JPH0595133A - End-face light-emitting diode and manufacturing method thereof - Google Patents
End-face light-emitting diode and manufacturing method thereofInfo
- Publication number
- JPH0595133A JPH0595133A JP25340391A JP25340391A JPH0595133A JP H0595133 A JPH0595133 A JP H0595133A JP 25340391 A JP25340391 A JP 25340391A JP 25340391 A JP25340391 A JP 25340391A JP H0595133 A JPH0595133 A JP H0595133A
- Authority
- JP
- Japan
- Prior art keywords
- light
- active layer
- region
- light emitting
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 8
- 230000003287 optical effect Effects 0.000 claims description 9
- 230000000903 blocking effect Effects 0.000 abstract description 5
- 230000000694 effects Effects 0.000 abstract 1
- 230000003321 amplification Effects 0.000 description 25
- 238000003199 nucleic acid amplification method Methods 0.000 description 25
- 238000002347 injection Methods 0.000 description 21
- 239000007924 injection Substances 0.000 description 21
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 14
- 238000000034 method Methods 0.000 description 6
- 230000002238 attenuated effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 238000005253 cladding Methods 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
Landscapes
- Led Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、ファイバを用いた光通
信の光源に用いる端面発光ダイオードおよびその製造方
法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an edge emitting diode used as a light source for optical communication using a fiber and a method for manufacturing the same.
【0002】[0002]
【従来の技術】ファイバを用いた光通信光源として半導
体レーザや発光ダイオードが使用されている。近年、フ
ァイバとの結合性では半導体レーザと同等であり、一方
で半導体レーザのようには戻り光の影響を受けないなど
使い易い端面発光型の発光ダイオードが光源として使用
されるようになってきた。2. Description of the Related Art Semiconductor lasers and light emitting diodes are used as optical communication light sources using fibers. In recent years, edge-emitting type light emitting diodes, which are similar to semiconductor lasers in terms of coupling with fibers, but are not affected by return light like semiconductor lasers, have come to be used as light sources. ..
【0003】以下に従来の端面発光ダイオードについて
説明する。図8および図9は従来の端面発光ダイオード
の光出射面中心の側断面図および光出射面の正面図(反
射防止膜を除く)である。p型GaAs基板1上に、電
流を部分的にだけ流すためのn型GaAs電流ブロック
層2があり、p型GaAlAsクラッド層3,p型Ga
As活性層4,n型GaAlAsクラッド層5によりダ
ブルヘテロ構造を形成し、さらにその上にn型GaAs
コンタクト層6がある。そして上下にn側電極7,p側
電極8がある。主たる光出射面10および後方面11に
は反射防止膜9がついている。後方面11側に電流ブロ
ック層2を残して電流非注入領域13とし、光出射面側
を電流注入領域12としている。A conventional edge emitting diode will be described below. FIG. 8 and FIG. 9 are a side sectional view of the center of the light emitting surface and a front view of the light emitting surface (excluding the antireflection film) of the conventional edge emitting diode. On the p-type GaAs substrate 1, there is an n-type GaAs current blocking layer 2 for flowing a current only partially, a p-type GaAlAs cladding layer 3 and a p-type Ga.
A double heterostructure is formed by the As active layer 4 and the n-type GaAlAs clad layer 5, and n-type GaAs is further formed thereon.
There is a contact layer 6. There are an n-side electrode 7 and a p-side electrode 8 above and below. An antireflection film 9 is attached to the main light emitting surface 10 and the rear surface 11. The current blocking layer 2 is left on the rear surface 11 side to form a current non-injection area 13, and the light emitting surface side is a current injection area 12.
【0004】上記構造の端面発光ダイオードに電流を流
すと、電流注入領域12の活性層で発光する。電流注入
領域12で発光した光のうち、光出射面10方向に向か
う光は誘導放出光を発生させて光を指数的に増幅しなが
ら、光出射面10から出射する。一方、後方面11側に
向かった光は、電流注入領域12では誘導放出光を発生
させて増幅していくが、電流非注入領域13で吸収され
減衰する。したがって上記構造では後方からの光反射が
ないのでレーザ発振が抑えられる。図10は、この増幅
および減衰の様子を示したものである。When a current is applied to the edge emitting diode having the above structure, light is emitted in the active layer of the current injection region 12. Of the light emitted from the current injection region 12, the light traveling toward the light emitting surface 10 is emitted from the light emitting surface 10 while generating stimulated emission light and exponentially amplifying the light. On the other hand, the light traveling toward the rear surface 11 side generates stimulated emission light in the current injection region 12 to be amplified, but is absorbed and attenuated in the current non-injection region 13. Therefore, in the above structure, since there is no reflection of light from the rear, laser oscillation can be suppressed. FIG. 10 shows the states of this amplification and attenuation.
【0005】[0005]
【発明が解決しようとする課題】このような従来の端面
発光ダイオードでは、電流注入領域12での光増幅が等
方的であり、光出射面に向かう光も後方面に向かう光も
同じ増幅度で増幅される。したがって、光出射面からの
出射パワー(発光出力)と同程度の光パワーが電流非注
入領域13で吸収されることになる。さらに光出射端面
10でわずかでも光反射がある場合には端面での反射光
も同様に増幅されて後方に伝搬されるため、利用できな
い後方向への光パワーは大きくなり、結果的に光出射面
から出射される光の発光効率は大きく低下してしまう。
以上のように、従来の端面発光ダイオードでは、原理的
に後方向への光パワーの方が大きくなり、光出射面から
の発光出力は小さくなるという欠点を有していた。In such a conventional end face light emitting diode, the light amplification in the current injection region 12 is isotropic, and the light toward the light emitting surface and the light toward the rear surface have the same amplification degree. Is amplified by. Therefore, the optical power equivalent to the emission power (light emission output) from the light emission surface is absorbed in the current non-injection region 13. Furthermore, if there is even a slight amount of light reflection at the light emitting end face 10, the reflected light at the end face is also amplified and propagates backward, so that the unusable backward optical power becomes large, and as a result, the light is emitted. The luminous efficiency of the light emitted from the surface is greatly reduced.
As described above, the conventional edge emitting diode has a drawback that the light power in the backward direction is larger in principle and the light emission output from the light emitting surface is smaller.
【0006】本発明は上記課題を解決するもので、発光
出力の高い端面発光ダイオードおよびその製造方法を提
供することを目的としている。The present invention has been made to solve the above problems, and an object of the present invention is to provide an edge emitting diode having a high light emission output and a method for manufacturing the same.
【0007】[0007]
【課題を解決するための手段】この目的を達成するため
に本発明の端面発光ダイオードは、電流注入領域のうち
光出射面側の活性層の後方に、その光出射面側の活性層
の厚みよりも厚い活性層領域を有する構造よりなり、そ
の活性層の厚い領域と薄い領域を形成するために、光を
導波する領域に幅の異なる溝を導波方向に形成し、その
上のクラッド層を、溝幅の狭い部分では平坦に埋め込
み、溝幅の広い部分では湾曲させて成長させ、さらにそ
の上の活性層を溝幅の広い部分では湾曲して厚く成長さ
せることで実現した。In order to achieve this object, the edge emitting diode of the present invention has a thickness of the active layer on the light emitting surface side behind the active layer on the light emitting surface side in the current injection region. In order to form a thick region and a thin region of the active layer, a groove having a different width is formed in the light guiding region in the waveguiding direction, and the clad on it is formed. The layer was realized by flatly embedding it in a narrow groove portion, curving it in a wide groove portion, and growing it, and then growing an active layer in a thick groove in a wide groove portion.
【0008】[0008]
【作用】上記構成により、活性層の厚い部分では発光し
た光を活性層に閉じ込める割合が高い。一方、活性層の
薄い部分は注入キャリア密度が高くなるため、利得すな
わち光増幅度が大きい。これを利用して、光出射面側の
活性層の薄い領域では光増幅を行ない、その後方側の活
性層の厚い領域では活性層内に光を閉じ込めておき光増
幅領域に光を供給する。このことにより、光出射面に向
かう光と後方面に向かう光の増幅のされ方が変わり、光
出射面に向かう光の増幅の方が大きくなる。このように
電流注入領域を活性層の薄い光増幅領域と活性層の厚い
光供給領域とで構成することにより発光出力を向上させ
ることができる。With the above structure, the emitted light is highly confined in the active layer in the thick portion of the active layer. On the other hand, since the injected carrier density is high in the thin portion of the active layer, the gain, that is, the optical amplification degree is large. Utilizing this, light amplification is performed in the thin region of the active layer on the light emission surface side, and light is confined in the active layer in the thick region of the active layer on the rear side to supply light to the light amplification region. As a result, the manner of amplification of the light traveling toward the light emitting surface and the manner of amplification of the light traveling toward the rear surface are changed, and the amplification of the light traveling toward the light emitting surface becomes greater. As described above, by forming the current injection region with the light amplification region having the thin active layer and the light supply region having the thick active layer, the light emission output can be improved.
【0009】一方、活性層は湾曲している部分ではその
窪みを埋め込もうとして平坦な部分よりも厚く成長す
る。従って部分的に厚さの異なる活性層を成長すること
ができる。On the other hand, the active layer grows thicker in the curved portion than in the flat portion in order to fill the recess. Therefore, active layers having different thicknesses can be partially grown.
【0010】[0010]
【実施例】以下、本発明の一実施例について図1から図
7を参照しながら説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.
【0011】図1,図2および図3は本発明の一実施例
における端面発光ダイオードの光出射面中心の側断面
図、光出射面の正面図(反射防止膜を除く)および光出
射面に平行な断面図である。p型GaAs基板1上に、
電流を部分的にだけ流すためのn型GaAs電流ブロッ
ク層2Aがあり、p型GaAlAsクラッド層3A,p
型GaAs活性層4A,n型GaAlAsクラッド層5
によりダブルヘテロ構造を形成し、さらにその上にn型
GaAsコンタクト層6を設けた。そして上下にn側電
極7,p側電極8を形成している。主たる光出射面10
および後方面11には反射防止膜9をつけている。図2
の光出射面の正面図は従来と同様であるが、図1の側断
面図、図3の光出射面に平行な断面図が異なる。1, FIG. 2 and FIG. 3 are a side sectional view of a light emitting surface center of an end face light emitting diode according to an embodiment of the present invention, a front view of the light emitting surface (excluding an antireflection film) and a light emitting surface. It is a parallel sectional view. On the p-type GaAs substrate 1,
There is an n-type GaAs current blocking layer 2A for flowing a current only partially, and p-type GaAlAs cladding layers 3A, p
-Type GaAs active layer 4A, n-type GaAlAs clad layer 5
To form a double hetero structure, and an n-type GaAs contact layer 6 was further provided thereon. Then, an n-side electrode 7 and a p-side electrode 8 are formed vertically. Main light emitting surface 10
An antireflection film 9 is attached to the rear surface 11. Figure 2
Although the front view of the light emitting surface is similar to the conventional one, the side sectional view of FIG. 1 and the sectional view parallel to the light emitting surface of FIG. 3 are different.
【0012】この構造の製造方法を順を追って説明す
る。まず、図4(a)に示すようにp型GaAs基板1
上に液相エピタキシャル成長法によりn型GaAsブロ
ック層2Aを厚さ0.8μm成長した後、このn型Ga
Asブロック層2Aをリン酸と過酸化水素の混合液を用
い、図5の斜線で示す形状部分を残して除去し深さ1.
2μmの溝を形成した。この溝の形状は、素子の長さL
=350μmのうち、溝幅の狭い部分が溝幅W1=4μ
mで、長さL1=200μmであり、溝幅の広い部分が
溝幅W2=10μmで、長さL2=50μmとした。こ
の時のB−B′,C−C′の断面図が図4(a)であ
る。次いで、図4(b)に示すようにp型GaAlAs
3Aをn型ブロック層2Aの上でd31=0.25μm
となるように成長した。この時図に示すように、溝幅W
1=4μmの部分では溝を平坦に埋め込むが、溝幅W2
=10μmの部分では湾曲した形状になった。このよう
に溝の埋め込み速度は溝幅に依存している。さらに、図
4(c)に示すようにp型GaAs活性層4Aを平坦な
場所でd41=0.08μmとなるように成長した。そ
うすると図に示すように、湾曲している部分ではこの窪
みを埋めようと成長するので、平坦な場所よりも厚く成
長しC−C′断面では湾曲した活性層となり、最も厚い
部分でd42=0.3μmとなった。このようにして、
活性層の厚さが異なる領域を同時に形成した。その後、
n型GaAlAsクラッド層5を2.0μm、n型Ga
Asコンタクト層6を3.5μm成長し、n側電極7お
よびp側電極8を形成した。このときのB−B′の断面
構造は光出射面の正面図と同じで図2であり、C−C′
の断面図が図3である。さらに光出射面および後方面に
反射防止膜を形成した。A method of manufacturing this structure will be described step by step. First, as shown in FIG. 4A, the p-type GaAs substrate 1
After growing the n-type GaAs block layer 2A on the upper surface by a liquid phase epitaxial growth method to a thickness of 0.8 μm, this n-type Ga is formed.
The As block layer 2A was removed by using a mixed solution of phosphoric acid and hydrogen peroxide, leaving a shape portion shown by diagonal lines in FIG.
A 2 μm groove was formed. The shape of this groove is the length L of the element.
= 350 μm, the narrow groove width is the groove width W1 = 4 μm
m, the length L1 = 200 μm, the wide groove portion has a groove width W2 = 10 μm, and the length L2 = 50 μm. FIG. 4A is a sectional view of BB 'and CC' at this time. Then, as shown in FIG. 4B, p-type GaAlAs
3A on the n-type block layer 2A d31 = 0.25 μm
Has grown to become. At this time, as shown in the figure, the groove width W
The groove is flatly embedded in the area of 1 = 4 μm, but the groove width W2
= 10 μm, the shape became curved. As described above, the filling speed of the groove depends on the groove width. Further, as shown in FIG. 4C, a p-type GaAs active layer 4A was grown so that d41 = 0.08 μm in a flat place. Then, as shown in the figure, the curved portion grows to fill this recess, so that it grows thicker than the flat portion and becomes a curved active layer in the CC ′ cross section, and d42 = 0 at the thickest portion. It became 0.3 μm. In this way
Regions having different active layer thicknesses were simultaneously formed. afterwards,
The n-type GaAlAs clad layer 5 has a thickness of 2.0 μm, and n-type Ga
An As contact layer 6 was grown to a thickness of 3.5 μm to form an n-side electrode 7 and a p-side electrode 8. The cross-sectional structure of BB 'at this time is the same as the front view of the light emitting surface and is shown in FIG.
3 is a sectional view of FIG. Further, an antireflection film was formed on the light emitting surface and the rear surface.
【0013】このようにして作製した端面発光ダイオー
ドの側断面図が図1である。電流注入領域12のうち光
出射面10側に活性層の薄い領域14を、その後方に活
性層の厚い領域15を配置した。FIG. 1 is a side sectional view of the edge-emitting LED thus manufactured. In the current injection region 12, a thin region 14 of the active layer is arranged on the light emitting surface 10 side, and a thick region 15 of the active layer is arranged behind it.
【0014】以上のような構成の端面発光ダイオードに
ついて、以下にその動作を説明する。The operation of the edge emitting diode having the above structure will be described below.
【0015】まず、電流注入領域12のうち活性層の薄
い領域は光増幅領域である。活性層が薄いと、注入キャ
リア密度が上がり、光増幅度が上がる。したがって発光
した光が光出射面方向に進むうちに光が増幅される。First, a region of the current injection region 12 where the active layer is thin is a light amplification region. When the active layer is thin, the injected carrier density is increased and the optical amplification is increased. Therefore, the light is amplified as the emitted light travels in the direction of the light exit surface.
【0016】一方、活性層の厚い領域は光増幅領域への
光供給領域である。活性層とクラッド層との屈折率差が
8.4%であるとすると、活性層での光の閉じ込め率は
厚さ0.08μmでは28%であるのに対し、厚さ0.
3μmでは85%と約3倍であり、活性層の厚い方が光
を活性層に閉じ込めることができる。活性層の厚い領域
を光増幅領域より後方に配置することにより、この領域
で発光した光を効率よく活性層に閉じ込め、閉じ込めた
光を光増幅領域に供給する役割を果たす。On the other hand, the thick region of the active layer is the light supply region to the light amplification region. Assuming that the difference in refractive index between the active layer and the cladding layer is 8.4%, the light confinement ratio in the active layer is 28% at a thickness of 0.08 μm, while the light confinement ratio is 0.8%.
When the thickness is 3 μm, it is 85%, which is about three times, and the thicker the active layer is, the light can be confined in the active layer. By arranging the thick region of the active layer behind the light amplification region, the light emitted in this region is efficiently confined in the active layer and the confined light is supplied to the light amplification region.
【0017】図6は本発明の端面発光ダイオードの活性
層での光増幅の様子を従来構造の場合と比較して示した
ものである。実線16が本発明の端面発光ダイオードの
活性層での光増幅の様子を示している。破線17は従来
構造の活性層での光増幅の様子を示したものであり、図
10と同一である。活性層の厚い領域15では活性層の
薄い領域14より、注入キャリア密度が下がるので増幅
度が小さくなるが、光をより閉じ込めるので光増幅の種
となる光が多い。電流注入領域12の電流非注入領域1
3との境界付近から光出射面方向に向かう光は、活性層
の厚い領域15では増幅度は小さいが、光増幅の種とな
る光が多いので、導波する光強度は従来構造での場合に
比べ大きい。すなわち、活性層の薄い領域14に供給す
る光を従来構造より多くすることができる。そして活性
層の薄い領域14では活性層の厚い領域15に比べ増幅
度が大きくなり光出射面に達する。一方、光出射面付近
から後方面方向に向かう光は活性層の薄い領域14では
従来構造での場合と同様に増幅されていくが、活性層の
厚い領域15では増幅度が小さくなる。そして電流非注
入領域13では吸収され減衰する。このようにして、電
流注入領域12で光出射面に向かう光の増幅の方が後方
向に向かう光の増幅よりも大きくなる。FIG. 6 shows the state of light amplification in the active layer of the edge emitting diode of the present invention in comparison with the conventional structure. A solid line 16 shows how light is amplified in the active layer of the edge emitting diode of the present invention. The broken line 17 shows the state of optical amplification in the active layer of the conventional structure, which is the same as FIG. In the region 15 where the active layer is thick, the injection carrier density is lower than that in the region 14 where the active layer is thin, so that the amplification degree is small, but more light is trapped and more light becomes a seed for optical amplification. Current non-injection region 1 of current injection region 12
The light traveling from the vicinity of the boundary with the direction 3 toward the light emitting surface has a small amplification degree in the thick region 15 of the active layer, but there is a large amount of light that becomes a seed of light amplification, so the intensity of the guided light is the same as in the conventional structure. Greater than That is, more light can be supplied to the thin region 14 of the active layer than in the conventional structure. Then, in the region 14 where the active layer is thin, the amplification degree is larger than that in the region 15 where the active layer is thick and reaches the light emitting surface. On the other hand, the light traveling from the vicinity of the light emitting surface toward the rear surface is amplified in the region 14 where the active layer is thin as in the conventional structure, but the amplification degree becomes small in the region 15 where the active layer is thick. Then, it is absorbed and attenuated in the current non-injection region 13. In this way, in the current injection region 12, the amplification of the light traveling toward the light emitting surface becomes larger than the amplification of the light traveling toward the rear direction.
【0018】図7に本発明の一実施例の端面発光ダイオ
ードと従来の端面発光ダイオードの電流対発光出力特性
を示す。実線18が本発明の一実施例の端面発光ダイオ
ードの電流対発光出力特性であり、破線19が従来の端
面発光ダイオードの電流対発光出力特性である。図7で
明らかなように、本発明の一実施例の端面発光ダイオー
ドの方が発光出力が大きい。FIG. 7 shows current vs. light emission output characteristics of the edge emitting diode according to one embodiment of the present invention and the conventional edge emitting LED. A solid line 18 represents the current-to-light-emission output characteristic of the edge emitting LED according to the embodiment of the present invention, and a broken line 19 represents the current-to-emission output characteristic of the conventional edge-emitting LED. As is apparent from FIG. 7, the end face light emitting diode of one embodiment of the present invention has a larger light emission output.
【0019】以上のように、光の出射面方向に対して、
光出射面側の活性層の後方に光出射面側よりも活性層が
厚い領域を配置することにより、発光出力を高めること
ができる。また、溝の幅を変え、溝の埋め込み速度が溝
幅に依存することを利用して、領域的に厚さの異なる活
性層を同時に形成することができる。As described above, with respect to the light emission surface direction,
By arranging a region where the active layer is thicker than the light emitting surface side behind the active layer on the light emitting surface side, the light emission output can be increased. Further, it is possible to simultaneously form active layers having different thicknesses by utilizing that the width of the groove is changed and the filling speed of the groove depends on the width of the groove.
【0020】[0020]
【発明の効果】以上のように本発明は、光の出射面方向
に対して、光出射面側の活性層の後方に光出射面側より
も活性層が厚い領域を配置することにより、発光出力の
高い端面発光ダイオードを提供できる。また、電流ブロ
ック層を除去して形成する溝の幅を変え、その上に成長
させるクラッド層が溝幅の狭い部分を平坦に埋め込み、
溝幅の広い部分では湾曲しているようにすると、さらに
その上に成長する活性層が、溝の広い部分では湾曲して
他の部分より厚く成長するため活性層の厚さを領域的に
変えることにより、領域的に厚さの異なる活性層を同時
に形成する端面発光ダイオードの製造方法を提供でき
る。As described above, according to the present invention, the region where the active layer is thicker than the light emitting surface side is disposed behind the active layer on the light emitting surface side with respect to the light emitting surface direction. It is possible to provide an edge emitting diode with high output. Further, the width of the groove formed by removing the current block layer is changed, and the clad layer grown on the groove blocks the narrow groove width to be flat.
If it is curved in the wide groove portion, the active layer further growing on it will be curved in the wide groove portion and grow thicker than other portions, so that the thickness of the active layer is locally changed. As a result, it is possible to provide a method for manufacturing an edge-emitting diode in which active layers having different thicknesses are locally formed simultaneously.
【図1】本発明の一実施例の端面発光ダイオードの側断
面図FIG. 1 is a side sectional view of an end face light emitting diode according to an embodiment of the present invention.
【図2】図1の端面発光ダイオード(反射防止膜を除
く)の光出射面の正面図FIG. 2 is a front view of a light emitting surface of the edge emitting diode (excluding an antireflection film) of FIG.
【図3】図2の正面図に平行な活性層の厚みが厚い部分
の断面図FIG. 3 is a cross-sectional view of a portion where the thickness of the active layer is parallel to the front view of FIG.
【図4】本発明の一実施例の端面発光ダイオードの製造
方法を示す工程断面図FIG. 4 is a process sectional view showing a method for manufacturing an edge-emitting LED according to an embodiment of the present invention.
【図5】図4の電流ブロッキング層2Aに溝を形成する
時のパターン図FIG. 5 is a pattern diagram when a groove is formed in the current blocking layer 2A of FIG.
【図6】図1の端面発光ダイオードの活性層での光の増
幅,減衰の様子を従来例と比較して示した図6 is a diagram showing how light is amplified and attenuated in the active layer of the edge emitting diode of FIG. 1 in comparison with a conventional example.
【図7】図1の端面発光ダイオードの電流対発光出力特
性を従来例と比較して示した図FIG. 7 is a diagram showing current vs. light emission output characteristics of the edge emitting diode of FIG. 1 in comparison with a conventional example.
【図8】従来の端面発光ダイオードの側断面図断面構造
図FIG. 8 is a side sectional view of a conventional edge emitting diode, and a sectional structural view.
【図9】図8の端面発光ダイオード(反射防止膜を除
く)の光出射面の正面図9 is a front view of the light emitting surface of the edge emitting diode (excluding the antireflection film) of FIG.
【図10】図9の端面発光ダイオードの活性層での光の
増幅および減衰の様子を示した図10 is a diagram showing how light is amplified and attenuated in the active layer of the edge-emitting diode shown in FIG.
1 p型GaAs基板 2A n型GaAsブロック層 3A p型GaAlAsクラッド層 4A p型GaAs活性層(活性層) 5 n型GaAlAsクラッド層 6 n型GaAsコンタクト層 7 n側電極 8 p側電極 9 反射防止膜 10 光出射面 11 後方面 12 電流注入領域 13 電流非注入領域 14 活性層の薄い電流注入領域 15 活性層の厚い電流注入領域 1 p-type GaAs substrate 2A n-type GaAs block layer 3A p-type GaAlAs clad layer 4A p-type GaAs active layer (active layer) 5 n-type GaAlAs clad layer 6 n-type GaAs contact layer 7 n-side electrode 8 p-side electrode 9 antireflection Film 10 Light emitting surface 11 Rear surface 12 Current injection region 13 Current non-injection region 14 Thin current injection region of active layer 15 Thick current injection region of active layer
Claims (2)
光出射面側の活性層の厚みよりも厚い活性層領域を少な
くとも有することを特徴とする端面発光ダイオード。1. An end face light emitting diode, which has at least an active layer region that is thicker than the thickness of the active layer on the light emitting surface side behind the active layer on the main light emitting surface side.
向に形成し、その上にクラッド層を溝幅の狭い部分は平
坦に、溝幅の広い部分は湾曲させて埋め込み、さらにそ
の上に活性層を溝の広い部分では湾曲して厚く活性層の
厚さを光導波方向で領域的に変えて成長させる工程を少
なくとも有することを特徴とする端面発光ダイオードの
製造方法。2. A groove having a different width is formed in a light guiding region in a waveguiding direction, and a clad layer is embedded thereon by flattening a narrow groove portion and curving a wide groove portion. Further, there is provided a method of manufacturing an end face light emitting diode, which further comprises at least a step of growing the active layer in such a manner that the active layer is curved in a wide portion of the groove to be thick and the thickness of the active layer is locally changed in an optical waveguide direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25340391A JPH0595133A (en) | 1991-10-01 | 1991-10-01 | End-face light-emitting diode and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25340391A JPH0595133A (en) | 1991-10-01 | 1991-10-01 | End-face light-emitting diode and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0595133A true JPH0595133A (en) | 1993-04-16 |
Family
ID=17250897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25340391A Pending JPH0595133A (en) | 1991-10-01 | 1991-10-01 | End-face light-emitting diode and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0595133A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9698167B2 (en) | 2014-07-15 | 2017-07-04 | Samsung Display Co., Ltd. | Film transistor array panel and manufacturing method thereof |
-
1991
- 1991-10-01 JP JP25340391A patent/JPH0595133A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9698167B2 (en) | 2014-07-15 | 2017-07-04 | Samsung Display Co., Ltd. | Film transistor array panel and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4928285A (en) | Impurity-doped semiconductor laser device for single wavelength oscillation | |
JP3095545B2 (en) | Surface emitting semiconductor light emitting device and method of manufacturing the same | |
JP2007165689A (en) | Super luminescent diode | |
US6590918B1 (en) | Semiconductor laser device and method for producing the same | |
US5020067A (en) | Semiconductor laser device | |
JPS5940592A (en) | Semiconductor laser element | |
JP4447728B2 (en) | Semiconductor laser element | |
JP4646095B2 (en) | Semiconductor light emitting device, manufacturing method thereof, and optical information recording / reproducing device | |
JP2686306B2 (en) | Semiconductor laser device and manufacturing method thereof | |
JP4599700B2 (en) | Distributed feedback laser diode | |
JP2000269600A (en) | High power broadband light source and optical amplification device | |
JPH0314281A (en) | Self-alignment type semiconductor laser with window and manufacture thereof | |
JPH0595133A (en) | End-face light-emitting diode and manufacturing method thereof | |
JPH07240560A (en) | Semiconductor laser | |
JP2927661B2 (en) | Super luminescent diode element and method of manufacturing the same | |
KR100388823B1 (en) | Laser diode | |
JPH0671121B2 (en) | Semiconductor laser device | |
JPS62249496A (en) | semiconductor laser equipment | |
KR100278626B1 (en) | Semiconductor laser diode | |
JP2751699B2 (en) | Semiconductor laser | |
JPS6386581A (en) | Light emitting diode | |
KR100767699B1 (en) | Semiconductor laser diode and manufacturing method thereof | |
JPH05343791A (en) | Laser diode element | |
KR940005758B1 (en) | Semiconductor laser device | |
JP2003060309A (en) | Semiconductor laser |