[go: up one dir, main page]

JPH0590290A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0590290A
JPH0590290A JP24969391A JP24969391A JPH0590290A JP H0590290 A JPH0590290 A JP H0590290A JP 24969391 A JP24969391 A JP 24969391A JP 24969391 A JP24969391 A JP 24969391A JP H0590290 A JPH0590290 A JP H0590290A
Authority
JP
Japan
Prior art keywords
gate electrode
region
gate
ion implantation
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24969391A
Other languages
Japanese (ja)
Inventor
Kazuya Honma
運也 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP24969391A priority Critical patent/JPH0590290A/en
Publication of JPH0590290A publication Critical patent/JPH0590290A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To keep an LDD structure unchanged in characteristic in conformity to the more micronization of a MOSEFET and to enable an N<-> layer prevented from deteriorating in transmission conductance to be formed bay a method wherein both the side parts of a gate electrode are formed to become gradually smaller in thickness toward the ends of a gate region, as compared with time thickness of the center of the gate. CONSTITUTION:A gate electrode 3 of polycrystalline silicon or metal film is formed on an Si substrate 1, impurity ions are implanted into the Si substrate 1 using time gate electrode 3 as a mask for the formation of a low concentration ion implanted region 4a under both the sides of the gate electrode 3. In succession, a side wall spacer 5 formed of a silicon oxide film is formed on both the side faces of the gate electrode 3, impurity ions are implanted the side wall spacers 5 and the gate electrode 3 as a mask for the formation of a high concentration ion implanted ion region 4b. In this case, in a process where the gate electrode 3 is formed, both the sides of the gate electrode are formed so as to become gradually smaller in thickness toward the ends of a gate region as compared with the center of the gate electrode 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置において、特
にLDD(Lightly Dosed Drain)構造のMOSトラン
ジスタに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to a MOS transistor having an LDD (Lightly Dosed Drain) structure.

【0002】[0002]

【従来の技術】近年、半導体装置の製造における微細加
工技術の進歩に伴い、MOSFETのゲート長の微細化
も著しく進歩し、これによりMOSFETで構成される
集積回路の集積度及び性能は飛躍的に向上してきた。し
かし、このゲートの微細化が進行するにつれ、多くの問
題が生じている。その一つにホット・キャリア発生によ
る特性劣化などの信頼性の低下の問題がある。
2. Description of the Related Art In recent years, with the progress of microfabrication technology in the manufacture of semiconductor devices, the miniaturization of the gate length of MOSFETs has made remarkable progress, which has led to a dramatic increase in the degree of integration and performance of integrated circuits composed of MOSFETs. It has improved. However, as the miniaturization of the gate progresses, many problems occur. One of them is the problem of reduced reliability such as characteristic deterioration due to hot carrier generation.

【0003】ホット・キャリアによるMOSFETの特
性劣化を抑える技術の中で、最も知られた従来技術とし
て、図4に示すLDD構造のMOSFETが知られてい
る。(参考文献:Al F.Tasch,et al.,IEEE Electron De
vice Letters, 11,11(1990)517-519)。
Among the techniques for suppressing the characteristic deterioration of the MOSFET due to hot carriers, the LDD structure MOSFET shown in FIG. 4 is known as the most well-known prior art. (Reference: Al F. Tasch, et al., IEEE Electron De
vice Letters, 11, 11 (1990) 517-519).

【0004】LDD構造の特徴は、ソース・ドレインを
なすイオン注入領域に図4に示す如く高濃度領域4b
(n+層)と低濃度領域4a(n-層,オフセット領域)
の2種の注入領域を設けたことにある。これら2種のイ
オン注入領域4a,4bは、ゲート電極3のみをマスク
とした1次イオン注入と、ゲート電極3とその両側面に
形成した側壁スペーサ5とをマスクとした2次イオン注
入の2段階のイオン注入工程により設けられる。
The feature of the LDD structure is that the high concentration region 4b is formed in the ion implantation region forming the source / drain as shown in FIG.
(N + layer) and low concentration region 4a (n layer, offset region)
The two types of implantation regions are provided. These two types of ion implantation regions 4a and 4b are formed by primary ion implantation using only the gate electrode 3 as a mask and secondary ion implantation using the gate electrode 3 and sidewall spacers 5 formed on both side surfaces thereof as a mask. It is provided by a stepwise ion implantation process.

【0005】この構造は、n-層4aを設けることで、
ソース・ドレイン近傍での電界を緩和させ、ソース・ド
レインからチャネル領域方向に広がる空乏層の幅を減少
させるため、ホット・キャリア効果、ソース・ドレイン
間耐圧低下、ショート・チャネル効果の抑制に対して有
効である。
In this structure, by providing the n layer 4a,
Since the electric field near the source / drain is relaxed and the width of the depletion layer extending from the source / drain toward the channel region is reduced, the hot carrier effect, the source / drain breakdown voltage reduction, and the short channel effect are suppressed. It is valid.

【0006】しかし、側壁スペーサ5は一般に酸化シリ
コンなどの絶縁体で形成されるため、発生したホット・
エレクトロンがこの中に蓄積されて、側壁スペーサ5が
負に帯電し、この結果、n-層4aにおける抵抗が一層
増大することにより伝達コンダクタンスgmも一層低下
するという特性劣化が生じる。
However, since the sidewall spacers 5 are generally formed of an insulator such as silicon oxide, the generated hot
Electrons are accumulated therein, and the side wall spacers 5 are negatively charged. As a result, the resistance in the n layer 4a is further increased, and thus the transfer conductance gm is further reduced, resulting in characteristic deterioration.

【0007】さらに、図5に示す如くゲート電極3を側
壁スペーサ5とn-層4aとの間にまでオーバーラップ
させる形状に整形した改良型LDD MOSFETがあ
る。この構造では、ホット・エレクトロンは、このオー
バーラップ部3aには蓄積されることもなく、上述のL
DD MOSFET特有の特性劣化を防ぐことができ
る。
Further, as shown in FIG. 5, there is an improved LDD MOSFET in which the gate electrode 3 is shaped so as to overlap between the side wall spacer 5 and the n layer 4a. In this structure, hot electrons are not accumulated in the overlap portion 3a, and the above-mentioned L
It is possible to prevent characteristic deterioration peculiar to the DD MOSFET.

【0008】[0008]

【発明が解決しようとする課題】このように、ホット・
キャリヤ効果を低減するLDD MOSFETにおいて
-層は重要な役割を果たすが、n-層の抵抗の増大は伝
達コンダクタンスgmを低下させる原因となる。しか
し、n-層不純物濃度を上げると、n-層の抵抗が低減す
るが、ホット・キャリヤ効果を抑制するLDD MOS
FETの本質的な構造から外れてしまうし、ショート・
チャネル効果を引き起こす恐れもある。
[Problems to be Solved by the Invention]
Although the n layer plays an important role in the LDD MOSFET that reduces the carrier effect, the increase in the resistance of the n layer causes a decrease in the transfer conductance gm. However, if the n layer impurity concentration is increased, the resistance of the n layer is reduced, but the LDD MOS that suppresses the hot carrier effect is reduced.
It will be out of the essential structure of FET, and short circuit
It can also cause channel effects.

【0009】一方、上述のオーバーラップ型LDD M
OSFETでは、オーバーラップ部をイオン注入フィル
タとして不純物イオン注入を行い、この下層領域に低不
純物濃度のn-層をオーバーラップ部下に均一に形成す
る。しかし、この場合でも、n-層の抵抗を低減するに
は、結局、n-層不純物濃度を上げなければならず、シ
ョート・チャネル効果を引き起こす危険を冒すことにな
る。
On the other hand, the above-mentioned overlap type LDD M
In the OSFET, impurity ions are implanted using the overlap portion as an ion implantation filter, and an n layer having a low impurity concentration is uniformly formed in the lower layer region under the overlap portion. However, even in this case, in order to reduce the resistance of the n layer, it is necessary to increase the impurity concentration of the n layer, which runs the risk of causing the short channel effect.

【0010】そこで、本発明はMOSFETの一層の微
細化に即して、上述の問題を鑑みるため、LDD構造の
特性を維持し、なおかつ伝達コンダクタンスgmの低下
を防ぐという、双方の効果を有するn-層を形成するこ
とができる半導体装置の製造方法を提供する。
Therefore, the present invention has both effects of maintaining the characteristics of the LDD structure and preventing the decrease of the transfer conductance gm in order to solve the above problems in accordance with the further miniaturization of the MOSFET. - to provide a method of manufacturing a semiconductor device capable of forming a layer.

【0011】[0011]

【課題を解決するための手段】本発明のLDD構造の半
導体装置の製造方法はシリコン基板上にゲート絶縁膜を
介して多結晶シリコン膜または金属膜からなるゲート電
極を形成し、該ゲート電極をイオン注入マスクとして不
純物イオン注入によりソース・ドレインをなすイオン注
入領域のうち低濃度イオン注入領域を該ゲート電極両側
部下に形成する工程と、該ゲート電極両側面に酸化シリ
コン膜からなる側壁スペーサを形成する工程と、該側壁
スペーサ及びゲート電極をイオン注入マスクとして不純
物イオン注入によりソース・ドレインをなすイオン注入
領域のうち高濃度イオン注入領域を形成する工程を順に
備えており、前記ゲート電極の形成の工程において前記
ゲート電極がその中央部の厚さに比べその両側部の厚さ
がゲート領域端部に向かって漸次に薄くなるように整形
され、これをマスクとした不純物イオン注入により、不
純物濃度勾配を有するn-層を形成することを特徴とす
る。
According to a method of manufacturing a semiconductor device having an LDD structure of the present invention, a gate electrode made of a polycrystalline silicon film or a metal film is formed on a silicon substrate via a gate insulating film, and the gate electrode is formed. A step of forming low-concentration ion-implanted regions of the source / drain ion-implanted regions under both sides of the gate electrode by impurity ion implantation as an ion-implantation mask, and forming sidewall spacers made of a silicon oxide film on both sides of the gate electrode. And a step of forming a high-concentration ion-implanted region of the ion-implanted region forming the source / drain by impurity ion implantation using the sidewall spacer and the gate electrode as an ion-implantation mask. In the process, the thickness of both sides of the gate electrode is smaller than the thickness of the central portion of the gate electrode. Headed is shaped to be thinner gradually, thereby the impurity ion implantation using a mask, n has an impurity concentration gradient - and forming a layer.

【0012】[0012]

【作用】本発明によれば、上記の如く整形したゲート電
極の両側部(オーバーラップ部)を通して不純物イオン
注入を行うことで、チャネル領域側のイオンの透過が困
難なオーバーラップ部の肉厚な部分の下には、比較的低
い不純物イオン濃度のn -層が、また、n+層側端部とな
るオーバーラップ部の肉薄な領域ではイオンが十分透過
し、比較的高い不純物イオン濃度のn-層が形成される
ようにn-層領域内で目的に応じて、その不純物イオン
濃度に勾配をもたらせたソース・ドレインを形成するこ
とができるオーバーラップ型LDD MOSFETが得
られる。
According to the present invention, the gate electrode shaped as described above is used.
Impurity ions through both sides (overlap) of the pole
Ion implantation makes it difficult for ions to pass through on the channel region side.
Under the thick part of the difficult overlap,
N of impurity ion concentration -The layers are also n+Layer side end
Ions are sufficiently transmitted in the thin area of the overlap area
However, n with a relatively high impurity ion concentration-Layers are formed
Like n-Depending on the purpose in the layer region, its impurity ions
It is possible to form a source / drain with a concentration gradient.
It is possible to obtain an overlap type LDD MOSFET
Be done.

【0013】[0013]

【実施例】図2(A)〜(H)及び図3(I)〜(M)
に本発明の一実施例としてMOSFET型半導体装置の
製造方法を示す。
EXAMPLE FIG. 2 (A)-(H) and FIG. 3 (I)-(M)
A method of manufacturing a MOSFET type semiconductor device is shown as an example of the present invention.

【0014】第1の工程(図2A)では、通常のLDD
構造のMOSFETの製造工程と同様にp型半導体基板
1上にゲート酸化膜2、多結晶シリコン膜3’及びゲー
ト電極を形成する領域に所定の形状にパターニングした
酸化シリコン膜6を順に形成する。この時、多結晶シリ
コン膜3’には、低抵抗化するために燐イオン(P)を
ドープしてある。
In the first step (FIG. 2A), a normal LDD is used.
Similar to the manufacturing process of the MOSFET having the structure, the gate oxide film 2, the polycrystalline silicon film 3 ′, and the silicon oxide film 6 patterned in a predetermined shape are sequentially formed on the region where the gate electrode is formed on the p-type semiconductor substrate 1. At this time, the polycrystalline silicon film 3'is doped with phosphorus ions (P) in order to reduce the resistance.

【0015】第2の工程(図2B)では、酸化シリコン
膜6をエッチング・マスクとして多結晶シリコン膜3’
の異方性エッチングを行い、多結晶シリコン膜3’の酸
化シリコン膜6で覆われていない領域を所定の深さまで
一様にエッチングする。この場合、臭化水素(HBr)
とヘリウム(He)の1:1混合ガス(圧力:2.66
P)中で行うと、エッチング・レート:4000Å/m
inでエッチングが進行する。
In the second step (FIG. 2B), the polycrystalline silicon film 3'is formed by using the silicon oxide film 6 as an etching mask.
Is anisotropically etched to uniformly etch a region of the polycrystalline silicon film 3'not covered with the silicon oxide film 6 to a predetermined depth. In this case, hydrogen bromide (HBr)
1: 1 mixed gas of helium and helium (He) (pressure: 2.66
P), etching rate: 4000Å / m
Etching proceeds in.

【0016】第3の工程(図2C)では、次に、第2の
工程で一部エッチング整形された多結晶シリコン膜3’
の等方性エッチングを行う。この場合、六フッ化イオウ
(SF6)ガス(室温、圧力:1.33P)中で行う
と、エッチング・レート:2000〜3000Å/mi
nでエッチングが進行する。この時、酸化シリコン膜6
の端部下の多結晶シリコン膜3’にも一様にエッチング
が進行し、酸化シリコン膜6の縁が庇状6aに形成され
る。
In the third step (FIG. 2C), next, the polycrystalline silicon film 3'partially etched and shaped in the second step is formed.
Isotropic etching is performed. In this case, when performed in sulfur hexafluoride (SF 6 ) gas (room temperature, pressure: 1.33P), etching rate: 2000 to 3000Å / mi
Etching proceeds with n. At this time, the silicon oxide film 6
Etching also proceeds evenly to the polycrystalline silicon film 3'under the edge of the edge of the silicon oxide film 6 to form the edge of the silicon oxide film 6 in the shape of an eaves 6a.

【0017】前工程と本工程を交互に複数回繰り返すこ
とで、酸化シリコン膜6で覆われていない領域mの多結
晶シリコン膜3’が、その表面から一様にエッチングさ
れ、最終的に領域mにおいて多結晶シリコン膜3’が除
去されるようにエッチング時間を設定する。
By repeating the preceding step and this step alternately a plurality of times, the polycrystalline silicon film 3'in the region m not covered with the silicon oxide film 6 is uniformly etched from its surface, and finally the region is formed. The etching time is set so that the polycrystalline silicon film 3'is removed at m.

【0018】このように、第2の工程及び第3の工程を
交互に数回繰り返す(図2D〜H)と、多結晶シリコン
膜3’の裾部の膜厚がその縁に向かって段階的に薄くな
り、最終的に階段状に整形されたオーバーラップ部3a
が形成される。
As described above, when the second step and the third step are alternately repeated several times (FIGS. 2D to 2H), the film thickness of the bottom of the polycrystalline silicon film 3'is gradually increased toward the edge thereof. Overlap part 3a which is thin and finally shaped like a staircase
Is formed.

【0019】第4の工程(図3I)では、第2〜第3の
工程により表面が露出した領域mのゲート酸化膜2を酸
化シリコン膜6をマスクとした異方性エッチングにより
除去する。この時、ゲート酸化膜2及び酸化シリコン膜
6の両方の表面から一様にエッチングが進行し、領域m
の膜厚の薄いゲート酸化膜2が先に除去され、シリコン
基板が露出したところでエッチング処理を止める。
In the fourth step (FIG. 3I), the gate oxide film 2 in the region m whose surface is exposed in the second to third steps is removed by anisotropic etching using the silicon oxide film 6 as a mask. At this time, etching progresses uniformly from both surfaces of the gate oxide film 2 and the silicon oxide film 6, and the region m
The thin gate oxide film 2 is first removed, and the etching process is stopped when the silicon substrate is exposed.

【0020】第5の工程(図3J)では、酸化シリコン
膜6の縁の庇部6aを等方性エッチングにより除去し、
前工程により整形された多結晶シリコン膜3’の上部と
同幅に整形する。このようにして、ゲート酸化膜2及び
多結晶シリコン膜3’、酸化シリコン膜6からなるゲー
ト電極3が形成される。
In the fifth step (FIG. 3J), the eave portion 6a at the edge of the silicon oxide film 6 is removed by isotropic etching,
The polycrystalline silicon film 3'shaped in the previous step is shaped to have the same width as the upper portion. Thus, the gate electrode 3 including the gate oxide film 2, the polycrystalline silicon film 3 ′ and the silicon oxide film 6 is formed.

【0021】第6の工程(図3K)では、ゲート電極3
をイオン注入マスクとして第2の工程及び第3の工程で
形成されたオーバーラップ部3aを通して不純物イオン
注入7を行い、n-層4aを形成する。この時、ドーズ
量1×1013/cm2程度で燐イオン(P)あるいはヒ
素イオン(As)のイオン注入7を行うと、シリコン基
盤1のオーバーラップ部3aの下部と領域m低濃度のイ
オン注入領域を形成できる。この時、厚さの異なるオー
バーラップ部3aの下部において、その肉厚部の下には
比較的低い不純物濃度のイオン注入領域n-層が、肉薄
部では比較的高い不純物濃度のイオン注入領域n-層が
形成され、n-層におけるイオン濃度に勾配をもたらせ
て形成させることができる。
In the sixth step (FIG. 3K), the gate electrode 3
Is used as an ion implantation mask to perform impurity ion implantation 7 through the overlapping portion 3a formed in the second and third steps to form the n layer 4a. At this time, when ion implantation 7 of phosphorus ions (P) or arsenic ions (As) is performed with a dose amount of about 1 × 10 13 / cm 2 , ions below the overlap portion 3a of the silicon substrate 1 and in the region m of low concentration. An implant region can be formed. At this time, in the lower portion of the overlapping portion 3a having a different thickness, an ion implantation region n layer having a relatively low impurity concentration is formed below the thick portion, and an ion implantation region n having a relatively high impurity concentration is formed in the thin portion. - the layer is formed, n - can be formed by cod a gradient to the ion concentration in the layer.

【0022】第7の工程(図3L)では、さらに酸化シ
リコンを堆積し、異方性エッチングによりこの酸化シリ
コンを整形しゲート電極3両側壁に酸化シリコンからな
るサイドウォール5を形成する。
In the seventh step (FIG. 3L), silicon oxide is further deposited, and the silicon oxide is shaped by anisotropic etching to form sidewalls 5 made of silicon oxide on both side walls of the gate electrode 3.

【0023】第8の最終工程(図3M)では、ゲート電
極3及び前工程で形成したサイドウォール5をイオン注
入マスクとして不純物イオン注入8を行い、シリコン基
板1のゲート電極2に覆われていない領域にn+層4b
を形成する。この時、PあるいはAsをドーズ量5×1
15/cm2程度でイオン注入8を行うと、領域mの部
分において、高い不純物濃度のイオン注入領域n+層4
bが形成される。
In the eighth final step (FIG. 3M), impurity ion implantation 8 is performed using the gate electrode 3 and the sidewall 5 formed in the previous step as an ion implantation mask, and the gate electrode 2 of the silicon substrate 1 is not covered. N + layer 4b in the region
To form. At this time, the dose amount of P or As is 5 × 1
When the ion implantation 8 is performed at about 0 15 / cm 2 , the ion implantation region n + layer 4 having a high impurity concentration is formed in the region m.
b is formed.

【0024】このようにして、2段階の不純物濃度層
(n-層、n+層)を有し、さらに、そのうちの低い不純
物濃度層(n-層)では、その不純物濃度分布に勾配を
持たせた構造のソース・ドレインを備えたオーバーラッ
プ型LDD構造のMOSFETを形成することができ
る。
Thus, the impurity concentration layers (n layer, n + layer) of two stages are provided, and further, the impurity concentration distribution of the low impurity concentration layer (n layer) has a gradient. It is possible to form the MOSFET of the overlap type LDD structure having the source / drain of the divided structure.

【0025】[0025]

【発明の効果】本発明の半導体装置の製造方法によれ
ば、LDD構造のMOSFETのソース・ドレインとな
る不純物注入層の形成において、ゲート領域の中央部の
厚さに比べその両側部の厚さがゲート領域端部に向かっ
て漸次に薄くなるように整形されたゲート電極の両側部
を通して不純物イオン注入を行うことで、低濃度イオン
注入領域内にイオン濃度勾配をもたらせることができ
る。その結果、低濃度イオン注入領域のチャネル領域側
の不純物イオン濃度が低く、また、逆側では、適度に不
純物イオン濃度を上げれるため、LDD構造を維持で
き、ホット・キャリヤ効果を低減すると共に伝達コンダ
クタンスgmの低下を防げる半導体装置を製造すること
が得ることができる。また、十分な低濃度イオン注入領
域を確保できるため、ショートチャネル効果も低減でき
る。
According to the method of manufacturing a semiconductor device of the present invention, in the formation of the impurity-implanted layer serving as the source / drain of the MOSFET having the LDD structure, the thickness of both sides of the gate region is larger than the thickness of the central region of the gate region. By performing the impurity ion implantation through both side portions of the gate electrode shaped so as to be gradually thinned toward the end portion of the gate region, an ion concentration gradient can be provided in the low concentration ion implantation region. As a result, the impurity ion concentration on the channel region side of the low-concentration ion implantation region is low, and on the opposite side, the impurity ion concentration can be appropriately increased, so that the LDD structure can be maintained, the hot carrier effect is reduced, and the transmission is reduced. It is possible to obtain a semiconductor device capable of preventing a decrease in the conductance gm. Moreover, since a sufficiently low concentration ion implantation region can be secured, the short channel effect can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明により製造される半導体装置の構造を示
す断面図である。
FIG. 1 is a cross-sectional view showing the structure of a semiconductor device manufactured according to the present invention.

【図2】本発明実施例の方法の前半工程を示す断面図で
ある。
FIG. 2 is a cross-sectional view showing the first half step of the method of the embodiment of the present invention.

【図3】本発明実施例の方法の後半工程を示す断面図で
ある。
FIG. 3 is a cross-sectional view showing a second half step of the method of the embodiment of the present invention.

【図4】従来技術により製造される半導体装置の構造を
示す断面図である。
FIG. 4 is a cross-sectional view showing the structure of a semiconductor device manufactured by a conventional technique.

【図5】他の従来技術により製造される半導体装置の構
造を示す断面図である。
FIG. 5 is a cross-sectional view showing the structure of a semiconductor device manufactured by another conventional technique.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 シリコン基板上にゲート絶縁膜を介して
多結晶シリコン膜または金属膜からなるゲート電極を形
成する工程と、該ゲート電極をイオン注入マスクとして
不純物イオン注入によりソース・ドレインをなすイオン
注入領域のうち低濃度イオン注入領域を該ゲート電極両
側部下に形成する工程と、該ゲート電極両側面に酸化シ
リコン膜からなる側壁スペーサを形成する工程と、該側
壁スペーサ及び前記ゲート電極をイオン注入マスクとし
て不純物イオン注入によりソース・ドレインをなすイオ
ン注入領域のうち高濃度イオン注入領域を形成する工程
を順に備えたLDD構造の半導体装置の製造方法であっ
て、前記ゲート電極の形成の工程において前記ゲート電
極がその中央部の厚さに比べその両側部の厚さがゲート
領域端部に向かって漸次に薄くなるように整形されるこ
とを特徴とする半導体装置の製造方法。
1. A step of forming a gate electrode made of a polycrystalline silicon film or a metal film on a silicon substrate via a gate insulating film, and ions forming source / drain by impurity ion implantation using the gate electrode as an ion implantation mask. A step of forming low-concentration ion implantation areas in the implantation area below both sides of the gate electrode, a step of forming sidewall spacers made of a silicon oxide film on both sides of the gate electrode, and ion implantation of the sidewall spacer and the gate electrode. A method for manufacturing a semiconductor device having an LDD structure, which comprises sequentially forming a high-concentration ion-implanted region of a source / drain ion-implanted region as a mask by implanting impurity ions, wherein in the step of forming the gate electrode, The thickness of both sides of the gate electrode is greater than the thickness of the center of the gate electrode A method of manufacturing a semiconductor device, characterized in that the semiconductor device is shaped so as to become gradually thinner.
JP24969391A 1991-09-27 1991-09-27 Manufacture of semiconductor device Pending JPH0590290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24969391A JPH0590290A (en) 1991-09-27 1991-09-27 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24969391A JPH0590290A (en) 1991-09-27 1991-09-27 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0590290A true JPH0590290A (en) 1993-04-09

Family

ID=17196801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24969391A Pending JPH0590290A (en) 1991-09-27 1991-09-27 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0590290A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5840611A (en) * 1993-12-16 1998-11-24 Goldstar Electron Company, Ltd. Process for making a semiconductor MOS transistor
WO2006046301A1 (en) * 2004-10-29 2006-05-04 Spansion Llc Semiconductor device and semiconductor device manufacturing method
JP2007221158A (en) * 2007-04-03 2007-08-30 Toshiba Corp Semiconductor device and its manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5840611A (en) * 1993-12-16 1998-11-24 Goldstar Electron Company, Ltd. Process for making a semiconductor MOS transistor
WO2006046301A1 (en) * 2004-10-29 2006-05-04 Spansion Llc Semiconductor device and semiconductor device manufacturing method
JPWO2006046301A1 (en) * 2004-10-29 2008-08-07 スパンション エルエルシー Semiconductor device and method of manufacturing semiconductor device
US7910974B2 (en) 2004-10-29 2011-03-22 Spansion Llc Semiconductor device and method for fabricating thereof
US8389361B2 (en) 2004-10-29 2013-03-05 Spansion Llc Semiconductor device and method for fabricating thereof
JP5237554B2 (en) * 2004-10-29 2013-07-17 スパンション エルエルシー Manufacturing method of semiconductor device
US9331180B2 (en) 2004-10-29 2016-05-03 Cypress Semiconductor Corporation Semiconductor device and method for fabricating thereof
JP2007221158A (en) * 2007-04-03 2007-08-30 Toshiba Corp Semiconductor device and its manufacturing method

Similar Documents

Publication Publication Date Title
US5296401A (en) MIS device having p channel MOS device and n channel MOS device with LDD structure and manufacturing method thereof
US5930642A (en) Transistor with buried insulative layer beneath the channel region
US6153455A (en) Method of fabricating ultra shallow junction CMOS transistors with nitride disposable spacer
US5372960A (en) Method of fabricating an insulated gate semiconductor device
JP2835216B2 (en) Method for manufacturing semiconductor device
US5994179A (en) Method of fabricating a MOSFET featuring an effective suppression of reverse short-channel effect
US6709939B2 (en) Method for fabricating semiconductor device
US5552329A (en) Method of making metal oxide semiconductor transistors
JPH06204469A (en) Field effect transistor and method of manufacturing the same
JP2002033490A (en) SOI-MOS field effect transistor manufacturing method
US6054357A (en) Semiconductor device and method for fabricating the same
JP2929432B2 (en) Semiconductor device manufacturing method
US5661048A (en) Method of making an insulated gate semiconductor device
US6008100A (en) Metal-oxide semiconductor field effect transistor device fabrication process
US6576521B1 (en) Method of forming semiconductor device with LDD structure
JPH0897419A (en) Mos type transistor and its manufacture
JPH0590290A (en) Manufacture of semiconductor device
JPH08335699A (en) Vertical field-effect transistor, complementary vertical field-effect transistor and manufacture thereof
KR20040043279A (en) A mos transistor having short channel and a manufacturing method thereof
JP2633104B2 (en) Method for manufacturing semiconductor device
JPH0234936A (en) Semiconductor device and its manufacturing method
US7453121B2 (en) Body contact formation in partially depleted silicon on insulator device
US5885761A (en) Semiconductor device having an elevated active region formed from a thick polysilicon layer and method of manufacture thereof
JPS62120082A (en) Semiconductor device and manufacture thereof
JPS5846648A (en) Manufacture of semiconductor device