[go: up one dir, main page]

JPH0591691A - Bearing structure for micromachine - Google Patents

Bearing structure for micromachine

Info

Publication number
JPH0591691A
JPH0591691A JP24813591A JP24813591A JPH0591691A JP H0591691 A JPH0591691 A JP H0591691A JP 24813591 A JP24813591 A JP 24813591A JP 24813591 A JP24813591 A JP 24813591A JP H0591691 A JPH0591691 A JP H0591691A
Authority
JP
Japan
Prior art keywords
shaft
hole
bearing
bearing structure
micromachine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24813591A
Other languages
Japanese (ja)
Inventor
Hiroshi Fujii
浩 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP24813591A priority Critical patent/JPH0591691A/en
Publication of JPH0591691A publication Critical patent/JPH0591691A/en
Pending legal-status Critical Current

Links

Landscapes

  • Motor Or Generator Frames (AREA)
  • Micromachines (AREA)

Abstract

(57)【要約】 【目的】超小型静電モータなどを対象に、簡易な構造で
摩擦を低く抑えて安定したモータ出力を取り出せるよう
にしたマイクロマシンの軸受構造を提供する。 【構成】軸受基台3に回転軸2の径寸法よりも径大な軸
貫通穴5を開口し、かつ前記軸貫通穴の周縁に分散配備
した突起6の間に細線4を張り巡らせてその中心部に多
角形状の環状軸支穴4aを形成するとともに、回転軸の
軸上に形成した周溝7を細線で形成した前記環状軸支穴
に嵌め込んで軸支する。
(57) [Abstract] [Purpose] To provide a bearing structure of a micromachine for a micro electrostatic motor and the like, which has a simple structure and can suppress friction to obtain a stable motor output. [Structure] A shaft through hole 5 having a diameter larger than that of a rotary shaft 2 is opened in a bearing base 3, and a thin wire 4 is stretched around projections 6 dispersedly arranged on the periphery of the shaft through hole. A polygonal annular shaft support hole 4a is formed in the center portion, and a circumferential groove 7 formed on the axis of the rotary shaft is fitted into the annular shaft support hole formed by a thin wire to support the shaft.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、直径が1ミリメートル
以下である超小型静電モータなどを実施対象としたマイ
クロマシンの軸受構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bearing structure for a micromachine intended for implementation of an ultra-small electrostatic motor having a diameter of 1 mm or less.

【0002】[0002]

【従来の技術】最近では、マイクロ・メカトロニクスの
分野に適用するモータとして、IC製造のマイクロ加工
技術を利用した超小型静電モータの研究,開発が進めら
れており、その概要が例えば静電気学会誌 第14巻
第3号(1990年)の特集解説「マイクロ静電モー
タ」(執筆者:藤田博之)などに紹介されている。
2. Description of the Related Art Recently, as a motor applied to the field of micro-mechatronics, research and development of a microminiature electrostatic motor utilizing microfabrication technology for IC manufacturing has been under way, and its outline is summarized in, for example, Journal of Japan Electrostatic Society. Volume 14
It is introduced in the special issue “Micro Electrostatic Motor” (Author: Hiroyuki Fujita) in Issue 3 (1990).

【0003】一方、小形モータに使用される軸受構造と
しては、従来より転がり軸受,すべり軸受,および空気
軸受などの各種軸受が知られており、前記超小型静電モ
ータの開発を進めるに当たって、これら軸受の採用が試
みられている。
On the other hand, various bearings such as rolling bearings, sliding bearings, and air bearings have been conventionally known as bearing structures used in small motors. Attempts have been made to adopt bearings.

【0004】[0004]

【発明が解決しようとする課題】ところで、直径1mm程
度の超小型モータを製作する上で解決しなければならな
い問題の一つに軸受摩擦の影響がある。すなわち、モー
タの発生トルクは、静電モータでは面積に、電磁モータ
では体積に比例することから、モータを小形化するに連
れて軸受部での摩擦力の影響がモータの出力特性に顕著
に現れる。かかる点、前記した転がり軸受は摩擦抵抗が
小さい利点がある反面、直径1mm以下の軸受を製作する
ことが非常に困難である。これに対して、すべり軸受は
小形化が比較的容易であるが、回転軸との摺動摩擦が大
きい難点がある。一方、空気軸受は回転軸を非接触式に
軸支するので摩擦の影響が少ない利点があるが、その構
成には空気供給装置など必要とするため、超小型モータ
の使用環境が制約を受ける。なお、超伝導のマイスナー
効果を利用した軸受も原理的には可能であるが、実施に
は大掛りなクライオスタットが必要であり実用的ではな
い。
By the way, one of the problems that must be solved when manufacturing a micro motor having a diameter of about 1 mm is the influence of bearing friction. That is, since the torque generated by the motor is proportional to the area of the electrostatic motor and the volume of the electromagnetic motor, the influence of the frictional force at the bearing portion significantly appears in the output characteristics of the motor as the motor is downsized. .. In this respect, the above-mentioned rolling bearing has an advantage of low frictional resistance, but it is very difficult to manufacture a bearing having a diameter of 1 mm or less. On the other hand, the slide bearing is relatively easy to make small in size, but has a drawback in that sliding friction with the rotating shaft is large. On the other hand, the air bearing has a merit that the influence of friction is small because the rotating shaft is supported in a non-contact manner. However, since the structure requires an air supply device and the like, the use environment of the micro motor is restricted. A bearing utilizing the Meissner effect of superconductivity is also possible in principle, but it is not practical because it requires a large cryostat for implementation.

【0005】本発明は上記の点にかんがみなされたもの
であり、その目的は超小型静電モータなどを対象に、簡
易な構造で摩擦を低く抑えて安定したモータ出力を取り
出せるようにしたマイクロマシンの軸受構造を提供する
ことにある。
The present invention has been made in view of the above points, and an object of the present invention is to provide a micromachine for a micro-electrostatic motor or the like, which has a simple structure and can suppress friction to obtain a stable motor output. To provide a bearing structure.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明の軸受構造は、軸受基台に回転軸の径寸法よ
りも径大な軸貫通穴を開口し、かつ前記軸貫通穴の穴内
領域に細線を張り巡らせて多角形状の環状軸支穴を形成
するとともに、回転軸上に形成した周溝を前記環状軸支
穴に嵌め込んで軸支するよう構成するものとする。
In order to solve the above-mentioned problems, the bearing structure of the present invention is such that a shaft through hole having a diameter larger than the diameter of the rotary shaft is opened in the bearing base, and the shaft through hole is formed. A thin wire is wound around the hole area to form a polygonal annular bearing hole, and a circumferential groove formed on the rotary shaft is fitted in the annular bearing hole to support the bearing.

【0007】ここで、前記の軸受構造においては、軸受
基台の軸貫通穴の周縁に分散して突起を設け、該突起の
相互間に細線を架け渡して多角形状の環状軸支穴を形成
することができる。また、回転軸の周溝は、溝の内径寸
法が多角形状の環状軸支穴の内接円よりも径大で、かつ
溝幅,溝深さ寸法が細線の線径よりも大に設定するよが
よい。
Here, in the above bearing structure, protrusions are provided dispersedly on the periphery of the shaft through hole of the bearing base, and thin wires are bridged between the protrusions to form polygonal annular shaft support holes. can do. Also, the circumferential groove of the rotary shaft is set such that the inner diameter of the groove is larger than the inscribed circle of the polygonal annular shaft support hole, and the groove width and groove depth are larger than the wire diameter of the thin wire. Good

【0008】[0008]

【作用】上記の構成により、回転軸の軸支状態では回転
軸の周溝と細線で形成した環状軸支穴とが線接触で係合
し合っており、例えば滑り軸受と比べても回転軸との間
の接触面積が小さく、これにより軸受と回転軸との間に
働く摩擦力が僅少となる。また、なんらかの外力,ある
いはモータトルクの不平衡などにより回転軸が軸中心か
ら偏芯しようとすると、偏芯側で細線の張力が増して回
転軸を回転中心に押し戻すような力が働くので、回転軸
は常に安定した回転が得られる。
With the above construction, when the rotary shaft is supported, the circumferential groove of the rotary shaft and the annular shaft support hole formed by the thin line are engaged with each other by line contact. The contact area between the bearing and the rotary shaft is small, and the frictional force acting between the bearing and the rotary shaft is small. Also, if the rotating shaft tries to be eccentric from the shaft center due to some external force or unbalance of the motor torque, the tension of the thin wire increases on the eccentric side and a force that pushes the rotating shaft back to the center of rotation acts. The shaft always obtains stable rotation.

【0009】[0009]

【実施例】以下本発明の実施例を図面に基づいて説明す
る。なお、図示例は直径1mm程度の超小型静電モータを
実施対象としたものである。図において、1は超小型静
電モータの回転子、2は回転軸、3は軸受基台、4は軸
受基台3に張り巡らせて回転軸2を軸支する線径ミクロ
ンオーダの金属細線である。ここで、まず軸受基台3に
は回転軸2の径寸法よりも径大な軸貫通穴5が開口して
おり、かつ軸貫通穴5の周縁には等間隔置きに複数の突
起6(図示例では7本)が分散して設けてある。そし
て、前記突起6の相互間にまたがって図4で示すように
細線4を始端から終端まで連続的に架け渡し、一筆書き
と同じ要領で軸貫通穴5の穴領域内の中心部に多角形状
(図示例では正7角形)の環状軸支穴4aを形成する。
Embodiments of the present invention will be described below with reference to the drawings. Note that the illustrated example is intended for an ultra-small electrostatic motor having a diameter of about 1 mm. In the figure, 1 is a rotor of a micro electrostatic motor, 2 is a rotary shaft, 3 is a bearing base, and 4 is a thin metal wire of a wire diameter of the order of microns, which extends around the bearing base 3 to support the rotary shaft 2. is there. Here, first, the bearing base 3 is provided with a shaft through hole 5 having a diameter larger than the diameter of the rotary shaft 2, and a plurality of projections 6 (see FIG. In the example shown, 7 lines are provided dispersedly. Then, as shown in FIG. 4, the thin wire 4 is continuously bridged between the protrusions 6 from the start end to the end, and a polygonal shape is formed in the center of the hole region of the shaft through hole 5 in the same manner as a single stroke. An annular shaft support hole 4a (regular heptagon in the illustrated example) is formed.

【0010】一方、回転軸2の軸上には前記の細線4で
形成した環状軸支穴4aと対向する位置に周溝7が形成
されている。この周溝7は、溝の内径が前記した環状軸
支穴4aの多角形の内接円よりも若干大きく、かつ溝
幅,溝深さは細線4の線径よりも大に定めてある。そし
て、前記細線4の環状軸支穴4aに周溝7を嵌め合わせ
て図2,図3で示すように回転軸2を支持する。
On the other hand, a circumferential groove 7 is formed on the shaft of the rotary shaft 2 at a position facing the annular shaft support hole 4a formed by the thin wire 4. The inner diameter of the circumferential groove 7 is slightly larger than the polygonal inscribed circle of the annular shaft support hole 4a described above, and the groove width and groove depth are set to be larger than the wire diameter of the thin wire 4. Then, the circumferential groove 7 is fitted into the annular shaft support hole 4a of the thin wire 4 to support the rotary shaft 2 as shown in FIGS.

【0011】図2,図3で示す軸支状態では、軸受基台
3に張架した細線4に張力が加わり、回転軸2を線接触
状態で多角形状の環状軸支穴4aの中心位置に保持する
と同時に、回転軸2をスラスト方向にも拘束保持する。
これにより、回転軸2は僅かな摩擦力が加わるだけで細
線4に軸支されることになる。また、回転中にモータト
ルクの不平衡,外力などにより回転軸2が回転中心から
偏芯しようとすると、偏芯側に当接する細線4の張力が
増し、その反力で回転軸2が回転中心位置に押し戻どさ
れるので、回転軸2は常に安定した位置に保持されるこ
とになる。
In the shaft support state shown in FIGS. 2 and 3, tension is applied to the thin wire 4 stretched around the bearing base 3, and the rotary shaft 2 is in line contact with the center position of the polygonal annular shaft support hole 4a. At the same time as holding, the rotary shaft 2 is restrained and held also in the thrust direction.
As a result, the rotary shaft 2 is pivotally supported by the fine wire 4 by applying a slight frictional force. Further, when the rotating shaft 2 tries to be eccentric from the rotation center due to motor torque unbalance, external force, etc. during rotation, the tension of the thin wire 4 abutting the eccentric side increases, and the reaction force causes the rotating shaft 2 to rotate. Since it is pushed back to the position, the rotary shaft 2 is always held in a stable position.

【0012】[0012]

【発明の効果】以上述べたように、本発明の軸受構造に
よれば、軸受基台側に張り巡らした細線によりほぼ線接
触状態で回転軸を回転中心に安定よく軸支保持すること
ができ、従来のすべり軸受と比較して摩擦力の大幅な低
減化が図れる。しかも、軸受基台に細線を張り巡らせる
だけで軸受を簡単に製作でき、超小型静電モータなどの
ように直径が1ミリメートル程度のマイクロマシンにも
容易に実施できる。
As described above, according to the bearing structure of the present invention, it is possible to stably and rotatably support the rotating shaft about the rotation center in a substantially line contact state by the thin wire stretched around the bearing base side. The frictional force can be significantly reduced as compared with the conventional plain bearing. Moreover, the bearing can be easily manufactured only by stretching a thin wire around the bearing base, and can be easily applied to a micromachine having a diameter of about 1 mm such as an ultra-small electrostatic motor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例の構成斜視図FIG. 1 is a configuration perspective view of an embodiment of the present invention.

【図2】図1における要部の平面図FIG. 2 is a plan view of a main part in FIG.

【図3】図1における要部の縦断面図FIG. 3 is a vertical cross-sectional view of the main part in FIG.

【図4】図1における細線の架け渡し状態図FIG. 4 is a state diagram of bridging thin wires in FIG.

【符号の説明】[Explanation of symbols]

2 回転軸 3 軸受基台 4 細線 4a 多角形状の環状軸支穴 5 軸貫通穴 6 突起 7 周溝 2 Rotating shaft 3 Bearing base 4 Thin wire 4a Polygonal annular shaft support hole 5 Shaft through hole 6 Protrusion 7 Circumferential groove

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】超小型静電モータなどを対象とするマイク
ロマシンの軸受構造であって、軸受基台に回転軸の径寸
法よりも径大な軸貫通穴を開口し、かつ前記軸貫通穴の
穴内領域に細線を張り巡らせてその中心部に多角形状の
環状軸支穴を形成するとともに、回転軸上に形成した周
溝を前記環状軸支穴に嵌め込んで軸支したことを特徴と
するマイクロマシンの軸受構造。
1. A bearing structure for a micromachine intended for an ultra-small electrostatic motor or the like, wherein a shaft through hole having a diameter larger than a diameter of a rotary shaft is opened in the bearing base, and the shaft through hole A thin wire is stretched around the hole area to form a polygonal annular bearing hole in the center thereof, and a circumferential groove formed on the rotating shaft is fitted in the annular bearing hole to support the hole. Micromachine bearing structure.
【請求項2】請求項1記載の軸受構造において、軸受基
台の軸貫通穴の周縁に分散して突起を設け、該突起の相
互間に細線を架け渡して多角形状の環状軸支穴を形成し
たことを特徴とするマイクロマシンの軸受構造。
2. The bearing structure according to claim 1, wherein protrusions are provided dispersedly on the periphery of the shaft through hole of the bearing base, and thin wires are bridged between the protrusions to form polygonal annular shaft support holes. A bearing structure for a micromachine characterized by being formed.
【請求項3】請求項1記載の軸受構造において、回転軸
の周溝は、溝の内径寸法が多角形状の環状軸支穴の内接
円よりも若干径大で、かつ溝幅,溝深さ寸法が細線の線
径よりも大であることを特徴とするマイクロマシンの軸
受構造。
3. The bearing structure according to claim 1, wherein the circumferential groove of the rotary shaft is such that the inner diameter of the groove is slightly larger than the inscribed circle of the polygonal annular shaft support hole, and the groove width and groove depth. A bearing structure for a micromachine, characterized in that the thickness is larger than the diameter of the thin wire.
JP24813591A 1991-09-27 1991-09-27 Bearing structure for micromachine Pending JPH0591691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24813591A JPH0591691A (en) 1991-09-27 1991-09-27 Bearing structure for micromachine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24813591A JPH0591691A (en) 1991-09-27 1991-09-27 Bearing structure for micromachine

Publications (1)

Publication Number Publication Date
JPH0591691A true JPH0591691A (en) 1993-04-09

Family

ID=17173751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24813591A Pending JPH0591691A (en) 1991-09-27 1991-09-27 Bearing structure for micromachine

Country Status (1)

Country Link
JP (1) JPH0591691A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011025385A (en) * 2009-07-28 2011-02-10 Canon Inc Electroosmosis movable device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011025385A (en) * 2009-07-28 2011-02-10 Canon Inc Electroosmosis movable device
US8715479B2 (en) 2009-07-28 2014-05-06 Canon Kabushiki Kaisha Electroosmotic movable device

Similar Documents

Publication Publication Date Title
JPH07259850A (en) Bearing
JPH10131955A (en) Journal bearing device
JPH0591691A (en) Bearing structure for micromachine
JP3184789B2 (en) Motor having dynamic pressure bearing, and rotating body device using the motor as a drive source
JPH06235421A (en) Spindle motor
JPH01242820A (en) Swivel bearing device
JP2511880Y2 (en) Thrust bearing device
JPH10318254A (en) Pre-load giving device for bearing
KR940000809Y1 (en) Bearing device
JP3769757B2 (en) Turbo rotating machine bearing device
JPH01141223A (en) Bearing
JPH07248022A (en) Bearing device
JPH06311701A (en) Spindle motor
JPH01224518A (en) Dynamic pressure type fluid bearing device for high-speed rotation
JPH02163513A (en) Magnetic thrust bearing
JP2864319B2 (en) Spindle motor
JPH1151053A (en) Oilless bearing
JPH04277315A (en) Compound type fluid bearing device
JPH06313427A (en) Oxide superconducting bearing
JPS61149612A (en) Bearing device of motor
JPS59198849A (en) Motor unit with dynamic pressure slot
JPH02303350A (en) Outer rotor motor
JPH01247822A (en) Support construction for rotary shaft
JPH01261512A (en) bearing
JPH09329138A (en) Compound bearing and spindle motor