suction force membership function of the consequent part stored in the suction force membership function storage means 25 are obtained. The conclusion of the rule. After obtaining the respective conclusions for all the rules, the center-of-gravity calculation means 27 determines the MAX of all the conclusions.
Then, the suction force is finally obtained by calculating the center of gravity. The phase control unit 18 calculates and controls the phase control amount of the electric blower 2 based on the determined suction force.
【0022】つぎに、本発明の他の実施例を図6および
図7を参照しながら説明する。なお、上記実施例と同じ
構成のものは同一符号を付して説明を省略する。Next, another embodiment of the present invention will be described with reference to FIGS. 6 and 7. The same components as those in the above-described embodiment are designated by the same reference numerals and the description thereof will be omitted.
【0023】図に示すように、マイクロコンピュータ2
8は、A/D変換手段12からのデジタル量を単位時間
内で平均し圧力絶対値を演算する圧力絶対値検出手段1
4と圧力の単位時間内での変化量を平均し圧力変化量を
得る圧力変化量検出手段15とファジィ推論器29とを
備えている。マイクロコンピュータ28の出力は位相制
御手段18に入力し、電動送風機2の入力を制御し、さ
らに、位相制御手段30に入力して床用吸い込み具の回
転ブラシ6の回転数を制御する。ファジィ推論器29は
圧力変化量検出手段15により得られた床質情報と圧力
絶対値検出手段14により得られた集塵室10内の塵挨
量と記憶手段17の出力とにより電動送風機2の入力と
回転ブラシ6の回転数を推論し決定する。As shown in the figure, the microcomputer 2
Reference numeral 8 is a pressure absolute value detection means 1 for averaging the digital amounts from the A / D conversion means 12 within a unit time to calculate a pressure absolute value.
4 and a fuzzy reasoner 29, which are pressure change amount detecting means 15 for averaging the change amounts of pressure in a unit time to obtain a pressure change amount. The output of the microcomputer 28 is input to the phase control means 18 to control the input of the electric blower 2, and further input to the phase control means 30 to control the rotation speed of the rotary brush 6 of the floor suction tool. The fuzzy reasoner 29 uses the bed quality information obtained by the pressure change amount detection means 15, the dust amount in the dust collection chamber 10 obtained by the pressure absolute value detection means 14, and the output of the storage means 17 to output the electric blower 2. The input and the rotation speed of the rotary brush 6 are inferred and determined.
【0024】ファジィ推論器29において、回転ブラシ
回転数推論ルール記憶手段31は、回転ブラシ6の回転
数に関する推論ルールを記憶している。回転ブラシ回転
数メンバーシップ関数記憶手段32は、回転ブラシ6の
回転数に関するメンバーシップ関数を記憶している。そ
の他の構成は、上記実施例とと同様の構成である。In the fuzzy reasoner 29, the rotating brush rotation speed inference rule storage means 31 stores inference rules regarding the rotation speed of the rotating brush 6. The rotating brush rotation speed membership function storage means 32 stores a membership function relating to the rotation speed of the rotating brush 6. The other structure is the same as that of the above-mentioned embodiment.
【0025】また、ファジィ推論器29は、ニュ−ロ技
術の最急降下法などの学習則によりファジィ推論の各種
パラメータを最適化したニューロ・ファジィ推論器で構
成されている。ニューロ・ファジィ推論器に含まれる前
件部メンバーシップ関数記憶手段19と回転ブラシ回転
数推論ルール記憶手段31、回転ブラシ回転数メンバー
シップ関数記憶手段32に記憶されているメンバーシッ
プ関数および推論ルールは集塵室塵挨量と床質情報と記
憶床質情報のデータと掃除するときの操作感を考慮した
設定すべき回転ブラシ6の回転数のデータから、予め最
急降下法(ニューラルネットワークに用いられる学習則
の1つで、誤差関数を最小にする方法である)などの学
習則によって最適に設定されている。The fuzzy reasoner 29 is a neuro-fuzzy reasoner that optimizes various parameters of fuzzy reasoning by a learning rule such as the steepest descent method of neuro technology. The membership functions and inference rules stored in the antecedent part membership function storage means 19, the rotating brush rotation speed inference rule storage means 31, and the rotating brush rotation speed membership function storage means 32 included in the neuro-fuzzy reasoner are From the data of the dust collection chamber dust amount, floor quality information, storage floor quality information, and the rotation speed data of the rotary brush 6 to be set in consideration of the operation feeling at the time of cleaning, the steepest descent method (used for neural network in advance One of the learning rules, which is a method of minimizing the error function) and is optimally set by the learning rule.
【0026】回転ブラシ6の回転数の決定は上記吸い込
み力の決定の過程と同様に前件部の結論を算出し、回転
ブラシ回転数推論ルール記憶手段31と回転ブラシ回転
数メンバーシップ関数記憶手段32とから回転ブラシ6
の回転数を決定する。位相制御手段18、30では、決
定された入力および回転ブラシの回転数に基づき、電動
送風機2および回転ブラシ6の位相制御量を算出し制御
を行う。The rotation speed of the rotary brush 6 is determined by calculating the conclusion of the antecedent part in the same manner as the suction force determination process, and the rotary brush rotation speed inference rule storage means 31 and the rotary brush rotation speed membership function storage means are shown. 32 and rotating brush 6
Determines the rotation speed of. The phase control means 18 and 30 calculate and control the phase control amounts of the electric blower 2 and the rotary brush 6 based on the determined input and the rotational speed of the rotary brush.
【0027】なお、本実施例では推論方法の中にMAX
−MIN合成法、重心法を用いているがその他の方法で
も可能であり、また後件部である吸い込み力をメンバー
シップ関数で表現したが、実数値や線形式でも表現する
ことができることはいうまでもない。In this embodiment, MAX is included in the inference methods.
-Although the MIN composition method and the center of gravity method are used, other methods are also possible, and the suction force, which is the consequent part, was expressed by a membership function, but it can be expressed by a real value or linear form. There is no end.
【0028】[0028]
【発明の効果】以上の実施例から明かなように本発明に
よれば、吸引のための電動送風機と、掃除機本体内の圧
力を検知する圧力センサと、前記圧力センサのアナログ
出力をデジタル信号に変換するA/D変換手段と、前記
A/D変換手段からのデジタル量を単位時間内で平均し
圧力絶対値を演算する圧力絶対値検出手段と、前記A/
D変換手段からのデジタル量の単位時間内での変化量を
平均し圧力変化量を得る圧力変化量検出手段と、電源オ
フ時でも記憶可能な記憶手段と、前記電動送風機の入力
を決定するファジィ推論器とを備え、前記ファジィ推論
器は、前記記憶手段に記憶された圧力絶対値と圧力変化
量の両情報から集塵室内のごみ量と床質とを掃除機の使
用環境に合わせて間接的に逐次学習し、前記電動送風機
の入力を決定するようにしたから、圧力絶対値(集塵室
内の塵挨量)と変化量(床面情報)と記憶した床質情報
から、ファジィ推論によってきめ細かく、しかも最適な
吸い込み力を決定できるので、掃除を行う床面によらず
効率よくごみがとれ、しかも非常に操作感がよく、使い
勝手を向上できる。As is apparent from the above embodiments, according to the present invention, an electric blower for suction, a pressure sensor for detecting the pressure inside the cleaner body, and an analog output of the pressure sensor as a digital signal. A / D conversion means for converting to A / D conversion means, pressure absolute value detection means for averaging digital amounts from the A / D conversion means within a unit time to calculate a pressure absolute value, and A / D conversion means
Pressure change amount detection means for averaging the change amount of the digital amount from the D conversion means within a unit time to obtain the pressure change amount, storage means capable of storing even when the power is off, and fuzzy for determining the input of the electric blower. The fuzzy inference unit indirectly determines the amount of dust in the dust collection chamber and the floor quality in accordance with the environment in which the vacuum cleaner is used, based on both the information of the absolute pressure value and the amount of pressure change stored in the storage means. Since the input of the electric blower is determined sequentially, the absolute value of pressure (amount of dust in the dust collection chamber) and the amount of change (floor surface information) and the stored floor quality information are used for fuzzy inference. Since you can finely determine the optimum suction force, you can efficiently remove dust regardless of the floor surface you are cleaning, and the operation feel is very good, improving usability.
【0029】また、電動送風機に加えて、床用吸い込み
具内に回転ブラシを備え、ファジィ推論器により前記回
転ブラシの回転数を決定するようにしたから、ファジィ
推論によってきめ細かく回転ブラシの回転数を決定で
き。In addition to the electric blower, a rotary brush is provided in the floor suction tool, and the number of rotations of the rotary brush is determined by a fuzzy reasoner, so that the number of rotations of the rotary brush can be finely determined by fuzzy inference. I can decide.
【0030】さらに、ファジィ推論器は、ニュ−ロ技術
の最急降下法などの学習則によりファジィ推論の各種パ
ラメータを最適化し、各種パラメータとして、前件部メ
ンバーシップ関数と後件部メンバーシップ関数の形状、
推論ルール数を最適化したから、ファジィ推論における
入力と出力の数が増えると、人間ではそれらの間の推論
ルールやその構成を最適化するのが難しくなるが、結果
として、ファジィ推論によってきめ細かくしかも最適な
吸い込み力と回転ブラシの回転数を決定でき、また、掃
除機を使用する環境(床質の特異性)により吸い込み力
や回転ブラシの回転数が学習機能により、どんどん最適
化されてゆき、使い勝手を向上できる。Further, the fuzzy reasoner optimizes various parameters of fuzzy inference by a learning rule such as the steepest descent method of the neuro technique, and uses the antecedent part membership function and the consequent part membership function as various parameters. shape,
Since the number of inference rules is optimized, it becomes difficult for human beings to optimize the inference rules and their composition when the number of inputs and outputs in fuzzy inference increases, but as a result, fuzzy inference makes fine and detailed adjustments possible. The optimum suction force and rotation speed of the rotating brush can be determined, and the suction function and rotation speed of the rotating brush are optimized more and more by the learning function depending on the environment in which the vacuum cleaner is used (uniqueness of the floor quality). The usability can be improved.
【図1】本発明の一実施例の電気掃除機の制御装置のブ
ロック図FIG. 1 is a block diagram of a controller for an electric vacuum cleaner according to an embodiment of the present invention.
【図2】同制御装置を備えた電気掃除機の断面図FIG. 2 is a cross-sectional view of an electric vacuum cleaner including the control device.
【図3】同電気掃除機の制御装置のファジィ推論器のブ
ロック図FIG. 3 is a block diagram of a fuzzy reasoner of the control device of the electric vacuum cleaner.
【図4】同電気掃除機の制御装置の圧力センサの圧力変
化を示す図FIG. 4 is a view showing a pressure change of a pressure sensor of the control device of the electric vacuum cleaner.
【図5】(a)〜(c) 同電気掃除機の制御装置のファジィ
推論器のメンバーシップ関数を示す図5A to 5C are diagrams showing membership functions of a fuzzy reasoner of the control device of the electric vacuum cleaner.
【図6】本発明の他の実施例の電気掃除機の制御装置の
ブロック図FIG. 6 is a block diagram of a control device for a vacuum cleaner according to another embodiment of the present invention.
【図7】同電気掃除機の制御装置のファジィ推論器のブ
ロック図FIG. 7 is a block diagram of a fuzzy reasoner of the controller of the electric vacuum cleaner.
【図8】従来の電気掃除機の斜視図FIG. 8 is a perspective view of a conventional vacuum cleaner.
1 掃除機本体 2 電動送風機 9 圧力センサ 10 集塵室 12 A/D変換手段 14 圧力絶対値検出手段 15 圧力変化量検出手段 16 ファジィ推論器 17 記憶手段 DESCRIPTION OF SYMBOLS 1 Vacuum cleaner main body 2 Electric blower 9 Pressure sensor 10 Dust collection chamber 12 A / D conversion means 14 Absolute pressure value detection means 15 Pressure change amount detection means 16 Fuzzy reasoner 17 Storage means
Claims (3)
内の圧力を検知する圧力センサと、前記圧力センサのア
ナログ出力をデジタル信号に変換するA/D変換手段
と、前記A/D変換手段からのデジタル量を単位時間内
で平均し圧力絶対値を演算する圧力絶対値検出手段と、
前記A/D変換手段からのデジタル量の単位時間内での
変化量を平均し圧力変化量を得る圧力変化量検出手段
と、電源オフ時でも記憶可能な記憶手段と、前記電動送
風機の入力を決定するファジィ推論器とを備え、前記フ
ァジィ推論器は、前記記憶手段に記憶された圧力絶対値
と圧力変化量の両情報から集塵室内のごみ量と床質とを
掃除機の使用環境に合わせて間接的に逐次学習し、前記
電動送風機の入力を決定するようにした電気掃除機の制
御装置。1. An electric blower for suction, a pressure sensor for detecting the pressure inside the cleaner body, A / D conversion means for converting an analog output of the pressure sensor into a digital signal, and the A / D conversion. A pressure absolute value detecting means for averaging the digital amount from the means within a unit time to calculate the pressure absolute value,
A pressure change amount detecting means for averaging a change amount of the digital amount from the A / D converting means in a unit time to obtain a pressure change amount, a storage means capable of storing even when the power is off, and an input of the electric blower And a fuzzy inference device for determining the amount of dust in the dust collection chamber and the floor quality from the information of both the absolute pressure value and the pressure change amount stored in the storage means to the environment in which the vacuum cleaner is used. A control device for an electric vacuum cleaner that is configured to indirectly learn sequentially and determine an input of the electric blower.
回転ブラシを備え、ファジィ推論器により前記回転ブラ
シの回転数を決定するようにした請求項1記載の電気掃
除機の制御装置。2. The control device for the electric vacuum cleaner according to claim 1, wherein a rotary brush is provided in the floor suction tool in addition to the electric blower, and the number of rotations of the rotary brush is determined by a fuzzy reasoner.
降下法などの学習則によりファジィ推論の各種パラメー
タを最適化し、各種パラメータとして、前件部メンバー
シップ関数と後件部メンバーシップ関数の形状、推論ル
ール数を最適化した請求項1または2記載の電気掃除機
の制御装置。3. A fuzzy reasoner optimizes various parameters of fuzzy inference by a learning rule such as the steepest descent method of neuro technology, and uses the membership functions of the antecedent part and the consequent part as various parameters. The control device for the electric vacuum cleaner according to claim 1, wherein the shape and the number of inference rules are optimized.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3257538A JP3042078B2 (en) | 1991-10-04 | 1991-10-04 | Electric vacuum cleaner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3257538A JP3042078B2 (en) | 1991-10-04 | 1991-10-04 | Electric vacuum cleaner |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0595878A true JPH0595878A (en) | 1993-04-20 |
JP3042078B2 JP3042078B2 (en) | 2000-05-15 |
Family
ID=17307678
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3257538A Expired - Fee Related JP3042078B2 (en) | 1991-10-04 | 1991-10-04 | Electric vacuum cleaner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3042078B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0636340A1 (en) * | 1993-07-28 | 1995-02-01 | Laboratoires D'electronique Philips S.A.S. | Suction cleaner having floor nature detecting means |
EP0636341A1 (en) * | 1993-07-28 | 1995-02-01 | Laboratoires D'electronique Philips S.A.S. | Suction cleaner having floor nature detecting means accordingly regulating motor power |
US5839368A (en) * | 1996-11-06 | 1998-11-24 | Riso Kagaku Corporation | Ink supply source device for printers by collapsible ink container encased in reinforcing case with disk handle having press claws |
US5960993A (en) * | 1997-02-10 | 1999-10-05 | Riso Kagaku Corporation | Container for fluidal materials readily collapsible to flattened shape after use |
US5979326A (en) * | 1996-09-09 | 1999-11-09 | Riso Kagaku Corporation | Collapsible ink container having disk shaped handle and ink supply source device encasing the container for printers |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110863461A (en) * | 2019-11-22 | 2020-03-06 | 张思祺 | Intelligent cleaning robot |
-
1991
- 1991-10-04 JP JP3257538A patent/JP3042078B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0636340A1 (en) * | 1993-07-28 | 1995-02-01 | Laboratoires D'electronique Philips S.A.S. | Suction cleaner having floor nature detecting means |
EP0636341A1 (en) * | 1993-07-28 | 1995-02-01 | Laboratoires D'electronique Philips S.A.S. | Suction cleaner having floor nature detecting means accordingly regulating motor power |
FR2708188A1 (en) * | 1993-07-28 | 1995-02-03 | Philips Laboratoire Electroniq | Vacuum cleaner with means of soil detection and adjustment of the engine power according to the detected soil. |
US5979326A (en) * | 1996-09-09 | 1999-11-09 | Riso Kagaku Corporation | Collapsible ink container having disk shaped handle and ink supply source device encasing the container for printers |
US5839368A (en) * | 1996-11-06 | 1998-11-24 | Riso Kagaku Corporation | Ink supply source device for printers by collapsible ink container encased in reinforcing case with disk handle having press claws |
US5960993A (en) * | 1997-02-10 | 1999-10-05 | Riso Kagaku Corporation | Container for fluidal materials readily collapsible to flattened shape after use |
Also Published As
Publication number | Publication date |
---|---|
JP3042078B2 (en) | 2000-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4542628B2 (en) | Vacuum cleaner with output control depending on operating mode of electric brush | |
JPH0759698A (en) | Cleaner | |
EP0527567B1 (en) | A method of controlling a controlled object, and a control system for such a method | |
JPH0595878A (en) | Control device for vacuum cleaner | |
JP3198553B2 (en) | Electric vacuum cleaner | |
US5748853A (en) | Vacuum cleaner with fuzzy logic control unit | |
JP2020151010A (en) | Vacuum cleaner | |
JPH0595881A (en) | Control device of vacuum cleaner | |
JP3003240B2 (en) | Electric vacuum cleaner | |
JP2897405B2 (en) | Vacuum cleaner | |
JP2737410B2 (en) | Vacuum cleaner | |
JPH05245080A (en) | Vacuum cleaner | |
JPH0759697A (en) | Vacuum cleaner | |
JP3003253B2 (en) | Electric vacuum cleaner | |
JP3003251B2 (en) | Electric vacuum cleaner | |
JP3136659B2 (en) | air purifier | |
JPH0824654B2 (en) | Electric vacuum cleaner | |
JPH05199967A (en) | Vacuum cleaner | |
JP2778271B2 (en) | Vacuum cleaner | |
JPH04309319A (en) | Cleaner | |
JPH05211966A (en) | Vacuum cleaner | |
JPH05130962A (en) | Vacuum-cleaner | |
JP3049878B2 (en) | Electric vacuum cleaner | |
JP3004793B2 (en) | Electric vacuum cleaner | |
JPH04259433A (en) | Cleaner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |