[go: up one dir, main page]

JPH0587018B2 - - Google Patents

Info

Publication number
JPH0587018B2
JPH0587018B2 JP60196241A JP19624185A JPH0587018B2 JP H0587018 B2 JPH0587018 B2 JP H0587018B2 JP 60196241 A JP60196241 A JP 60196241A JP 19624185 A JP19624185 A JP 19624185A JP H0587018 B2 JPH0587018 B2 JP H0587018B2
Authority
JP
Japan
Prior art keywords
power supply
wiring
supply potential
type
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60196241A
Other languages
Japanese (ja)
Other versions
JPS6254939A (en
Inventor
Hiroyuki Misawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP60196241A priority Critical patent/JPS6254939A/en
Publication of JPS6254939A publication Critical patent/JPS6254939A/en
Publication of JPH0587018B2 publication Critical patent/JPH0587018B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/90Masterslice integrated circuits

Landscapes

  • Design And Manufacture Of Integrated Circuits (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はモノリシツク集積回路に関し、特に基
本セルを行列に配置して内部セルアレイ領域を構
成するゲートアレイ型マスタスライス方式のモノ
リシツク集積回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a monolithic integrated circuit, and more particularly to a gate array type master slice type monolithic integrated circuit in which basic cells are arranged in rows and columns to constitute an internal cell array region.

〔従来の技術〕[Conventional technology]

従来、基本セルを行列に配置して内部セルアレ
イ領域を構成するゲートアレイ型マスタスライス
方式集積回路(以下ゲートアレイと記す)の内部
セルアレイ領域に対し外部電源電位を供給する場
合には、内部セルアレイ領域内の基本セルに供給
する必要がある。総ての外部電源電位の種類が一
本づつ各基本セル上に位置するように内部セルア
レイ領域上を縦貫する電源電位供給配線を布設
し、各基本セル部においてその基本セルが必要と
する外部電源電位供給する方法を採っていた。
Conventionally, when supplying an external power supply potential to the internal cell array area of a gate array type master slice integrated circuit (hereinafter referred to as gate array) in which basic cells are arranged in rows and columns to configure the internal cell array area, the internal cell array area It is necessary to supply the basic cells within. Power supply potential supply wiring is laid vertically over the internal cell array area so that all types of external power supply potentials are located on each basic cell, and each basic cell section is provided with the external power supply wiring required by that basic cell. A method of supplying electric potential was used.

従来の大規模ゲートアレイはそのほとんどが
CMOSゲートアレイである。CMOSゲートアレ
イの場合、回路そのもののノイズマージンが大き
いことと、回路の定常的な電流が小さいことから
内部セルアレイ領域内に従来の方法でごく細い電
源電位供給配線を布設しても何ら問題は生じなか
つた。また、従来のバイポーラ系のゲートアレイ
の場合、その規模が比較的小さく、回路そのもの
のノイズマージンが小さく、回路の定常的な電流
が大きいECLゲートアレイにおいても内部セル
アレイ領域内に従来の方法で比較的太い電源電位
供給配線を布設することにより充分に所望の電気
的特性を得ることができていた。しかし、
CMOSゲートアレイの電気的特性、特に高速化
が進んで来た今日、ECLゲートアレイに対し大
規模かつより高速化を要求されるに至り内部セル
アレイ領域内に従来の方法で電源電位供給配線を
布設することによる不都合が目立つて来た。
ECLゲートアレイの高速性は回路の駆動インピ
ーダンスと負荷容量に大きく依存する。よつて回
路動作に最低限必要なノイズマージンを確保する
論理振幅を持たせかつ駆動インピーダンスを低く
抑えるため、ECL回路の定常電流は必然的に大
きなものとなる。
Most conventional large-scale gate arrays
It is a CMOS gate array. In the case of CMOS gate arrays, the noise margin of the circuit itself is large and the steady current of the circuit is small, so even if very thin power supply potential supply wiring is laid within the internal cell array area using the conventional method, no problems will occur. Nakatsuta. In addition, in the case of conventional bipolar gate arrays, the scale is relatively small and the noise margin of the circuit itself is small, and even in the case of ECL gate arrays where the steady current of the circuit is large, the conventional method is applied to the internal cell array area. By laying a thick power supply potential supply wiring, it was possible to obtain sufficiently desired electrical characteristics. but,
Nowadays, as the electrical characteristics of CMOS gate arrays, especially their speeds, have progressed, there has been a demand for larger scale and higher speed ECL gate arrays.Power supply potential supply wiring is laid in the internal cell array area using conventional methods. The inconvenience of doing so has become noticeable.
The high speed of ECL gate arrays depends largely on the driving impedance and load capacitance of the circuit. Therefore, in order to have a logic amplitude that secures the minimum necessary noise margin for circuit operation and to keep drive impedance low, the steady current of the ECL circuit is inevitably large.

ゲートアレイの規模が大きくなると、通常、内
部セルアレイ領域内を縦貫し基本セルに外部電源
電位を供給する電源電位供給配線1本当りの供給
対象基本セル数は増加する。高速性を要求される
大規模ECLゲートアレイの場合。各基本セルの
定常電流が多いため、従来の電源電位供給配線布
設方法を用いた場合、電源電位のレベルシフトに
よるノイズマージン減少を極力小さく抑えるため
に、内部セルアレイ領域内を縦貫する電源電位供
給配線1本当りの配線布設幅をかなり太く設定す
ることが必要となる。しかし、電源電位供給配線
を太く設定することは、ゲートアレイにおいて
は、配線布設領域が限られているため信号配線布
設領域を削減することになり、信号配線の布設自
由度を低下させることになる。また、信号配線の
布設自由度を低下させないためには配線布設領域
を拡大させることが必要で、この場合はチツプサ
イズが増大し基本セル間を結ぶ信号配線の平均配
線長が増し集積回路全体としての電気的特性、特
に高速性が損なわれかつ製造歩留りは低下する。
また、電源電位供給配線の布設配線幅を太く設定
した場合、電源電位供給配線が形成される配線層
と異なる配線層で形成され電源電位供給配線と交
差する信号配線のその交差面積が増加し、その信
号配線に付加する寄生容量が増加しこれによりや
はり回路動作の高速性が損われる結果となる。
As the scale of the gate array increases, the number of basic cells to be supplied per one power supply potential supply line that runs vertically within the internal cell array region and supplies external power supply potential to the basic cells usually increases. For large-scale ECL gate arrays that require high speed. Since the steady current of each basic cell is large, when using the conventional power supply potential supply wiring wiring method, the power supply potential supply wiring runs vertically within the internal cell array area in order to minimize the reduction in noise margin due to the level shift of the power supply potential. It is necessary to set the wiring width per wire to be quite large. However, setting the power supply potential supply wiring to be thick will reduce the signal wiring installation area because the wiring installation area is limited in gate arrays, reducing the degree of freedom in laying the signal wiring. . In addition, in order to not reduce the degree of freedom in laying signal wiring, it is necessary to expand the wiring laying area, and in this case, the chip size increases and the average wiring length of signal wiring connecting basic cells increases, which increases the overall integrated circuit. Electrical properties, especially high speed, are impaired and manufacturing yields are reduced.
Furthermore, when the wiring width of the power supply potential supply wiring is set to be large, the intersection area of the signal wiring that is formed in a wiring layer different from the wiring layer in which the power supply potential supply wiring is formed and intersects with the power supply potential supply wiring increases. The parasitic capacitance added to the signal wiring increases, resulting in a loss of high-speed circuit operation.

従来のゲートアレイ型集積回路について図面を
参照して説明する。
A conventional gate array type integrated circuit will be explained with reference to the drawings.

第2図は従来のゲートアレイ型集積回路の一例
のレイアウト図である。
FIG. 2 is a layout diagram of an example of a conventional gate array type integrated circuit.

この集積回路は基本セル11′を20行10列の行
列に並べて内部セルアレイ領域25を形成し、そ
の対辺に外部電源電位供給配線23,24を設
け、この外部電源電位供給配線23,24に外部
端子21,22を設けることにより構成されてい
る。
In this integrated circuit, basic cells 11' are arranged in a matrix of 20 rows and 10 columns to form an internal cell array area 25, external power supply potential supply lines 23 and 24 are provided on the opposite side, and external power supply potential supply lines 23 and 24 are connected to external power supply potential supply lines 23 and 24. It is constructed by providing terminals 21 and 22.

外部端子21には外部より最高電位の外部電源
電位が供給され、その電位は内部セルアレイ領域
25に対し、外部電源電位供給配線23を通して
供給される。外部端子22には同様に外部より最
低電位の外部電源電位が供給され、その電位は電
源電位供給配線24を通して同様に内部セルアレ
イ領域25に供給される。
The external terminal 21 is supplied with the highest external power supply potential from the outside, and this potential is supplied to the internal cell array region 25 through the external power supply potential supply wiring 23. The external terminal 22 is similarly supplied with the lowest external power supply potential from the outside, and this potential is similarly supplied to the internal cell array region 25 through the power supply potential supply wiring 24 .

第3図は第2図に示す基本セルのレイアウト図
である。
FIG. 3 is a layout diagram of the basic cell shown in FIG. 2.

基本セル11′の下層には回路構成要素が形成
され、上層には電源電位供給配線領域32,33
が設けられる。電源電位供給配線領域32は、第
2図において上下に連接する隣りの基本セル1
1′の電源電位供給配線領域32を経由して外部
電源電位供給配線23と接続する。電源電位供給
配線領域33も同様に第2図における外部電源電
位供給配線24に接続する。このようにして第2
図における電源電位供給配線23,24はそれぞ
れ結果的に内部セルアレイ領域25の各基本セル
11′上を縦貫している。
Circuit components are formed in the lower layer of the basic cell 11', and power supply potential supply wiring areas 32, 33 are formed in the upper layer.
is provided. The power supply potential supply wiring area 32 is connected to the adjacent basic cells 1 that are vertically connected in FIG.
It is connected to the external power supply potential supply wiring 23 via the power supply potential supply wiring area 32 1'. Similarly, the power supply potential supply wiring region 33 is connected to the external power supply potential supply wiring 24 in FIG. 2. In this way the second
The power supply potential supply lines 23 and 24 in the figure end up running vertically over each basic cell 11' of the internal cell array region 25.

第4図は従来のECL基本回路の回路図である。 FIG. 4 is a circuit diagram of a conventional ECL basic circuit.

ECL基本回路はカレント・スイツチ部45と
エミツタ・フオロア部46の2つの回路構成要素
から成り、カレント・スイツチ部45ではトラン
ジスタQ3と抵抗R3により定電流部を構成しその
定電流をトランジスタQ1とトランジスタQ2のス
イツチング動作により抵抗R1あるいは抵抗R2
流す。抵抗R1と抵抗R2の片端は高電位の外部電
源電位が印加された電源電位供給配線41に接続
され、抵抗R3の片端は低電位の外部電源電位が
印加された電源電位供給配線43に接続される。
抵抗R1あるいは抵抗R2のトランジスタQ1あるい
はトランジスタQ2のコレクタ端子に接続する片
端には抵抗R1あるいは抵抗R2に電流が流れない
ときに高レベル電位、流れる時には低レベル電位
が発生され、この電位がエミツタ・フオロア部4
6のトランジスタQ5あるいはトランジスタQ4
ベース端子に入力される。前記高レベル電位と低
レベル電位の差を論理振幅と呼ぶ。エミツタ・フ
オロア部46ではトランジスタQ4あるいはトラ
ンジスタQ5のベース端子に入力されたレベルよ
りそれぞれのトランジスタのベース・エミツタ間
順方向電圧分レベルシフトした高レベル電位ある
いは低レベル電位をエミツタ端子に出力する。エ
ミツタ・フオロア部46のトランジスタQ4とト
ランジスタQ5のコレクタ端子は高電位の外部電
源電位が印加された電源電位供給配線42に接続
され、抵抗R4と抵抗R5の片端は低電位の外部電
源電位が印加された電源電位供給配線44に接続
される。このECL基本回路が第3図の基本セル
の中に組込まれる。
The ECL basic circuit consists of two circuit components: a current switch section 45 and an emitter follower section 46. In the current switch section 45, a constant current section is formed by a transistor Q 3 and a resistor R 3 , and the constant current is connected to a transistor Q. 1 and the switching operation of transistor Q2 causes the current to flow through resistor R1 or resistor R2 . One ends of the resistor R 1 and the resistor R 2 are connected to a power supply potential supply wiring 41 to which a high external power supply potential is applied, and one end of the resistor R 3 is connected to a power supply potential supply wiring 43 to which a low external power supply potential is applied. connected to.
At one end of resistor R1 or resistor R2 connected to the collector terminal of transistor Q1 or transistor Q2 , a high level potential is generated when no current flows through resistor R1 or resistor R2 , and a low level potential is generated when current flows. , this potential is the emitter follower part 4
It is input to the base terminal of transistor Q5 or transistor Q4 of No.6. The difference between the high level potential and the low level potential is called a logic amplitude. The emitter follower section 46 outputs to the emitter terminal a high level potential or a low level potential whose level is shifted by the forward voltage between the base and emitter of each transistor from the level input to the base terminal of transistor Q 4 or transistor Q 5. . The collector terminals of the transistor Q 4 and the transistor Q 5 of the emitter follower section 46 are connected to the power supply potential supply wiring 42 to which a high external power supply potential is applied, and one ends of the resistors R 4 and R 5 are connected to the low potential external power supply wiring 42 . It is connected to a power supply potential supply wiring 44 to which a power supply potential is applied. This ECL basic circuit is incorporated into the basic cell shown in FIG.

今、第4図におけるカレント・スイツチ部45
の電流が1mA、エミツタ・フオロア部46の全
電流が2mA、カレント・スイツチ部45の論理
振幅が500mVであるとし、第2図の基本セル1
1′の各々に第4図で示す回路が2組入つている
場合を考える。説明を簡略にするため最高電位の
外部電源電位系のみを説明する。第2図の外部端
子21に印加された最高電位は第3図の電源電位
供給配線領域32内の配線に接続されるが、今、
基本セル11′の電源電位供給配線領域32内の
配線の幅が100μm、長さが250μm、配線層抵抗が
0.03Ω/□であるものとする。従来の方法を採つ
た場合、基本セル11′の最高電源電位供給配線
は電源電位供給配線領域32のみであるので電源
電位供給配線41,42はともに電源電位供給配
線領域32内の配線に接続する。この結果第2図
の同列上の基本セル11′の内最も電源電位供給
配線23に近いセル位置の基本セル11′のレベ
ルシフト量を0mVとしたとき、最も遠いセル位
置の基本セル11′のレベルシフト量は85.5mVと
なる。異なる列間の基本的なレベルシフト差が
20mVあるとすると内部セルアレイ領域25内の
全基本セル11′間のレベルシフト量の差は
105.5mVとなる。ECLゲートアレイの場合、高電
位の電源電位のレベルシフトは直接ノイズマージ
ンの減少につながる。低電位の電源電位のレベル
シフトは通常論理振幅の減少となつて現われるの
でノイズマージンの減少にはその1/2が関与する。
今簡略化のためその値を高電位の電源電位のレベ
ルシフトによるノイズマージン減少分の1/2とし
その値を52.5mVとする。
Now, the current switch section 45 in FIG.
Assume that the current in the emitter follower section 46 is 1 mA, the total current in the emitter follower section 46 is 2 mA, and the logic amplitude of the current switch section 45 is 500 mV.
Consider the case where each circuit 1' includes two sets of circuits shown in FIG. To simplify the explanation, only the highest potential external power supply potential system will be explained. The highest potential applied to the external terminal 21 in FIG. 2 is connected to the wiring in the power supply potential supply wiring area 32 in FIG.
The width of the wiring in the power potential supply wiring area 32 of the basic cell 11' is 100 μm, the length is 250 μm, and the wiring layer resistance is
Assume that it is 0.03Ω/□. If the conventional method is adopted, since the highest power supply potential supply wiring for the basic cell 11' is only in the power supply potential supply wiring area 32, both the power supply potential supply wirings 41 and 42 are connected to the wiring in the power supply potential supply wiring area 32. . As a result, when the level shift amount of the basic cell 11' in the cell position closest to the power supply potential supply wiring 23 among the basic cells 11' on the same column in FIG. The level shift amount is 85.5mV. The basic level shift difference between different columns is
Assuming that the voltage is 20 mV, the difference in level shift amount between all basic cells 11' in the internal cell array area 25 is
It becomes 105.5mV. For ECL gate arrays, level shifting of high potential power supply potentials directly leads to a reduction in noise margin. Since a level shift of a low power supply potential normally appears as a decrease in logic amplitude, 1/2 of this is involved in the decrease in noise margin.
For the sake of simplicity, let us assume that this value is 52.5 mV, which is 1/2 of the noise margin reduction due to the level shift of the high power supply potential.

論理振幅を500mVとしたとき、その1/2の所を
しきい値とし、伝達特性における微分利得が1で
ある点即ちユニテイー・ゲイン・ポイントがしき
い値より100mVであるとするとノイズマージン
として許されるのは150mVとなる。その他諸々
のノイズマージンを減少させる要素による分を
30mVとすると上述の例におけるノイズマージン
減少分の総和は188mVとなりユニテイー・ゲイ
ン・ポイントを割つてしまい、回路の安定動作を
保証できない値となる。今、ノイズマージン減少
分の総和を150mV以内にするためには第3図に
おける電源電位供給配線領域32内の配線の幅を
128μm以上に設定しなければならない。このとき
低電位側の電源電位供給配線領域33内の配線も
同様に配線幅を拡大する必要があり基本セル1
1′内の総計の電源配線幅増加幅は56μm以上必要
となる。
When the logic amplitude is 500mV, the threshold is set at 1/2 of that, and if the point where the differential gain in the transfer characteristic is 1, that is, the unity gain point, is 100mV above the threshold, then the noise margin is acceptable. The output voltage is 150mV. The amount due to other factors that reduce the noise margin
If it is 30 mV, the total noise margin reduction in the above example will be 188 mV, which will divide the unity gain point and become a value that cannot guarantee stable operation of the circuit. Now, in order to keep the total noise margin reduction within 150mV, the width of the wiring in the power supply potential supply wiring area 32 in FIG.
Must be set to 128μm or more. At this time, it is necessary to similarly expand the wiring width of the wiring in the power supply potential supply wiring area 33 on the low potential side.
The total power supply wiring width increase width within 1' is required to be 56 μm or more.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述したように、基本セル当りの定常電流が大
きい大規模ゲートアレイ、特にECLゲートアレ
イの内部セルアレイ領域内に外部電源電位を供給
する電源電位供給配線を布設する際に従来の布設
方法を採用した場合には電源電位供給配線幅を回
路のノイズマージンを確保できる程度に太く設定
することが必要となり、太幅の電源電位供給配線
と異なる配線層で形成されこれと交差する信号配
線の寄生配線容量が増加し、集積回路全体として
の電気的特性、特に高速性が損なわれるという第
1の欠点がある。また、内部セルアレイ領域を拡
大せずに電源電位供給配線幅を太く設定する場合
には限られた配線布設領域内において信号配線の
布設自由度を低下させるという第2の欠点があ
る。また、内部セルアレイ領域を拡大し信号配線
の布設自由度を増す場合には、基本セル間を結ぶ
信号配線の平均配線長が増加し、配線に付加する
寄生容量が増し集積回路全体としての電気的特
性、特に高速化を損なうという第3の欠点とチツ
プサイズが拡大し、製造歩留りが低下するという
第4の欠点がある。
As mentioned above, conventional wiring methods are used to lay power supply potential supply wiring for supplying external power supply potential within the internal cell array area of large-scale gate arrays with large steady-state currents per basic cell, especially ECL gate arrays. In some cases, it is necessary to set the power supply potential supply wiring width wide enough to ensure the noise margin of the circuit, and the parasitic wiring capacitance of the signal wiring that is formed in a wiring layer different from the wide power supply potential supply wiring and intersects with the wide power supply potential supply wiring. The first drawback is that the electrical characteristics of the integrated circuit as a whole, especially its high speed performance, are impaired. Furthermore, if the width of the power supply potential supply wiring is set to be large without enlarging the internal cell array area, there is a second drawback that the degree of freedom in laying the signal wiring within the limited wiring laying area is reduced. In addition, when expanding the internal cell array area and increasing the degree of freedom in laying signal wiring, the average wiring length of the signal wiring connecting basic cells increases, which increases the parasitic capacitance added to the wiring and reduces the electrical power of the integrated circuit as a whole. The third disadvantage is that the characteristics, especially the speed increase, is impaired, and the fourth disadvantage is that the chip size is increased and the manufacturing yield is reduced.

本発明の目的は、対象回路別に電源電位供給線
を2本にし、回路のノイズマージンを抑え、チツ
プサイズを拡大することなく、信号配線の自由度
を増し、高速性を発揮するモノリシツク集積回路
を提供することにある。
The purpose of the present invention is to provide a monolithic integrated circuit that uses two power supply potential supply lines for each target circuit, suppresses the noise margin of the circuit, increases the degree of freedom in signal wiring without increasing the chip size, and exhibits high speed. It's about doing.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の特徴は、回路構成要素と電源電位供給
配線とを有する基本セルを行列に配置した内部セ
ルアレイ領域と、前記内部セルアレイ領域に外部
電源電位を供給する外部電源電位供給配線と、前
記外部電源電位供給配線に接続する外部端子とを
有するモノリシツク集積回路において、前記回路
構成要素は、第1の種類の回路構成要素部と、第
2の種類の回路構成要素部とを有して構成され、
前記電源電位供給配線は、前記第1の種類の回路
構成要素部を主たる供給対象として前記基本セル
上を縦貫する第1の電源電位供給配線と、前記第
2の種類の回路構成要素部を主たる供給対象とし
て前記基本セル上を縦貫する第2の電源電位供給
配線とを有し、第1の電源電位供給配線と第2の
電源電位供給配線とは前記内部セルアレイ領域外
で同一の前記外部電源電位供給配線に共通接続さ
れ、前記第1の種類の回路構成要素部は前記第2
の種類の回路構成要素部より電位のレベルシフト
に敏感な回路形式であり、かつ、前記第1の電源
電位供給配線の配線幅は前記第2の電源電位供給
配線の配線幅より大きいモノリシツク集積回路に
ある。
The present invention is characterized by an internal cell array region in which basic cells having circuit components and power supply potential supply wiring are arranged in rows and columns, an external power supply potential supply wiring that supplies an external power supply potential to the internal cell array region, and the external power supply In a monolithic integrated circuit having an external terminal connected to a potential supply wiring, the circuit component includes a first type of circuit component section and a second type of circuit component section,
The power supply potential supply wiring is a first power supply potential supply wiring that runs vertically over the basic cell, mainly supplying the first type of circuit component, and a first power supply potential supply wiring that mainly supplies the first type of circuit component. It has a second power supply potential supply wiring that runs vertically over the basic cell as a supply target, and the first power supply potential supply wiring and the second power supply potential supply wiring are connected to the same external power supply outside the internal cell array area. The first type of circuit component section is commonly connected to the potential supply wiring, and the first type of circuit component section is connected to the second type of circuit component section.
A monolithic integrated circuit having a circuit type that is more sensitive to potential level shifts than the type of circuit component parts, and in which the wiring width of the first power supply potential supply wiring is larger than the wiring width of the second power supply potential supply wiring. It is in.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して
説明する。
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例のレイアウト図であ
る。基本セル11の上層に第1の種類の電源電位
供給配線領域12,13と第2の種類の電源電位
供給配線領域14,15が配置され、下層に第1
及び第2の種類の回路構成要素(図示されていな
い)が設けられる。
FIG. 1 is a layout diagram of an embodiment of the present invention. First type power supply potential supply wiring regions 12 and 13 and second type power supply potential supply wiring regions 14 and 15 are arranged in the upper layer of the basic cell 11, and the first type power supply potential supply wiring regions 14 and 15 are arranged in the lower layer.
and a second type of circuitry (not shown).

第1の種類の回路構成要素を第4図のカレン
ト・スイツチ部45、第2の種類の回路構成要素
をエミツタフオロア部46に分ける。そして、第
1の種類の電源電位供給配線領域12,13に第
1の種類の回路構成要素であるカレントスイツチ
部45に電位を供給する配線を、第2の種類の電
源電位供給配線領域14,15に第2の種類の回
路構成要素であるエミツタフオロア部46に電位
を供給する配線をそれぞれ設ける。また、第1の
種類の電源電位供給配線領域12に設けられる配
線はカレント・スイツチ部45に最高電位を供給
するものであり、電源電位供給配線41に接続さ
れる。第1の電源電位供給配線領域13に設けら
れる配線はカレント・スイツチ部44に最低電位
を供給するものであり、電源電位供給配線43に
接続する。第2の電源電位供給配線領域14に設
けられる配線はエミツタ・フオロア部46に最高
電位を供給するものであり電源電位供給配線42
に接続される。第2の電源電位供給配線領域15
に設けられる配線はエミツタ・フオロア部46に
最低電位を供給するものであり電源電位供給配線
44に接続される。
The first type of circuit component is divided into a current switch section 45 in FIG. 4, and the second type of circuit component is divided into an emitter follower section 46. Then, wiring for supplying a potential to the current switch section 45, which is a first type of circuit component, is placed in the first type of power supply potential supply wiring areas 12 and 13, and in the second type of power supply potential supply wiring area 14, Wiring for supplying a potential to the emitter follower section 46, which is a second type of circuit component, is provided at 15, respectively. Further, the wiring provided in the first type of power supply potential supply wiring region 12 supplies the highest potential to the current switch section 45 and is connected to the power supply potential supply wiring 41. The wiring provided in the first power supply potential supply wiring region 13 supplies the lowest potential to the current switch section 44 and is connected to the power supply potential supply wiring 43. The wiring provided in the second power supply potential supply wiring area 14 is for supplying the highest potential to the emitter/follower section 46, and is used as the power supply potential supply wiring 42.
connected to. Second power supply potential supply wiring area 15
The wiring provided at is for supplying the lowest potential to the emitter follower section 46 and is connected to the power supply potential supply wiring 44.

第1の電源電位供給配線領域12,13に設け
られる配線は基本セル11内で幅が60μm、長さ
が250μm電源電位供給配線領域14,15に設け
られる配線は幅が30μm、長さが250μmの寸法で
あり、全ての配線層抵抗は0.03Ω/□であるとす
る。電源電位供給配線領域12,14内の配線は
ともに最高電位であり、第2図の電源電位供給配
線23に接続することにより内部セルアレイ領域
25の端部で短絡する。同様に電源電位供給配線
領域13,15内の配線はともに最低電位であ
り、外部電源電位供給配線24に接続し短絡す
る。これら電源電位供給配線領域12,13,1
4,15は第2図の内部セルアレイ領域25の基
本セル11′上を縦貫することになる。今、最高
電位側を説明すると、第2図の同列上の基本セル
11′の内最も外部電源電位供給配線23に近い
セル位置の基本セル11′上の電源電位のレベル
シフト量を0mVとしたとき、最も遠い基本セル
位置11′に対応する基本セル11の電源電位供
給配線領域12内のレベルシフト量は47.5mV、
電源電位供給配線領域14内の配線のレベルシフ
ト量は190mVとなる。従来例と同様に異なる列
間のレベルシフト量の差が20mVであるとする
と、カレント・スイツチ部45の内部セルアレイ
領域25内の全基本セル11′間の最大レベルシ
フト量差は67.5mV、またエミツタ・フオロア部
46の内部セルアレイ領域25内の全基本セル間
の最大レベルシフト量差は210mVとなる。最低
電位側も同一の結果となるので説明は省略する。
The wiring provided in the first power supply potential supply wiring areas 12 and 13 has a width of 60 μm and a length of 250 μm in the basic cell 11. The wiring provided in the power supply potential supply wiring areas 14 and 15 has a width of 30 μm and a length of 250 μm. Assume that the dimensions are , and the resistance of all wiring layers is 0.03Ω/□. The wiring in the power supply potential supply wiring regions 12 and 14 are both at the highest potential, and are short-circuited at the end of the internal cell array region 25 by connecting to the power supply potential supply wiring 23 in FIG. Similarly, the wiring within the power supply potential supply wiring regions 13 and 15 are both at the lowest potential, and are connected to the external power supply potential supply wiring 24 for short-circuiting. These power supply potential supply wiring areas 12, 13, 1
4 and 15 run vertically over the basic cells 11' of the internal cell array region 25 in FIG. Now, to explain the highest potential side, the amount of level shift of the power supply potential on the basic cell 11' in the cell position closest to the external power supply potential supply wiring 23 among the basic cells 11' on the same column in FIG. 2 is set to 0 mV. At this time, the level shift amount in the power supply potential supply wiring area 12 of the basic cell 11 corresponding to the farthest basic cell position 11' is 47.5 mV,
The level shift amount of the wiring within the power supply potential supply wiring region 14 is 190 mV. Assuming that the difference in level shift amount between different columns is 20 mV as in the conventional example, the maximum level shift amount difference between all the basic cells 11' in the internal cell array region 25 of the current switch section 45 is 67.5 mV, and The maximum level shift amount difference between all basic cells in the internal cell array region 25 of the emitter follower section 46 is 210 mV. Since the same result is obtained on the lowest potential side, the explanation will be omitted.

従来例で述べたように、第4図に示すカレン
ト・スイツチ部45においては最高電位の電源電
位のレベルシフト量は直接ノイズマージンの減少
につながる。最低電位の電源電位のレベルシフト
量がノイズマージンに影響する量は従来例と同じ
その1/2とするとその値は33.5mVである。従来例
と同様に、論理振幅500mVの1/2の所にしきい値
があり、そこから100mVの所がユニテイー・ゲ
イン・ポイントとし、その他諸々のノイズマージ
ンを減少させる要素による分を30mVとすると、
本実施例におけるノイズマージン減少分の総和は
131mVとなり、ユニテイー・ゲイン・ポイント
まで19mVの余裕がある。第4図のエミツタ・フ
オロア部46に供給される電源電位は210mVの
レベルシフトを生じているが、この程度のレベル
シフトはエミツタ・フオロアの回路動作に対し何
ら問題を生じない。このように、本実施例におい
ては、最高電位あるいは最低電位を供給する基本
セル11内に設けられる電源電位供給配線の幅の
合計が180μmであるにもかかわらず、従来例の場
合の電源電位供給配線の幅の合計が256μmのもの
よりノイズマージンに余裕がありかつ電気的特性
も何ら損なわれるものがないという結果が得られ
た。
As described in the conventional example, in the current switch section 45 shown in FIG. 4, the amount of level shift of the highest power supply potential directly leads to a reduction in the noise margin. The amount by which the level shift amount of the lowest potential power supply potential affects the noise margin is 1/2, which is the same as in the conventional example, and the value is 33.5 mV. As in the conventional example, there is a threshold at 1/2 of the logic amplitude of 500 mV, and 100 mV from there is the unity gain point, and the amount due to other factors that reduce the noise margin is 30 mV.
The total amount of noise margin reduction in this example is
The result is 131mV, leaving a margin of 19mV to the unity gain point. Although the power supply potential supplied to the emitter follower section 46 in FIG. 4 has a level shift of 210 mV, this degree of level shift does not cause any problem with the circuit operation of the emitter follower. As described above, in this embodiment, although the total width of the power supply potential supply wiring provided in the basic cell 11 that supplies the highest potential or the lowest potential is 180 μm, the power supply potential supply in the conventional example is The results showed that the noise margin was greater than that of the case where the total wiring width was 256 μm, and the electrical characteristics were not impaired in any way.

上記実施例では第1の種類の回路構成要素をカ
レント・スイツチ型回路、第2の種類の回路構成
要素をエミツタ・フオロアとしたECLゲートア
レイを例として説明したが、本発明は第1の種類
の回路構成要素をTTL論理回路部、第2の種類
の回路構成要素を出力バツフア回路としたTTL
ゲートアレイ、第1の種類の回路構成要素を
CMOS回路部、第2の種類の回路構成要素をバ
イポーラ回路部としたバイポーラ・CMOS混在
ゲートアレイ等に適用でき、一方の回路構成要素
を他方の回路構成要素によるノイズから隔離しノ
イズマージンが確保されるという効果が得られ
る。
In the above embodiment, the first type of circuit component is a current switch type circuit, and the second type of circuit component is an emitter follower. The TTL circuit component is a TTL logic circuit section, and the second type of circuit component is an output buffer circuit.
Gate array, the first type of circuit component
It can be applied to bipolar/CMOS mixed gate arrays, etc. in which the CMOS circuit part or the second type of circuit component is a bipolar circuit part, and one circuit component is isolated from the noise caused by the other circuit component to ensure a noise margin. This has the effect of

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、ゲートアレイ
の内部セルアレイ領域に外部電源電位を供給する
際にノイズマージンに余裕がある回路構成要素に
対する電源電位供給配線とノイズマージンに余裕
がない回路構成要素に対する電源電位供給配線と
を分離して外部電源電位を供給することにより内
部セルアレイ領域内に布設する電源電位配線領域
を極力小さくしつつ回路のノイズマージンを確保
することが可能であり、その結果チツプサイズ及
び内部セルアレイ領域を拡げることなく、信号配
線の布設自由度を増し、かつ電気的特性、特に高
速性を発揮できる集積回路を提供できるという効
果がある。また本発明を用いた場合過渡的に電流
変化がある回路構成要素をノイズに弱い回路構成
要素と分離することもでき集積回路自体の電気的
特性および信頼性を向上することが可能となる。
As described above, the present invention provides power supply potential supply wiring for circuit components with sufficient noise margin when supplying external power supply potential to the internal cell array region of a gate array, and power supply potential supply wiring for circuit components with no margin for noise margin. By separating the power supply potential supply wiring from the external power supply potential and supplying the external power supply potential, it is possible to minimize the power supply potential wiring area laid within the internal cell array area while ensuring a noise margin for the circuit.As a result, the chip size and This has the effect of increasing the degree of freedom in laying signal wiring without expanding the internal cell array area, and providing an integrated circuit that can exhibit electrical characteristics, particularly high speed. Furthermore, when the present invention is used, circuit components that undergo transient current changes can be separated from circuit components that are susceptible to noise, making it possible to improve the electrical characteristics and reliability of the integrated circuit itself.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例のレイアウト図、第2
図は従来のゲートアレイ型集積回路のレイアウト
図、第3図は第2図に示す基本セルのレイアウト
図、第4図は従来のECL基本回路の回路図であ
る。 11,11′……基本セル、12,13……第
1の種類の電源電位供給配線領域、14,15…
…第2の種類の電源電位供給配線領域、21,2
2……外部端子、23,24……外部電源電位供
給配線、25……内部セルアレイ領域、32,3
3……電源電位供給配線領域、41,42,4
3,44……電源電位供給配線、45……カレン
ト・スイツチ部、46……エミツタ・フオロア
部、Q1,Q2,Q3,Q4,Q5……トランジスタ、
R1,R2,R3,R4,R5……抵抗器。
Figure 1 is a layout diagram of an embodiment of the present invention, Figure 2 is a layout diagram of an embodiment of the present invention.
FIG. 3 is a layout diagram of a conventional gate array type integrated circuit, FIG. 3 is a layout diagram of the basic cell shown in FIG. 2, and FIG. 4 is a circuit diagram of a conventional ECL basic circuit. 11, 11'... basic cell, 12, 13... first type power supply potential supply wiring area, 14, 15...
...Second type of power supply potential supply wiring area, 21, 2
2... External terminal, 23, 24... External power supply potential supply wiring, 25... Internal cell array area, 32, 3
3... Power supply potential supply wiring area, 41, 42, 4
3, 44...Power supply potential supply wiring, 45...Current switch section, 46...Emitter follower section, Q1 , Q2 , Q3 , Q4 , Q5 ...Transistor,
R 1 , R 2 , R 3 , R 4 , R 5 ...Resistors.

Claims (1)

【特許請求の範囲】 1 回路構成要素と電源電位供給配線とを有する
基本セルを行列に配置した内部セルアレイ領域
と、前記内部セルアレイ領域に外部電源電位を供
給する外部電源電位供給配線と、前記外部電源電
位供給配線に接続する外部端子とを有するモノリ
シツク集積回路において、 前記回路構成要素は、第1の種類の回路構成要
素部と、第2の種類の回路構成要素部とを有して
構成され、 前記電源電位供給配線は、前記第1の種類の回
路構成要素部を主たる供給対象として前記基本セ
ル上を縦貫する第1の電源電位供給配線と、前記
第2の種類の回路構成要素を主たる供給対象とし
て前記基本セル上を縦貫する第2の電源電位供給
配線とを有し、第1の電源電位供給配線と第2の
電源電位供給配線とは前記内部セルアレイ領域外
で同一の前記外部電源電位供給配線に共通接続さ
れ、 前記第1の種類の回路構成要素部は前記第2の
種類の回路構成要素部より電位のレベルシフトに
敏感な回路形式であり、かつ、 前記第1の電源電位供給配線の配線幅は前記第
2の電源電位供給配線の配線幅より大きいことを
特徴とするモノリシツク集積回路。 2 前記回路構成要素がECL型であり、前記第
1の種類の回路構成要素部がカレントスイツチ型
回路であり、前記第2の種類の回路構成要素部が
エミツタフオロアであることを特徴とする特許請
求の範囲第1項記載のモノリシツク集積回路。
[Scope of Claims] 1. An internal cell array region in which basic cells having circuit components and power supply potential supply wiring are arranged in rows and columns; an external power supply potential supply wiring that supplies an external power supply potential to the internal cell array region; In a monolithic integrated circuit having an external terminal connected to a power supply potential supply wiring, the circuit component includes a first type of circuit component section and a second type of circuit component section. , the power supply potential supply wiring is a first power supply potential supply wiring that runs vertically over the basic cell, mainly supplying the first type of circuit component, and a first power supply potential supply wiring that mainly supplies the second type of circuit component. It has a second power supply potential supply wiring that runs vertically over the basic cell as a supply target, and the first power supply potential supply wiring and the second power supply potential supply wiring are connected to the same external power supply outside the internal cell array area. are commonly connected to potential supply wiring, the first type of circuit component section is of a circuit type that is more sensitive to potential level shifts than the second type of circuit component section, and the first power supply potential A monolithic integrated circuit characterized in that the wiring width of the supply wiring is larger than the wiring width of the second power supply potential supply wiring. 2. A patent claim characterized in that the circuit component is an ECL type, the first type of circuit component is a current switch type circuit, and the second type of circuit component is an emitter follower. A monolithic integrated circuit according to claim 1.
JP60196241A 1985-09-04 1985-09-04 Monolithic integrated circuit Granted JPS6254939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60196241A JPS6254939A (en) 1985-09-04 1985-09-04 Monolithic integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60196241A JPS6254939A (en) 1985-09-04 1985-09-04 Monolithic integrated circuit

Publications (2)

Publication Number Publication Date
JPS6254939A JPS6254939A (en) 1987-03-10
JPH0587018B2 true JPH0587018B2 (en) 1993-12-15

Family

ID=16354539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60196241A Granted JPS6254939A (en) 1985-09-04 1985-09-04 Monolithic integrated circuit

Country Status (1)

Country Link
JP (1) JPS6254939A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2516514B2 (en) * 1991-12-17 1996-07-24 株式会社北松セメント工業所 Water collection structure for gutter
JPH0627981U (en) * 1992-09-09 1994-04-15 有限会社友和開発 Simple sewer system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5420680A (en) * 1977-07-18 1979-02-16 Hitachi Ltd Large scale integrated circuit
JPS58107649A (en) * 1981-12-21 1983-06-27 Nec Corp Semiconductor integrated circuit device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5420680A (en) * 1977-07-18 1979-02-16 Hitachi Ltd Large scale integrated circuit
JPS58107649A (en) * 1981-12-21 1983-06-27 Nec Corp Semiconductor integrated circuit device

Also Published As

Publication number Publication date
JPS6254939A (en) 1987-03-10

Similar Documents

Publication Publication Date Title
US7018889B2 (en) Latch-up prevention for memory cells
IE53844B1 (en) Semiconductor integrated circuit comprising a semiconductor substrate and interconnecting layers
US4701777A (en) Gate array type semiconductor integrated circuit device
US4499484A (en) Integrated circuit manufactured by master slice method
US4748488A (en) Master-slice-type semiconductor integrated circuit device
US3973246A (en) Sense-write circuit for bipolar integrated circuit ram
CN1033116C (en) complementary metal oxide semiconductor integrated circuit
GB1598899A (en) Logic circuits
EP0307844A2 (en) Semiconductor integrated circuit having interconnection with improved design flexibility
EP0011961B1 (en) Three-state output circuit
JPH0365663B2 (en)
US4122542A (en) Memory array
JPH0587018B2 (en)
US5515007A (en) Triple buffered amplifier output stage
EP0144218B1 (en) Ecl gate array
KR920011006B1 (en) Semiconductor integrated circuit device
JPH0434307B2 (en)
EP0074804B1 (en) Semiconductor integrated circuit comprising a semiconductor substrate and interconnecting layers
US4338619A (en) Flip-flop circuit
US4851891A (en) Gate array having transistor buried in interconnection region
US5237215A (en) ECL master slice gates with different power levels
JPH0131304B2 (en)
JPS643054B2 (en)
JP2674378B2 (en) Semiconductor integrated circuit device
JP2876687B2 (en) Master slice type integrated circuit device