JPH0586967B2 - - Google Patents
Info
- Publication number
- JPH0586967B2 JPH0586967B2 JP62189270A JP18927087A JPH0586967B2 JP H0586967 B2 JPH0586967 B2 JP H0586967B2 JP 62189270 A JP62189270 A JP 62189270A JP 18927087 A JP18927087 A JP 18927087A JP H0586967 B2 JPH0586967 B2 JP H0586967B2
- Authority
- JP
- Japan
- Prior art keywords
- fibers
- fiber
- molded product
- resin
- tensile modulus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Reinforced Plastic Materials (AREA)
- Laminated Bodies (AREA)
- Moulding By Coating Moulds (AREA)
Description
(産業上の利用分野)
本発明は繊維補強樹脂成形物に関するものであ
る。
(従来の技術)
繊維に樹脂を含浸してなる繊維補強樹脂成形物
は、軽量で高強度なために各種産業分野に利用さ
れている。特にガラス繊維や炭酸繊維を用いた成
形物は、強度や剛性に優れていることから広く用
いられている。
(発明が解決しようとする問題点)
しかしながら、これら成形物が実用に供されて
衝撃を受けた場合、伸度の少ない炭素繊維を補強
繊維として用いたものでは脆性破壊を生じ、また
ある程度伸度の大きいガラス繊維でも脆性破壊に
近い状態の破壊となり、成形物が衝撃エネルギー
を吸収する程度はそれ程大きくなく、この種の成
形物は衝撃を受ける部位に用いるには問題があ
る。このことの解決方法のひとつは成形物の構造
や形状を工夫して衝撃エネルギーの吸収能力を大
きくすることであるが、成形物をそれが使用され
る部位の形状と一致させることは常にたやすいこ
とではない。更にもうひとつの方法としては、補
強用として使用する繊維の種類を2種以上混合し
て用いる、いわゆるハイブリツドの方法である。
しかし、通常の有機繊維を炭素繊維やガラス繊維
と組合わせて用いる場合には、熱硬化性樹脂の場
合は含浸する樹脂の硬化加熱温度に、熱可塑性樹
脂の場合はその融点又は軟化点まで加熱して繊維
に樹脂を含浸する必要があるので、該有機繊維
は、その硬化加熱温度、融点温度又は軟化点温度
に対して充分耐えられるものでなければならな
い。
(問題点を解決するための手段)
本発明の目的は以上の様な欠点を改良し、強度
と剛性に優れかつ耐衝撃性にも優れた繊維補強樹
脂成形物を提供することである。
すなわち、本発明は、繊維で補強された樹脂成
形物であつて、当該成形物の外層を補強する繊維
が引張弾性率が4t/mm2以上の溶融液晶全芳香族ポ
リエステル繊維、内層を補強する繊維が引張弾性
率が6t/mm2以上の無機繊維からなり、これら外層
繊維と内層繊維の合計量に成形物中30〜80容量%
の割合であることを特徴とする繊維補強樹脂成形
物である。
本発明の成形物の形状は、例えば円柱形状、板
状形状、H形状、T形状など種々の形状のものが
考えられる。これらにおいて成形物の内層すなわ
ち芯となる側の補強用繊維として剛性の高い(引
張弾性率≧6t/mm2)無機繊維からなる補強材を有
する樹脂層を、外側の層には引張弾性率4t/mm2以
上の溶融液晶全芳香族ポリエステル繊維を有する
樹脂層を有するように各々の繊維を配置すること
によつて、従来のハイブリツド成形物では得られ
ていなかつた大きいエネルギーを衝撃時に吸収で
きる成形物を見出した。
本発明の最大の知見は前述のとおりの溶融液晶
全芳香族ポリエステル繊維と無機繊維を前述のと
おりの構成でハイブリツド化した点であつて、こ
の構成を満足しない場合は後述する比較例に示す
ようにエネルギーの吸収効果はない。本発明の成
形物におけるようにエネルギーの吸収に優れてい
ると、その成形物の使用時に外部から局部的な衝
撃が加わつても脆性的破壊をせずに成形物に穴が
あくことなく凹む程度に変形するに止まる。
更に、通常使用される部材、例えば自動車ビー
ムやヘルメツト等が衝撃を受ける場合は速い速度
で短時間に、すなわち一瞬にして衝撃を受けるこ
とが多いが、本発明の成形物は後に実施例で示す
ように、速い速度で衝撃を受けた時の衝撃吸収能
力に優れているものである。
本発明で用いる繊維は基本的にはフイラメント
ヤーンの形で用いられるが、少くとも一方を織物
等の形で用いても同様の結果が得られる。
本発明の成形物における内、外層繊維の比率
は、内層繊維の脆さを外層繊維でカバーするた
め、外層繊維は内層繊維の20容量%以上、好まし
くは50容量%以上用いることが望ましい。
また、これらの内層繊維と外層繊維の合計量
は、成形物中に30〜80容量%、特に好ましくは45
〜70容量%の割合である。
本発明で用いる引張弾性率が4t/mm2以上の有機
繊維としては、溶融液晶全芳香族ポリエステル繊
維が用いられる。
ここで云う溶融液晶全芳香族ポリエステルと
は、一種以上の芳香族ヒドロキシ酸の、場合によ
つては芳香族ジオール及び/又は芳香族二酸との
縮合による溶融加工可能な芳香族ポリエステルで
あり、存在する各成分の少くとも一個の芳香環が
重合体主鎖に寄与しているという意味において全
芳香族と称される全芳香族ポリエステルであつ
て、異方性溶融相を形成しうるいわゆるサーモト
ロピツク液晶性の全芳香族ポリエステルをいう。
これらの全芳香族ポリエステルのうち、ヒドロ
キシ安息香酸、特にp−ヒドロキシ安息香酸と6
−ヒドロキシ−2−ナフトエ酸とのポリエステ
ル、又更にこれらにp,p′−ビスフエノールを第
3成分として共重合させたがポリエステルの他、
p−ヒドロキシ安息香酸、p,p′−ビフエニー
ル、テレフタール酸及び/又はイソフタル酸から
成るポリエステルが有用であるが、それらに限定
されるものではなく、本発明の目的を阻害しない
限りにおいて、他の成分のポリマーへの導入を妨
げるものではない。
一方、本発明において、引張弾性率が6t/mm2以
上の無機繊維としては、ガラス繊維、炭素繊維、
金属繊維等がある。
本発明で用いられる樹脂は、熱硬化性樹脂とし
てエポキシ樹脂、ビニルエステル樹脂、不飽和ポ
リエステル樹脂、フエニール樹脂、ポリウレタン
樹脂等であり、熱可塑性樹脂としてはポリアリレ
ート、ポリエーテルエーテルケトン、ポリフエニ
レンサルフアイド、ポリフエニレンオキシド、ポ
リアミド、ポリカーボネート、ポリスルホン、ポ
リアセテート、ポリエチレンテレフタレート、ポ
リブチレンテレフタレート、ポリエチレン、ポリ
プロピレン、ポリ塩化ビニリデン、ポリ塩化ビニ
ル、熱可塑性ポリウレタン、ポリスチレン、スチ
レン−ブタジエン−アクリロニトリル共重合体、
スチレン−アクリロニトリル共重合体等であり、
これらの2種又はそれ以上を組合せて用いること
が出来る。これらの樹脂には一般に用いられる可
塑剤、熱安定剤、及び光安定剤、核剤、充填剤、
染顔料、加工助剤、耐衝撃剤、増量剤等の適量を
添加させることもできる。
本発明における成形物の最適の組合わせは、外
層として溶融液晶全芳香族ポリエステル繊維、内
層としてガラス繊維をそれぞれフイラメントヤー
ンの形で等量ずつ用いて熱硬化性樹脂でロツド状
に、引抜成形したものであつて、以下の実施例に
よつてこの成形物によるエネルギー吸収効果の顕
著なことは明らかである。
本発明の成形物は、一般に用いられる引抜成形
や押出成形の方法によつて同時もしくは別々に内
側の層と外側の層を形成することができ、その形
状も必要に応じていかようにも形成することが可
能である。
例えば、本発明における円柱状成形物は次の様
にして得ることができる。無機繊維を引揃えて樹
脂を含浸し、一定径を有するノズルを通して引出
し、更に、溶融液晶全芳香族ポリエステル繊維を
引揃えて樹脂を含浸し、該ノズルの周辺に等分に
配置された一定径を有するノズルを通して引出
し、円柱形状を付与する口金で外側が溶融液晶全
芳香族ポリエステル繊維で中心が無機繊維の同心
円柱状になるように引込み過剰の樹脂を絞りなが
ら加熱炉中で硬化させ、更により高温の加熱炉で
樹脂の後硬化をしたのち一定の長さに切断するこ
とによつて得られる。更に樹脂を含浸したいわゆ
るプリプレグを必要な構成に重ね合わせてのち加
圧加熱する方法にても成形することができる。
(実施例)
以下実施例をもつて具体的に説明するが、これ
によつて本発明が制限を受けるものではない。
尚、実施例中曲げ強さ、曲げ弾性率、破壊までの
全エネルギー量の測定は、第1図及び第2図に示
した如く3点曲げによる曲げ試験に基づいて行つ
た。
実施例 1
体積比で各々が25%となるように引張弾性率
7t/mm2のガラスロービング(旭フアイバーグラス
製)と引張弾性率5t/mm2の溶融液晶ポリエステル
繊維;ベクトラン(クラレ製)をそれぞれ別々に
ベクトランでガラスロービングを囲むようにして
引揃えて硬化剤を含む不飽和ポリエステル樹脂
(日本ユピカ製)を含浸したのち、樹脂が体積比
で50%で、かつ中心の層(内層)がガラス繊維を
含む径7mmの樹脂層を形成し、その外側(外層)
が厚さ1.5mmのベクトラン繊維を含む樹脂層から
なるように口金を通して110℃に加熱された部分
で引抜きながら硬化して繊維補強樹脂成形物を得
た。
得られた成形物(ロツド)の物性を表1に示し
たが、破壊までの全エネルギー量で示されるよう
に、優れた耐衝撃性を有するものであつた。
実施例 2
体積比で、引張弾性率7t/mm2のガラスロービン
グ(旭フアイバーグラス製)38.5%、引張弾性率
5t/mm2の溶融液晶ポリエステル繊維、ベクトラン
(クラレ製)11.5%となるようにすること以外は
実施例1と同様にして引抜ロツドを得た。得られ
たロツドの物性を表1に示したが、優れた衝撃吸
収性を示していた。
比較例 1
体積比で50%となる引張弾性率7t/mm2のガラス
ロービング(旭フアイバーグラス製)を引揃えて
硬化剤を含む不飽和ポリエステル樹脂(日本ユピ
カ製)に含浸し、樹脂が体積比で50%でかつ径が
10mmとなるよう口金を通して、実施例1と同様に
して円柱状の成形物を得た。得られた成形物の物
性を表1に示したが、衝撃吸収エネルギーは実施
例1に比して小さいものであつた。
比較例 2
実施例1における内・外層繊維を入れ換えて引
抜成形を行い、ロツドを得た。得られたロツドの
物性は表1に示したが、衝撃吸収エネルギーは実
施例1のそれよりはるかに劣つていた。
比較例 3
実施例1に準じて、樹脂を含浸して引揃えたガ
ラスロービングと液晶繊維が互に混合された状態
でロツドの断面を形成するようにして引抜ロツド
を得た。得られたロツドの物性を表1に示した
が、衝撃吸収エネルギーは実施例のものより劣つ
ていた。
実施例 3
体積比で、引張弾性率が7t/mm2のガラスロービ
ング(旭フアイバーグラス製)44%、引張弾性率
5t/mm2の溶融液晶ポリエステル繊維、ベクトラン
(クラレ製)6%となるようにすること以外は実
施例1と同様にして引抜ロツドを得た。得られた
ロツドの物性は表1に示した。
実施例1および2に比して衝撃吸収エネルギー
は劣つているものの、実用上問題はなかつた。
(発明の効果)
本発明の繊維補強樹脂成形物は従来の繊維補強
樹脂成形物に比べ極めて優れた衝撃吸収性を有す
るものである。
(Industrial Application Field) The present invention relates to a fiber-reinforced resin molded product. (Prior Art) Fiber-reinforced resin molded products made by impregnating fibers with resin are used in various industrial fields because they are lightweight and have high strength. In particular, molded products using glass fibers or carbonate fibers are widely used because of their excellent strength and rigidity. (Problems to be Solved by the Invention) However, when these molded products are put into practical use and subjected to impact, those using carbon fibers with low elongation as reinforcing fibers will suffer brittle fracture, and the elongation will be reduced to some extent. Even glass fibers with a large diameter will break in a state close to brittle fracture, and the extent to which the molded product absorbs impact energy is not so great, and this type of molded product is problematic when used in areas that are subject to impact. One solution to this problem is to improve the structure and shape of the molding to increase its ability to absorb impact energy, but it is always easy to match the shape of the molding to the area in which it will be used. That's not the point. Yet another method is a so-called hybrid method in which two or more types of reinforcing fibers are used in combination.
However, when using ordinary organic fibers in combination with carbon fibers or glass fibers, heating is performed to the curing temperature of the resin to be impregnated in the case of thermosetting resins, or to its melting point or softening point in the case of thermoplastic resins. Since it is necessary to impregnate the fibers with resin, the organic fibers must be sufficiently resistant to the curing heating temperature, melting point temperature, or softening point temperature. (Means for Solving the Problems) An object of the present invention is to improve the above-mentioned drawbacks and provide a fiber-reinforced resin molded product having excellent strength and rigidity as well as excellent impact resistance. That is, the present invention provides a fiber-reinforced resin molded article, in which the fibers reinforcing the outer layer of the molded article are molten liquid crystal wholly aromatic polyester fibers with a tensile modulus of 4 t/mm 2 or more, and the inner layer is reinforced with fiber-reinforced resin moldings. The fibers are made of inorganic fibers with a tensile modulus of 6t/mm2 or more, and the total amount of these outer layer fibers and inner layer fibers accounts for 30 to 80% by volume in the molded product.
This is a fiber-reinforced resin molded product characterized by a ratio of . The molded product of the present invention may have various shapes, such as a cylindrical shape, a plate shape, an H shape, and a T shape. In these, the inner layer of the molded product, that is, the reinforcing fiber on the side that becomes the core, is a resin layer with a reinforcing material made of inorganic fiber with high rigidity (tensile modulus ≥ 6t/mm 2 ), and the outer layer has a tensile modulus of 4t. By arranging each fiber so that it has a resin layer containing molten liquid crystal fully aromatic polyester fibers of molten liquid crystal or fully aromatic polyester fibers with a size of 1/mm 2 or more, it is possible to absorb a large amount of energy upon impact, which was not possible with conventional hybrid molded products. I found something. The greatest finding of the present invention is that the molten liquid crystal wholly aromatic polyester fiber and inorganic fiber as described above are hybridized with the composition as described above. has no energy absorption effect. If the molded product of the present invention has excellent energy absorption, even if a local impact is applied from the outside during use, the molded product will not cause brittle fracture and will dent without making a hole. It stops changing. Furthermore, when normally used members such as automobile beams and helmets are subjected to impact, they are often subjected to impact at high speed and in a short period of time, that is, in an instant. As such, it has excellent shock absorption ability when it is hit at high speed. Although the fibers used in the present invention are basically used in the form of filament yarns, similar results can be obtained by using at least one of them in the form of a woven fabric or the like. Regarding the ratio of the inner and outer layer fibers in the molded product of the present invention, in order to cover the fragility of the inner layer fibers with the outer layer fibers, it is desirable that the outer layer fibers be used at 20% by volume or more, preferably 50% by volume or more of the inner layer fibers. In addition, the total amount of these inner layer fibers and outer layer fibers in the molded product is 30 to 80% by volume, particularly preferably 45% by volume.
The proportion is ~70% by volume. As the organic fiber having a tensile modulus of 4t/mm 2 or more used in the present invention, a molten liquid crystal wholly aromatic polyester fiber is used. The molten liquid crystal wholly aromatic polyester referred to herein is an aromatic polyester that can be melt-processed by condensation of one or more aromatic hydroxy acids, optionally with aromatic diols and/or aromatic diacids, It is a wholly aromatic polyester, which is called wholly aromatic in the sense that at least one aromatic ring of each component present contributes to the polymer main chain, and is a so-called thermoplastic polyester that can form an anisotropic melt phase. Tropic liquid crystalline wholly aromatic polyester. Among these wholly aromatic polyesters, hydroxybenzoic acid, especially p-hydroxybenzoic acid and 6
-Polyesters with hydroxy-2-naphthoic acid, and these copolymerized with p,p'-bisphenol as a third component.In addition to polyesters,
Polyesters consisting of p-hydroxybenzoic acid, p,p'-biphenyl, terephthalic acid and/or isophthalic acid are useful, but are not limited thereto, and other It does not prevent the components from being incorporated into the polymer. On the other hand, in the present invention, examples of inorganic fibers having a tensile modulus of 6t/mm 2 or more include glass fibers, carbon fibers,
There are metal fibers, etc. The resins used in the present invention include thermosetting resins such as epoxy resins, vinyl ester resins, unsaturated polyester resins, phenyl resins, and polyurethane resins, and thermoplastic resins such as polyarylates, polyether ether ketones, and polyphenylene resins. polyphenylene oxide, polyamide, polycarbonate, polysulfone, polyacetate, polyethylene terephthalate, polybutylene terephthalate, polyethylene, polypropylene, polyvinylidene chloride, polyvinyl chloride, thermoplastic polyurethane, polystyrene, styrene-butadiene-acrylonitrile copolymer ,
Styrene-acrylonitrile copolymer, etc.
Two or more of these can be used in combination. These resins contain commonly used plasticizers, heat stabilizers, light stabilizers, nucleating agents, fillers,
Appropriate amounts of dyes and pigments, processing aids, impact-resistant agents, fillers, etc. can also be added. The optimal combination of the molded product in the present invention is to use equal amounts of molten liquid crystal wholly aromatic polyester fiber as the outer layer and glass fiber in the form of filament yarn as the inner layer, and pultrude it into a rod shape with a thermosetting resin. It is clear from the following examples that the energy absorption effect of this molded product is remarkable. In the molded product of the present invention, the inner layer and outer layer can be formed simultaneously or separately by commonly used pultrusion or extrusion methods, and the shape can be formed in any way as required. It is possible to do so. For example, the cylindrical molded product of the present invention can be obtained as follows. Inorganic fibers are aligned and impregnated with resin, and drawn out through a nozzle having a constant diameter.Furthermore, molten liquid crystal wholly aromatic polyester fibers are aligned and impregnated with resin, and the inorganic fibers are drawn out through a nozzle having a constant diameter, which is arranged evenly around the nozzle. The resin is pulled out through a nozzle with a cylindrical shape, and then pulled into a concentric cylinder with molten liquid crystal wholly aromatic polyester fibers on the outside and inorganic fibers in the center. It is obtained by post-curing the resin in a high-temperature heating furnace and then cutting it into a certain length. Furthermore, it can also be molded by a method in which so-called prepregs impregnated with resin are stacked in a desired configuration and then heated under pressure. (Example) The present invention will be specifically explained below using examples, but the present invention is not limited by these.
In the examples, the bending strength, bending modulus, and total energy until fracture were measured based on a bending test using three-point bending as shown in FIGS. 1 and 2. Example 1 Tensile modulus so that each volume ratio is 25%
A glass roving (manufactured by Asahi Fiberglass) of 7 t/mm 2 and a molten liquid crystal polyester fiber with a tensile modulus of 5 t/mm 2 ; Vectran (manufactured by Kuraray) were separately drawn together so that the glass roving was surrounded by Vectran, and a hardening agent was added. After impregnating with unsaturated polyester resin (manufactured by U-Pica Japan), a resin layer with a diameter of 7 mm is formed, in which the resin accounts for 50% by volume and the center layer (inner layer) contains glass fiber, and the outer layer (outer layer)
was hardened while being pulled out through a die at a portion heated to 110° C. to obtain a fiber-reinforced resin molded product. The physical properties of the molded product (rod) obtained are shown in Table 1, and it had excellent impact resistance as shown by the total amount of energy required to break. Example 2 Glass roving (manufactured by Asahi Fiberglass) with a tensile modulus of elasticity of 7t/mm 2 in terms of volume ratio: 38.5%, tensile modulus of elasticity of 7t/mm 2
A drawn rod was obtained in the same manner as in Example 1, except that the fibers were made of 5t/mm 2 molten liquid crystalline polyester fiber and 11.5% Vectran (manufactured by Kuraray). The physical properties of the obtained rod are shown in Table 1, and it showed excellent shock absorption properties. Comparative Example 1 Glass rovings (manufactured by Asahi Fiberglass) with a tensile modulus of elasticity of 7 t/ mm2 , which is 50% by volume, were impregnated with unsaturated polyester resin (manufactured by Nippon U-Pica) containing a hardening agent, and the resin increased in volume. 50% of the ratio and the diameter is
A cylindrical molded product was obtained in the same manner as in Example 1 by passing it through a die so that the diameter was 10 mm. The physical properties of the obtained molded product are shown in Table 1, and the impact absorption energy was smaller than that of Example 1. Comparative Example 2 A rod was obtained by exchanging the inner and outer layer fibers in Example 1 and performing pultrusion molding. The physical properties of the obtained rod are shown in Table 1, and the impact absorption energy was far inferior to that of Example 1. Comparative Example 3 According to Example 1, a drawn rod was obtained by mixing resin-impregnated glass rovings and liquid crystal fibers to form a cross section of the rod. The physical properties of the obtained rod are shown in Table 1, and the impact absorption energy was inferior to that of the example. Example 3 Glass roving (manufactured by Asahi Fiber Glass) with a tensile modulus of 7t/ mm2 in terms of volume ratio, 44%, tensile modulus
A drawn rod was obtained in the same manner as in Example 1, except that the fibers were molten liquid crystalline polyester fibers of 5t/mm 2 and 6% Vectran (manufactured by Kuraray). The physical properties of the obtained rod are shown in Table 1. Although the impact absorption energy was inferior to Examples 1 and 2, there was no problem in practical use. (Effects of the Invention) The fiber-reinforced resin molded product of the present invention has extremely superior shock absorption properties compared to conventional fiber-reinforced resin molded products.
【表】【table】
第1図はロツド試料について3点曲げ試験を行
う場合の支点と荷重をかける点についての説明図
である。第2図は、本発明の成形物のS−S曲線
と曲げ強さ、曲げ弾性率、破壊までの全エネルギ
ーとの関係を示した図である。図中、初期接線は
弾性率を表わし、斜線部は破壊までの全エネルギ
ーを表わす。
1……本発明の成形物ロツド、2……支点、3
……荷重。
FIG. 1 is an explanatory diagram of the fulcrum and the point at which a load is applied when performing a three-point bending test on a rod sample. FIG. 2 is a diagram showing the relationship between the SS curve, bending strength, bending modulus, and total energy until fracture of the molded product of the present invention. In the figure, the initial tangent line represents the elastic modulus, and the shaded area represents the total energy up to failure. 1... Molded rod of the present invention, 2... Fulcrum, 3
……load.
Claims (1)
成形物の外層を補強する繊維が引張弾性率が4t/
mm2以上の溶融液晶全芳香族ポリエステル繊維、内
層を補強する繊維が引張弾性率6t/mm2以上の無機
繊維からなり、これら外層繊維と内層繊維の合計
量が成形物中30〜80容量%の割合であることを特
徴とする繊維補強樹脂成形物。 2 無機繊維がガラス繊維、炭素繊維及び金属繊
維からなる群より選ばれる少なくとも一種以上の
無機繊維である特許請求の範囲第1項記載の成形
物。 3 無機戦記がガラス繊維である特許請求の範囲
第2項記載の成形物。 4 樹脂が熱硬化性樹脂である特許請求の範囲第
1項乃至第3項記載の成形物。[Claims] 1. A resin molded product reinforced with fibers, in which the fibers reinforcing the outer layer of the molded product have a tensile modulus of 4t/
Molten liquid crystal fully aromatic polyester fiber with a size of mm 2 or more, fibers reinforcing the inner layer are made of inorganic fibers with a tensile modulus of 6t/mm 2 or more, and the total amount of these outer layer fibers and inner layer fibers is 30 to 80% by volume in the molded product. A fiber-reinforced resin molded article characterized by a proportion of . 2. The molded article according to claim 1, wherein the inorganic fiber is at least one type of inorganic fiber selected from the group consisting of glass fiber, carbon fiber, and metal fiber. 3. The molded product according to claim 2, wherein the mineral is made of glass fiber. 4. The molded article according to claims 1 to 3, wherein the resin is a thermosetting resin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62189270A JPS6431835A (en) | 1987-07-28 | 1987-07-28 | Fiber-reinforced polymer molded article |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62189270A JPS6431835A (en) | 1987-07-28 | 1987-07-28 | Fiber-reinforced polymer molded article |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6431835A JPS6431835A (en) | 1989-02-02 |
JPH0586967B2 true JPH0586967B2 (en) | 1993-12-15 |
Family
ID=16238504
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62189270A Granted JPS6431835A (en) | 1987-07-28 | 1987-07-28 | Fiber-reinforced polymer molded article |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6431835A (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5006402A (en) * | 1989-04-28 | 1991-04-09 | The University Of Akron | Wholly aromatic polyester fiber-reinforced high performance thermoplastic and process for preparing same |
US6574075B2 (en) | 1998-10-22 | 2003-06-03 | World Properties, Inc. | Liquid crystal polymer disk drive suspension assembly and method of manufacture thereof |
US6356414B1 (en) | 1998-10-22 | 2002-03-12 | World Properties, Inc. | Liquid crystal polymer disk drive suspension assembly |
JP4449531B2 (en) * | 2004-03-29 | 2010-04-14 | 日東紡績株式会社 | FIBER-REINFORCED RESIN LINEAR AND METHOD FOR PRODUCING THE SAME |
EP2335920B1 (en) * | 2008-09-29 | 2014-03-05 | Kuraray Co., Ltd. | Impact-resistant laminated article, process for producing the same, and impact-resistant material |
DE102013224927A1 (en) * | 2013-12-04 | 2015-06-11 | Bayerische Motoren Werke Aktiengesellschaft | Carrying, flat molding of a multilayer fiber composite material, in particular for a vehicle body |
CN105555521B (en) * | 2014-03-31 | 2018-05-18 | Kb世联株式会社 | Fiber reinforced composite material |
JP7466341B2 (en) * | 2020-03-17 | 2024-04-12 | 三菱重工業株式会社 | Composite blade, rotating machine, and molding method for composite blade |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5383850A (en) * | 1976-12-28 | 1978-07-24 | Daicel Ltd | Helmet and method of producing same |
-
1987
- 1987-07-28 JP JP62189270A patent/JPS6431835A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5383850A (en) * | 1976-12-28 | 1978-07-24 | Daicel Ltd | Helmet and method of producing same |
Also Published As
Publication number | Publication date |
---|---|
JPS6431835A (en) | 1989-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3691000A (en) | Glass fiber reinforced composite article exhibiting enhanced longitudinal tensile and compressive moduli | |
Masuelli | Introduction of fibre-reinforced polymers− polymers and composites: concepts, properties and processes | |
US4596736A (en) | Fiber-reinforced resinous sheet | |
US5360503A (en) | Semi-finished product and thermoplastic composite material having liquid crystal polymers and process for the production of the material | |
JPH0586967B2 (en) | ||
US5614299A (en) | Heat-resistant unsaturated polyester resin composition and heat-resistant fiber-reinforced composite material | |
JPWO2021200793A5 (en) | ||
JP6060256B2 (en) | Manufacturing method of composite material | |
US20070010611A1 (en) | Method for producing fiber-reinforced thermoplastics plastic and fiber-reinforced thermoplastic prastic | |
JPS6143579B2 (en) | ||
JP4506189B2 (en) | Epoxy resin composition, prepreg and fiber reinforced composite material | |
JP2000336191A (en) | Prepreg and fiber-reinforced composite material | |
KR20170140587A (en) | Multilayer Composite Agent Stitched With Reinforcing Fibers And The Process For Producing The Same | |
CN113286695B (en) | Fiber-reinforced resin hollow cylinder | |
JP4863630B2 (en) | Carbon fiber reinforced resin | |
JPS6125740B2 (en) | ||
JP2853756B2 (en) | All-transparent fiber-reinforced resin molded article and method for producing the same | |
WO1983003795A1 (en) | Stampable reinforced thermoplastic sheets | |
US4758242A (en) | Method for treating polyester fibers having melt anistrophy | |
JP2006137869A (en) | Resin composition | |
JPH032224A (en) | Hybrid prepreg | |
JPS6112934B2 (en) | ||
JPH032225A (en) | Hybrid prepreg | |
JP6915306B2 (en) | Reinforced fiber woven fabric and method for manufacturing preforms using the reinforced fiber woven fabric | |
JPH01154736A (en) | Stamping molding material with improved strength |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |