[go: up one dir, main page]

JPH0586877A - Turbocharged engine - Google Patents

Turbocharged engine

Info

Publication number
JPH0586877A
JPH0586877A JP3109404A JP10940491A JPH0586877A JP H0586877 A JPH0586877 A JP H0586877A JP 3109404 A JP3109404 A JP 3109404A JP 10940491 A JP10940491 A JP 10940491A JP H0586877 A JPH0586877 A JP H0586877A
Authority
JP
Japan
Prior art keywords
air
supply
passage
supercharger
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3109404A
Other languages
Japanese (ja)
Inventor
Takanori Akiyama
恭徳 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AKASAKA TEKKOSHO KK
NIPPON HAKUYO KIKI KAIHATSU KYOKAI
Akasaka Diesels Ltd
Original Assignee
AKASAKA TEKKOSHO KK
NIPPON HAKUYO KIKI KAIHATSU KYOKAI
Akasaka Diesels Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AKASAKA TEKKOSHO KK, NIPPON HAKUYO KIKI KAIHATSU KYOKAI, Akasaka Diesels Ltd filed Critical AKASAKA TEKKOSHO KK
Priority to JP3109404A priority Critical patent/JPH0586877A/en
Publication of JPH0586877A publication Critical patent/JPH0586877A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/04Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump
    • F02B37/10Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump at least one pump being alternatively or simultaneously driven by exhaust and other drive, e.g. by pressurised fluid from a reservoir or an engine-driven pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/10Other arrangements or adaptations of exhaust conduits of exhaust manifolds
    • F01N13/107More than one exhaust manifold or exhaust collector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • F02B37/168Control of the pumps by bypassing charging air into the exhaust conduit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

(57)【要約】 (修正有) 【目的】排気タービンによって回収される熱落差が大き
く採られることによって得られる給気の一部が外部に供
給されると共に、過給機の空気圧縮機と連通する給気通
路から分岐した給気バイパス通路が設けられて排気ター
ビンに、バイパス給気が保有する圧力エネルギと、バイ
パス給気が回収した熱エネルギが供給されるターボ過給
機関の提供。 【構成】機関本体10と空気圧縮機16とを連通する給気通
路32から分岐した給気バイパス通路19中に設けられた空
気流量調節絞り装置20と、排気タービン14の排気ガス廃
熱の回収で給気バイパス通路19からの給気を通路加熱す
る熱交換器24と、該熱交換器に接続された付加容積管28
とからなる給気バイパス装置2、及び給気通路32から分
岐した給気放出通路34中の別の空気流量調節絞り装置35
と、排気ガスの廃熱により給気放出通路34を流れる給気
を加熱する別の熱交換器37とからなる熱風供給装置3を
配設する。
(57) [Summary] (Modified) [Purpose] A part of the supply air obtained by taking a large heat drop recovered by the exhaust turbine is supplied to the outside, and at the same time as the air compressor of the supercharger. Provided is a turbocharged engine in which a supply air bypass passage branched from a communication supply passage is provided and the pressure energy held by the bypass supply air and the heat energy recovered by the bypass supply air are supplied to the exhaust turbine. [Structure] An air flow rate adjusting throttle device 20 provided in an air supply bypass passage 19 branched from an air supply passage 32 that communicates between an engine body 10 and an air compressor 16, and recovery of exhaust gas waste heat of an exhaust turbine 14. Heat exchanger 24 for heating the supply air from the supply air bypass passage 19 and an additional volume pipe 28 connected to the heat exchanger.
And the air supply bypass device 2 and another air flow control throttle device 35 in the air supply discharge passage 34 branched from the air supply passage 32.
And a separate heat exchanger 37 for heating the supply air flowing through the supply air discharge passage 34 by the waste heat of the exhaust gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は熱風供給装置を備えた
排気ターボ過給機付内燃機関(以下ターボ過給機関と言
う)に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an internal combustion engine with an exhaust turbocharger equipped with a hot air supply device (hereinafter referred to as a turbocharged engine).

【0002】[0002]

【従来の技術】従来、ターボ過給機関の排気ガスによっ
て駆動される過給機の排気タービン面積を小さくして排
気タービンが回収する排気ガスエネルギの熱落差を大き
く採ることによって、過給機の空気圧縮機の仕事量を増
加させて過給機の空気圧縮機により大気を吸入させて、
この空気圧縮機から吐出される給気の一部がターボ過給
機関の外部に供給されると共に、残りの給気によって機
関本体の性能出力が満足される方式が採られている。タ
ーボ過給機関の外部に供給された給気の一部は、過給機
出口に設けられた熱交換器によって排気ガスから廃熱を
回収して、熱エネルギとして船舶の船艙に送られて船艙
の湿度調整および乾燥等の用途に供せられる等の例が知
られている。
2. Description of the Related Art Conventionally, by reducing the area of the exhaust turbine of a supercharger driven by the exhaust gas of a turbocharged engine and increasing the heat drop of the exhaust gas energy recovered by the exhaust turbine, By increasing the work of the air compressor and letting in the air by the air compressor of the supercharger,
A method is adopted in which a part of the charge air discharged from the air compressor is supplied to the outside of the turbocharged engine and the performance output of the engine body is satisfied by the remaining charge air. A part of the supply air supplied to the outside of the turbocharged engine recovers waste heat from the exhaust gas by a heat exchanger provided at the outlet of the supercharger and is sent to the ship's ship as heat energy to carry it. It is known that it can be used for humidity control and drying.

【0003】[0003]

【発明が解決しようとする問題点】併し乍ら、ターボ過
給機関から外部に供給される給気の一部は、機関本体か
らの排気エネルギが過給機によって回収変換された空気
の圧力エネルギの一部であるので、その量はターボ過給
機関の出力の大きさによって変化する結果、需要負荷に
応じられない場合がある。すなわち、船舶の航海途中の
気象および海象の変化、更には到着時間の調整のための
減速航行等のターボ過給機関の低負荷運転によって排気
ガスエネルギが減少されて負荷需要に応じられない場合
等の不都合が見られる。また、ターボ過給機関から外部
に供給される給気の一部の量が増加されると、相対的に
機関本体に供給される残りの給気の量が不足して機関本
体の性能出力が満足されない不都合を生じる。
However, a part of the charge air supplied from the turbocharged engine to the outside is a part of the pressure energy of the air obtained by recovering and converting the exhaust energy from the engine body by the supercharger. Since it is a part, its amount may change depending on the output of the turbocharged engine, so that it may not be able to meet the demand load. That is, when the exhaust gas energy is reduced due to a low load operation of the turbocharged engine such as a change in weather and sea conditions during the voyage of the ship, and further deceleration navigation for adjusting the arrival time, etc. Inconvenience is seen. Further, when a part of the supply air supplied from the turbocharged engine to the outside is increased, the remaining supply amount of the supply air to the engine body is relatively insufficient and the performance output of the engine body is reduced. It causes inconvenience that is not satisfied.

【0004】従って、この発明の目的はこの様な従来に
おける問題点を解決するために、ターボ過給機関の過給
機の排気タービン面積を小さくして機関本体から供給さ
れる排気ガスの排気タービンが回収する熱落差を大きく
採ることによって、過給機の空気圧縮機の圧縮仕事が増
加されることによって得られる給気の一部がターボ過給
機関の外部に供給されると共に、過給機の空気圧縮機と
連通される給気通路から分岐されて機関本体をバイパス
して過給機の排気タービンと接続される機関本体と比較
して流路抵抗の小さい給気バイパス通路が設けられ、過
給機の空気圧縮機の吐出側の流路抵抗の減少から空気圧
縮機が吐出する給気量の増加分がバイパス給気として過
給機の排気タービンにバイパス給気が保有する圧力エネ
ルギが供給されると共に、給気バイパス通路に空気流量
調節絞り装置と、過給機の排気タービンからの排気ガス
から廃熱を回収する熱交換器とが設けられて、バイパス
給気が回収した熱エネルギが過給機の排気タービンに供
給される、給気バイパス装置を備えたターボ過給機関を
提供することにある。
Therefore, the object of the present invention is to solve the above problems in the prior art by reducing the exhaust turbine area of the supercharger of the turbocharged engine to reduce the exhaust gas of the exhaust gas supplied from the engine body. By taking a large heat drop to be collected by the turbocharger, a part of the charge air obtained by increasing the compression work of the air compressor of the supercharger is supplied to the outside of the turbocharged engine and An air supply bypass passage having a smaller flow path resistance than the engine main body connected to the exhaust turbine of the supercharger by branching from the air supply passage communicating with the air compressor is provided. The increase in the amount of air supply discharged by the air compressor due to the decrease in the flow path resistance on the discharge side of the air compressor of the supercharger is the bypass air supply to the exhaust turbine of the supercharger, and the pressure energy possessed by the bypass air supply is Supplied Both are provided with an air flow rate adjusting throttle device and a heat exchanger for recovering waste heat from exhaust gas from the exhaust turbine of the supercharger in the supply air bypass passage so that the heat energy recovered by the bypass supply air is supercharged. To provide a turbocharged engine having a charge air bypass device, which is supplied to an exhaust turbine of a machine.

【0005】従って、この様なターボ過給機関の給気バ
イパス装置においては、過給機の空気圧縮機と連通され
る給気通路から分岐した給気バイパス通路に空気流量調
節絞り装置と熱交換器とが設けられると共に、過給機の
排気タービン入口に設けられ且つ機関本体から排気管を
介して導入される排気ガスの圧力波が減衰される付加容
積管とが設けられ、この付加容積管から排気管を介して
過給機の排気タービンが連通されている。過給機の排気
タービンに導入されたバイパス給気は、圧力エネルギと
熱エネルギの増加と共に、過給機の排気タービンにおけ
るガス流量増加の効果が相対的に過給機の排気タービン
のタービン面積を小さくする効果を与えて、過給機の排
気タービンのエネルギ回収仕事が増大される。
Therefore, in such an air supply bypass device for a turbocharged engine, heat is exchanged with the air flow control throttle device in the air supply bypass passage branched from the air supply passage communicating with the air compressor of the supercharger. And an additional volume pipe that is provided at the exhaust turbine inlet of the supercharger and that attenuates the pressure wave of the exhaust gas that is introduced from the engine body through the exhaust pipe. The exhaust turbine of the supercharger is communicated with the exhaust turbine via the exhaust pipe. The bypass charge introduced into the exhaust turbine of the supercharger has the effect of increasing the gas flow rate in the exhaust turbine of the supercharger with the increase of the pressure energy and the thermal energy. With the effect of reducing, the energy recovery work of the turbocharger exhaust turbine is increased.

【0006】この様な過給機の排気タービンの増大され
た回収仕事は、回転エネルギとして過給機の空気圧縮機
に供給されて、過給機の空気圧縮機の仕事量の増加によ
って吐出される給気量と給気圧力が増大されて平衡され
る結果、ターボ過給機関の外部に取出される給気の一部
の量も増大されて、過給機の排気タービン出口に設けら
れた熱交換器で回収される排気ガス廃熱の回収量も増大
されてターボ過給機関から外部へ供給される熱風エネル
ギも増大される様になる。尚、給気バイパス通路中の、
過給機の排気タービンからの排気ガスからバイパス給気
が回収する熱交換器が、コストや設置スペース等の都合
で省略されても、バイパス給気の圧力エネルギと流量効
果とによる過給機の排気タービン仕事の増大によって、
ターボ過給機関から外部に供給される熱風エネルギを増
大することが出来る。
Such increased recovery work of the exhaust turbine of the supercharger is supplied to the air compressor of the supercharger as rotational energy and is discharged by the increase of the work amount of the air compressor of the supercharger. As a result of increasing and balancing the supply air amount and the supply pressure, a part of the supply air taken out of the turbocharged engine is also increased and provided at the exhaust turbine outlet of the supercharger. The amount of exhaust gas waste heat recovered by the heat exchanger is also increased, and the hot air energy supplied from the turbocharged engine to the outside is also increased. In the air supply bypass passage,
Even if the heat exchanger for recovering the bypass air from the exhaust gas from the exhaust turbine of the supercharger is omitted due to cost or installation space, the pressure energy of the bypass air and the flow rate effect of the supercharger With increased exhaust turbine work,
The hot air energy supplied to the outside from the turbocharged engine can be increased.

【0007】[0007]

【問題点を解決するための手段】この発明に依れば、上
述の目的を達成するために、ターボ過給機関は、過給機
の排気タービンのタービン面積を小さくしたターボ過給
機関において、内燃機関の機関本体と過給機の空気圧縮
機とを連通する給気通路から分岐された給気バイパス通
路中に設けられた空気流量調節絞り装置と、該空気流量
調節絞り装置に接続管を介して接続され且つ過給機の排
気タービンからの排気ガス廃熱の回収で給気バイパス通
路からの給気が加熱される熱交換器と、該熱交換器に接
続された付加容積管とから構成された給気バイパス装
置、並びに該過給機の空気圧縮機と連通する給気通路か
ら分岐された給気放出通路と、該給気放出通路中に設け
られた別の空気流量調節絞り装置と、該空気流量調節絞
り装置に接続されて且つ該過給機の排気タービンからの
排気ガス廃熱の回収により該給気放出通路を流れる給気
が加熱される別の熱交換器とから構成された熱風供給装
置、を備えたことを特徴としている。
According to the present invention, in order to achieve the above-mentioned object, a turbocharged engine is a turbocharged engine in which a turbine area of an exhaust turbine of a supercharger is reduced. An air flow rate adjusting throttle device provided in an air supply bypass passage branched from an air supply passage that connects the engine body of the internal combustion engine and the air compressor of the supercharger, and a connecting pipe to the air flow rate adjusting throttle device. A heat exchanger connected through the heat exchanger to heat the exhaust gas waste heat from the exhaust turbine of the supercharger to heat the intake air from the intake air bypass passage; and an additional volume pipe connected to the heat exchanger. A supply air bypass device, a supply air discharge passage branched from a supply air passage communicating with an air compressor of the supercharger, and another air flow rate adjusting throttle device provided in the supply air discharge passage. And connected to the air flow control throttle device And a hot air supply device including another heat exchanger for heating the supply air flowing through the supply air discharge passage by recovering exhaust gas waste heat from the exhaust turbine of the supercharger. I am trying.

【0008】上述のこの様なこの発明の手段に依って、
ターボ過給機関の低負荷運転および常用負荷運転におい
て、ターボ過給機関の給気の一部が、過給機の排気ター
ビンから流出した排気ガスの通路に設けられた熱交換器
を通って排気ガスの廃熱の回収によって加熱される給気
の熱風エネルギが増大される方法としては、ターボ過給
機関の過給機の排気タービンのタービン面積を小さくし
て排気ガスの熱落差を大きく採って排気タービンの熱回
収仕事を増大させる方法と、排気タービンに導入される
ガス流体の流量を増大させて相対的にタービン面積を小
さくし熱落差を大きく採って熱回収仕事を増大させる方
法と、排気タービンに導入されるガス流体の熱量を増大
させて排気タービンの熱回収仕事を増大させる方法等が
あり、排気タービンによって回収された熱エネルギの増
大相当分が回転エネルギの増大となり、駆動軸によって
過給機の空気圧縮機に伝導されて、この空気圧縮機によ
って大気が吸入圧縮されて給気の圧力エネルギの増大に
変換される。
According to the above-mentioned means of the present invention,
During low-load operation and normal-load operation of a turbocharged engine, part of the air supply of the turbocharged engine is exhausted through a heat exchanger provided in the passage of the exhaust gas flowing out from the exhaust turbine of the turbocharger. As a method of increasing the hot air energy of the supply air heated by recovering the waste heat of the gas, the turbine area of the exhaust turbine of the turbocharger of the turbocharged engine is made small and the heat drop of the exhaust gas is made large. A method of increasing the heat recovery work of the exhaust turbine; a method of increasing the flow rate of the gas fluid introduced into the exhaust turbine to relatively reduce the turbine area and increasing the heat drop to increase the heat recovery work; There is a method of increasing the amount of heat of the gas fluid introduced into the turbine to increase the heat recovery work of the exhaust turbine, and the amount of increase in the heat energy recovered by the exhaust turbine is equivalent to the rotational energy. Becomes increased conservation, the drive shaft is transferred to the air compressor of the turbocharger, the air is converted into an increase in the pressure energy of the charge air is sucked compressed by the air compressor.

【0009】従って、機関本体と過給機の空気圧縮機を
連通する給気通路から分岐して機関本体と並列に給気バ
イパス通路が設けられ、過給機の空気圧縮機の給気吐出
抵抗が減少されることによって、過給機の空気圧縮機か
ら吸入吐出される給気量が増大され、この給気吐出抵抗
の減少によって増大された給気量が給気バイパス通路を
流れて付加容積管によって排気管に導入され、これによ
って機関本体からの排気ガスと混合されて過給機の排気
タービンに導入されるガス流体の流量が増大される効果
が齎されると共に、この時のガス流体の増加量が給気バ
イパス通路に設けられた空気流量調節絞り装置によって
調節される。
Therefore, an air supply bypass passage is provided in parallel with the engine body so as to branch from the air supply passage that connects the engine body and the air compressor of the supercharger, and the air supply discharge resistance of the air compressor of the supercharger is provided. Is reduced, the amount of intake air that is sucked and discharged from the air compressor of the supercharger is increased, and the amount of intake air that is increased by the decrease in the intake air discharge resistance flows through the intake air bypass passage to add additional volume. Is introduced into the exhaust pipe by the pipe, thereby mixing the exhaust gas from the engine body and increasing the flow rate of the gas fluid introduced into the exhaust turbine of the supercharger, and at the same time, The increase amount is adjusted by an air flow rate adjusting throttle device provided in the air supply bypass passage.

【0010】次いで、機関本体と過給機の空気圧縮機と
を連通する給気通路から分岐して機関本体と並列に設け
られた給気バイパス通路が設けられ、この給気バイパス
通路中に空気流量調節絞り装置と、この空気流量調節絞
り装置に接続され且つ過給機の排気タービンから流出し
た排気ガスの通路に設けられた熱交換器とから構成され
た給気バイパス装置を備えて、この給気バイパス装置の
給気バイパス通路を流れる給気が排気ガスの廃熱回収に
よって熱エネルギを得、付加容積管から排気管に導入さ
れて機関本体からの排気ガスと混合されて熱エネルギと
ガス流量の増大された混合ガスが過給機の排気タービン
に供給され、これによって排気タービンの熱回収仕事が
増大される。
Next, an air supply bypass passage is provided which is branched from the air supply passage that connects the engine body and the air compressor of the supercharger and is provided in parallel with the engine body. An air supply bypass device comprising a flow control throttle device and a heat exchanger connected to the air flow control throttle device and provided in a passage for exhaust gas flowing out from the exhaust turbine of the supercharger, The supply air flowing through the supply air bypass passage of the supply air bypass device obtains heat energy by recovering the exhaust heat of the exhaust gas, and is introduced into the exhaust pipe from the additional volume pipe and mixed with the exhaust gas from the engine body to generate heat energy and gas. The increased flow rate of the mixed gas is supplied to the exhaust turbine of the supercharger, which increases the heat recovery work of the exhaust turbine.

【0011】斯様にして、給気バイパス通路および給気
バイパス通路を流れる給気の排気ガス廃熱回収の効果
は、過給機の排気タービンの熱回収仕事の増大によって
過給機の空気圧縮機の仕事量を増大させ、これによって
吐出給気量が増大されてターボ過給機関から外部に供給
される一部の給気量も増大され、従って、過給機の排気
タービンからの排気ガスの廃熱回収量が増大されて熱エ
ネルギの供給が増大される様になる。この発明の他の目
的や特長および利点は以下の添付図面に沿っての詳細な
説明から明らかになろう。
In this way, the effect of the exhaust gas waste heat recovery of the charge air bypass passage and the charge air flowing through the charge air bypass passage is obtained by increasing the heat recovery work of the exhaust turbine of the supercharger by the air compression of the supercharger. This increases the work of the engine, which in turn increases the discharge charge and thus the part of the charge supplied to the outside by the turbocharged engine, and therefore the exhaust gas from the exhaust turbine of the turbocharger. The amount of waste heat recovered is increased and the supply of heat energy is increased. Other objects, features and advantages of the present invention will become apparent from the detailed description given below with reference to the accompanying drawings.

【0012】[0012]

【実施例】図面に示される様に、この発明のターボ過給
機関1は、内燃機関の機関本体10の排気管11、12
からの排気ガスが排気タービン入口から導入される排気
タービン14および排気タービン14と接続された空気
圧縮機16を有する過給機13の空気圧縮機16により
吸入された給気が内燃機関本体10に供給される給気通
路32から分岐された給気バイパス装置2と、この給気
バイパス装置2から更に分岐して設けられた熱風供給装
置3とから主に構成されている。すなわち、この発明の
熱風供給装置3を備えたターボ過給機関1は、内燃機関
の機関本体10と、機関本体10に接続された第1、第
2の排気管11、12と、排気管11、12からの排気
ガスが排気タービン入口から導入される排気タービン1
4および排気タービン14と接続された空気圧縮機16
を有する過給機13と、過給機13の空気圧縮機16に
より吸入された給気が内燃機関本体10に供給される給
気通路32から分岐した分岐管18の給気バイパス通路
19に設けられた空気流量調節絞り装置20と、空気流
量調節絞り装置20からの給気が、過給機13の排気タ
ービン14の排気出口に接続された接続管39から一次
側に導入された排気ガス廃熱の回収によって加熱される
熱交換器24と、熱交換器24の二次側に接続管25に
より接続された付加容積管28と、熱交換器24の二次
側で加熱された給気を機関本体10の排気管11、12
に供給するために付加容積管28と排気管11、12を
接続する連結管28a、28bとから構成された給気バ
イパス装置2、および給気通路32から分岐した分岐管
18に接続された給気放出通路34に設けられた空気流
量調節絞り装置35と、この空気流量調節絞り装置35
からの給気が接続管36を介して二次側に導入されると
共に機関本体10からの排気ガスが一次側に導入されて
排気ガス廃熱が回収される熱交換器37と、この熱交換
器37の二次側に接続されて熱交換器37からの熱風エ
ネルギがターボ過給機関の外部に供給される接続管38
とから構成された熱風供給装置3を備えている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As shown in the drawings, a turbocharged engine 1 according to the present invention includes exhaust pipes 11 and 12 of an engine body 10 of an internal combustion engine.
The intake air sucked by the air compressor 16 of the supercharger 13 having the exhaust turbine 14 into which exhaust gas from the exhaust gas is introduced from the exhaust turbine inlet and the air compressor 16 connected to the exhaust turbine 14 is supplied to the internal combustion engine body 10. It is mainly configured by a supply air bypass device 2 branched from a supply air passage 32 to be supplied, and a hot air supply device 3 further branched from the supply air bypass device 2. That is, the turbocharged engine 1 including the hot air supply device 3 of the present invention includes an engine body 10 of an internal combustion engine, first and second exhaust pipes 11 and 12 connected to the engine body 10, and an exhaust pipe 11. Exhaust turbine 1 in which exhaust gas from the turbines 12, 12 is introduced from the exhaust turbine inlet
4 and an air compressor 16 connected to the exhaust turbine 14
Is provided in the air supply bypass passage 19 of the branch pipe 18 branched from the air supply passage 32 through which the air intake sucked by the air compressor 16 of the supercharger 13 is supplied to the internal combustion engine body 10. The air flow adjusting throttle device 20 and the air supply from the air flow adjusting throttle device 20 introduced into the primary side from the connection pipe 39 connected to the exhaust outlet of the exhaust turbine 14 of the supercharger 13. The heat exchanger 24 heated by heat recovery, the additional volume pipe 28 connected to the secondary side of the heat exchanger 24 by the connecting pipe 25, and the supply air heated on the secondary side of the heat exchanger 24 Exhaust pipes 11 and 12 of the engine body 10
Supply bypass device 2 configured by connecting pipes 28a and 28b connecting the additional volume pipe 28 and the exhaust pipes 11 and 12, and a supply pipe connected to the branch pipe 18 branched from the supply passage 32. Air flow rate adjusting throttle device 35 provided in the air discharge passage 34, and this air flow rate adjusting throttle device 35
A heat exchanger 37 in which the supply air from the engine is introduced to the secondary side through the connecting pipe 36 and the exhaust gas from the engine body 10 is introduced to the primary side to recover exhaust gas waste heat, and this heat exchange. Pipe 38 connected to the secondary side of the heat exchanger 37 so that the hot air energy from the heat exchanger 37 is supplied to the outside of the turbocharged engine.
The hot air supply device 3 is composed of

【0013】また、コストや設置スペース等の制限で熱
交換器24を設けることが出来ない場合には、空気流量
調節絞り装置20の後、すなわち空気流量調節絞り装置
20の下流に弁29を有した接続管30が設けられ、こ
の接続管30を付加容積管28に接続して、付加容積管
28を介して排気管11、12と連通される給気バイパ
ス装置2を設けることが出来る。
If the heat exchanger 24 cannot be provided due to cost and installation space restrictions, a valve 29 is provided after the air flow control throttle device 20, that is, downstream of the air flow control throttle device 20. The connection pipe 30 described above is provided, the connection pipe 30 is connected to the additional volume pipe 28, and the air supply bypass device 2 that is in communication with the exhaust pipes 11 and 12 through the additional volume pipe 28 can be provided.

【0014】図示される様に、この発明の熱風供給装置
3を備えたターボ過給機関1は、内燃機関の機関本体1
0に夫々接続された排気管11a、11b、11cから
成る第1の排気管11と、排気管12a、12b、12
cから成る第2の排気管12と、これら第1および第2
の排気管11、12に夫々流入した排気ガスが導入され
るタービン面積を小さくした排気タービン14および排
気タービン14と軸15を介して接続された空気圧縮機
16を有する過給機13と、過給機13の空気圧縮機1
6から吐出された給気を内燃機関の機関本体10に供給
するように給気出口17に空気冷却器31を介して接続
された給気通路32を備えている。
As shown in the figure, a turbocharged engine 1 equipped with a hot air supply device 3 of the present invention is an engine body 1 of an internal combustion engine.
A first exhaust pipe 11 consisting of exhaust pipes 11a, 11b, 11c connected to 0 and exhaust pipes 12a, 12b, 12
a second exhaust pipe 12 composed of c and the first and second exhaust pipes
A supercharger 13 having an exhaust turbine 14 having a reduced turbine area into which the exhaust gas flowing into each of the exhaust pipes 11 and 12 and an air compressor 16 connected to the exhaust turbine 14 via a shaft 15; Air compressor 1 of feeder 13
The air supply passage 32 is connected to the air supply outlet 17 via the air cooler 31 so that the air supply discharged from the engine 6 is supplied to the engine body 10 of the internal combustion engine.

【0015】排気管11、12は過給機13の排気ター
ビン16の排気タービン入口に夫々連通されており、従
って、排気管11、12からの排気ガスは排気タービン
16の排気タービン入口から各々排気タービン16内に
導入されて排気タービン16を駆動する。過給機13の
排気タービン16は軸15によって給気用の空気圧縮機
16に接続されている。従って、排気タービン16で吸
収された回転エネルギは軸15によって過給機13の空
気圧縮機16に伝導されて、この空気圧縮機16によっ
て大気から吸入した給気を圧縮して給気出口17から空
気冷却器31を経て給気通路32に送り込まれるエネル
ギとして消費される。
The exhaust pipes 11 and 12 are respectively communicated with the exhaust turbine inlet of the exhaust turbine 16 of the supercharger 13, so that the exhaust gas from the exhaust pipes 11 and 12 is exhausted from the exhaust turbine inlet of the exhaust turbine 16, respectively. It is introduced into the turbine 16 to drive the exhaust turbine 16. The exhaust turbine 16 of the supercharger 13 is connected by a shaft 15 to an air compressor 16 for air supply. Therefore, the rotational energy absorbed by the exhaust turbine 16 is transmitted to the air compressor 16 of the supercharger 13 by the shaft 15, and the air compressor 16 compresses the intake air sucked from the atmosphere to output from the air supply outlet 17. It is consumed as energy sent to the air supply passage 32 through the air cooler 31.

【0016】過給機13の排気タービン16を駆動した
排気ガスは過給機13の排気出口を経て、排気出口に接
続された接続管39を介して熱交換器24の一次側に導
入される。この熱交換器24の出口には接続管40が接
続されており、更に、この接続管40を経て別の熱交換
器37の一次側に接続され、従って、排気出口から接続
管39を経て熱交換器29に導入された排気ガスは更に
接続管40を経て熱交換器37に導入されて、この熱交
換器37から接続管41を経て大気に放出される。
The exhaust gas driving the exhaust turbine 16 of the supercharger 13 is introduced into the primary side of the heat exchanger 24 via the exhaust outlet of the supercharger 13 and the connecting pipe 39 connected to the exhaust outlet. .. A connecting pipe 40 is connected to the outlet of the heat exchanger 24, and is further connected to the primary side of another heat exchanger 37 via the connecting pipe 40. Therefore, heat is discharged from the exhaust outlet via the connecting pipe 39. The exhaust gas introduced into the exchanger 29 is further introduced into the heat exchanger 37 via the connecting pipe 40, and is discharged from the heat exchanger 37 to the atmosphere via the connecting pipe 41.

【0017】また、過給機13の空気圧縮機16の給気
出口17は空気冷却器31を介して内燃機関の機関本体
10の給気通路32に接続されていて、機関本体10に
給気を導入できるようになっている。更に、給気管32
には別の分岐管18が分岐接続され且つ給気バイパス通
路19と空気流量調節絞り装置20が設けられていて、
給気の一部を分岐するようになっている。また、空気流
量調節絞り装置20は接続管21、弁22および接続管
23によって熱交換器24の二次側に接続され、分岐さ
れた給気の一部がこの熱交換器24において過給機13
の排気タービン14からの排気ガスによって加熱される
ようになっている。熱交換器24の二次側は接続管25
および弁26および接続管27を介して付加容積管28
に接続され、過給機13から分岐されて熱交換器24で
加熱された給気が付加容積管28に流入されて給気の圧
力エネルギが導入されるようになっている。この付加容
積管28には連結管28a、28bが接続されていて、
加熱された給気が機関本体10の第1および第2の排気
管11、12に導入され、これら排気管11、12から
過給機13の排気タービン14に供給されるようになっ
ている。
Further, the air supply outlet 17 of the air compressor 16 of the supercharger 13 is connected to the air supply passage 32 of the engine body 10 of the internal combustion engine via the air cooler 31 to supply air to the engine body 10. Can be introduced. Further, the air supply pipe 32
Is connected to another branch pipe 18 and is provided with an air supply bypass passage 19 and an air flow rate adjusting throttle device 20.
A part of the air supply is branched. Further, the air flow control expansion device 20 is connected to the secondary side of the heat exchanger 24 by a connecting pipe 21, a valve 22 and a connecting pipe 23, and a part of the branched supply air is supercharged in the heat exchanger 24. Thirteen
The exhaust gas from the exhaust turbine 14 is heated. The secondary side of the heat exchanger 24 is a connecting pipe 25.
And additional volume pipe 28 via valve 26 and connecting pipe 27
Is connected to the supercharger 13 and is branched from the supercharger 13 and heated by the heat exchanger 24 is introduced into the additional volume pipe 28 to introduce pressure energy of the supply air. Connection pipes 28a and 28b are connected to the additional volume pipe 28,
The heated supply air is introduced into the first and second exhaust pipes 11 and 12 of the engine body 10, and is supplied from the exhaust pipes 11 and 12 to the exhaust turbine 14 of the supercharger 13.

【0018】第1、第2の排気管11、12に内燃機関
の機関本体10から交互に流入した排気ガスは、連結管
28a、28bによって連通された付加容積管28の容
積効果とバイパス効果に加えて付加容積管28に導入さ
れた給気の一部によるクッション効果に依って圧力波が
減衰されて、タービン面積の小さい排気タービン14が
回収する熱落差が大きく採られると共に、給気バイパス
装置2が熱交換器24を備える場合には熱エネルギと圧
力エネルギが、また、熱交換器24を備えずに給気バイ
パス通路のみの場合には圧力エネルギだけがを夫々給気
の一部によって付加されて、排気タービン14が回収す
るエネルギが増大される。
Exhaust gas that alternately flows into the first and second exhaust pipes 11 and 12 from the engine body 10 of the internal combustion engine causes a volume effect and a bypass effect of the additional volume pipe 28 connected by the connecting pipes 28a and 28b. In addition, the pressure wave is attenuated by the cushioning effect of a part of the supply air introduced into the additional volume pipe 28, a large heat drop is recovered by the exhaust turbine 14 having a small turbine area, and the supply air bypass device is provided. When 2 includes a heat exchanger 24, heat energy and pressure energy are added, and when the heat exchanger 24 is not provided and only the air supply bypass passage is provided, only pressure energy is added by a part of the air supply. As a result, the energy recovered by the exhaust turbine 14 is increased.

【0019】この排気タービン14で回収された回転エ
ネルギは軸15によって過給機13の空気圧縮機16に
伝達され、空気圧縮機16によって大気から吸入圧縮し
た給気が給気出口17から空気冷却器31を介して給気
通路32から内燃機関の機関本体10に送り込まれると
共に、分岐管18から給気の一部がバイパス給気として
給気バイパス装置2に送り込まれる。
The rotational energy recovered by the exhaust turbine 14 is transmitted by the shaft 15 to the air compressor 16 of the supercharger 13, and the intake air sucked and compressed from the atmosphere by the air compressor 16 is cooled by the air supply outlet 17. While being sent from the air supply passage 32 to the engine body 10 of the internal combustion engine via the device 31, part of the air supply is sent from the branch pipe 18 to the air supply bypass device 2 as bypass air supply.

【0020】また、同様に分岐管18からは熱風供給装
置3が接続されている。この熱風供給装置3は分岐管1
8から送り込まれた他の給気の一部が弁33を介して接
続管34に流れて、接続管34に設けられた空気流量調
節絞り装置35によって給気放出量が規定された後に、
接続管36から熱交換器37の二次側に導入され、この
熱交換器37において排気タービン14からの排気ガス
の廃熱が回収されて熱風に変換されて接続管38から適
宜に供給される。
Similarly, the hot air supply device 3 is connected from the branch pipe 18. This hot air supply device 3 is a branch pipe 1
After a part of the other supply air sent from 8 flows into the connection pipe 34 via the valve 33 and the supply amount of supply air is regulated by the air flow control expansion device 35 provided in the connection pipe 34,
It is introduced from the connecting pipe 36 to the secondary side of the heat exchanger 37, in which the waste heat of the exhaust gas from the exhaust turbine 14 is recovered, converted into hot air, and appropriately supplied from the connecting pipe 38. ..

【0021】従って、過給機13の排気タービン14か
らの排気ガスは、給気バイパス装置2が熱交換器24を
備えている場合には、接続管39から熱交換器24にお
いて廃熱が回収された上で接続管40を経て更に次の熱
交換器37の一次側に導入されて熱交換器37において
熱風供給装置3の給気と熱交換されて排気ガスの廃熱が
回収され、接続管41から大気に放出される。また、給
気バイパス装置2に熱交換器24がコストや設置スペー
ス等の理由によって省略された場合には、排気タービン
14からの排気ガスは接続管39を介して接続管40か
ら熱交換器37の一次側に導入され、この熱交換器37
において熱風供給装置3の給気と熱交換されて、排気ガ
スの廃熱が回収されて接続管41から大気に放出され
る。
Therefore, in the exhaust gas from the exhaust turbine 14 of the supercharger 13, when the air supply bypass device 2 has the heat exchanger 24, waste heat is recovered in the heat exchanger 24 from the connecting pipe 39. After that, it is introduced into the primary side of the next heat exchanger 37 via the connecting pipe 40 and is heat-exchanged with the supply air of the hot air supply device 3 in the heat exchanger 37 to recover the waste heat of the exhaust gas and connect it. Emitted from the pipe 41 to the atmosphere. Further, when the heat exchanger 24 is omitted in the air supply bypass device 2 for reasons such as cost and installation space, the exhaust gas from the exhaust turbine 14 passes from the connection pipe 40 to the heat exchanger 37 via the connection pipe 39. This heat exchanger 37 is introduced on the primary side of
At, the heat is exchanged with the supply air of the hot air supply device 3, and the waste heat of the exhaust gas is recovered and released from the connecting pipe 41 to the atmosphere.

【0022】[0022]

【発明の効果】この様に構成されたこの発明の熱風供給
装置を備えたターボ過給機関に依れば、ターボ過給機関
の過給機の空気圧縮機から内燃機関の機関本体と並列に
給気バイパス装置が設けられ、給気の流路抵抗の減少に
よる過給機の空気圧縮機の吐出給気の増加相当量が給気
バイパス装置に供給されて空気流量調節絞り装置によっ
てバイパス給気量が調節された後に、過給機の排気ター
ビンの出口に設けられた熱交換器によって排気ガス廃熱
が回収されて、加熱された給気が機関本体から流出され
る排気ガスと混合されて、加熱された給気の圧力エネル
ギと熱エネルギとが付加されると共に、過給機の排気タ
ービンに導入されされるガス流量が増大される効果が得
られるので、小さいタービン面積の排気タービンの熱落
差が更に大きく採ることが出来る。
According to the turbocharged engine having the hot air supply device of the present invention having the above-described structure, the air compressor of the turbocharger of the turbocharged engine is connected in parallel with the engine body of the internal combustion engine. An air supply bypass device is provided, and an increase in the discharge air supply of the air compressor of the supercharger due to a decrease in the flow resistance of the air supply After the amount is adjusted, the exhaust gas waste heat is recovered by the heat exchanger provided at the outlet of the exhaust turbine of the supercharger, and the heated supply air is mixed with the exhaust gas discharged from the engine body. Since the pressure energy and the heat energy of the heated charge air are added, and the flow rate of the gas introduced into the exhaust turbine of the supercharger is increased, the heat of the exhaust turbine having a small turbine area can be obtained. Greater head drop It can be.

【0023】更にまた、コストや設置スペース等の理由
によって給気バイパス装置に排気ガス廃熱を回収する熱
交換器が設けられない場合にも、機関本体から流出され
る排気ガスとバイパス給気とが混合されて給気の圧力エ
ネルギが付加されると共に、小さいタービン面積の排気
タービンの流量増大の効果によって排気タービンの熱落
差が大きくされる。従って、ターボ過給機関から外部に
供給される給気の一部が排気タービン出口に設けられた
熱交換器によって排気ガス廃熱が回収された熱風のエネ
ルギが利用される場合には、過給機の空気圧縮機の仕事
量の増大による給気量の増加からターボ過給機関の外部
に供給される給気の一部の量が増大されて排気ガス廃熱
の回収量も増大されるためにターボ過給機関から供給可
能な熱風のエネルギが増大される。
Furthermore, even when a heat exchanger for recovering exhaust gas waste heat is not provided in the air supply bypass device due to reasons such as cost and installation space, exhaust gas discharged from the engine body and bypass air supply Are mixed to add pressure energy to the supply air, and the heat drop of the exhaust turbine is increased by the effect of increasing the flow rate of the exhaust turbine having a small turbine area. Therefore, when a part of the supply air supplied from the turbocharged engine to the outside is used as the energy of the hot air in which the exhaust gas waste heat is recovered by the heat exchanger provided at the exhaust turbine outlet, Because the amount of air supply increases due to the increase in the work of the air compressor of the engine, a part of the amount of air supply supplied to the outside of the turbocharged engine is increased, and the recovery amount of exhaust gas waste heat is also increased. In addition, the energy of hot air that can be supplied from the turbocharged engine is increased.

【0024】この様に、ターボ過給機関の出力に対して
外部に供給する熱風エネルギの割合が増大されることに
よって、熱風供給装置のターボ過給機関の負荷率に対す
る利用の機会が増大されると共に、利用される廃熱量の
増大による省エネルギ等の効果が得られるものであり、
熱風の温度が200℃以上の温度レベルにおいて加熱、
暖房、更には空気エネルギの特性を活かして吸着除湿装
置と組み合わせた調湿、乾燥の用途等の省エネルギ効果
が得られるものである。
As described above, since the ratio of the hot air energy supplied to the outside to the output of the turbocharged engine is increased, the opportunity of using the hot air supply device for the load factor of the turbocharged engine is increased. At the same time, it is possible to obtain an effect such as energy saving by increasing the amount of waste heat used.
Heating at a temperature level of hot air of 200 ° C or higher,
By utilizing the characteristics of heating and air energy, energy saving effects such as humidity control and drying combined with an adsorption dehumidifier can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の熱風供給装置を備えたターボ過給機
関の概要図である。
FIG. 1 is a schematic diagram of a turbocharged engine including a hot air supply device of the present invention.

【符号の説明】[Explanation of symbols]

1 ターボ過給機関 2 給気バイパス装置 3 熱風供給装置 10 内燃機関の機関本体 11、11a、11b、11c、12、12a、12
b、12c 排気管 13 過給機 14 排気タービン 15 軸 16 空気圧縮機 17 給気出口 18 分岐管 19 接続管 20 空気流量調節絞り装置 21 接続管 22 弁 23 接続管 24 熱交換器 25 接続管 26 弁 27 接続管 28 付加容積管 28a、28b 連結管 31 空気冷却器 32 給気通路 33 弁 34 給気放出通路 35 空気流量調節絞り装置 36 接続管 37 熱交換器 38 接続管 39 接続管 40 接続管 41 接続管
1 Turbocharged Engine 2 Air Supply Bypass Device 3 Hot Air Supply Device 10 Engine Body of Internal Combustion Engine 11, 11a, 11b, 11c, 12, 12a, 12
b, 12c Exhaust pipe 13 Supercharger 14 Exhaust turbine 15 Shaft 16 Air compressor 17 Air supply outlet 18 Branch pipe 19 Connection pipe 20 Air flow rate adjustment throttle device 21 Connection pipe 22 Valve 23 Connection pipe 24 Heat exchanger 25 Connection pipe 26 Valve 27 Connection pipe 28 Additional volume pipe 28a, 28b Connection pipe 31 Air cooler 32 Air supply passage 33 Valve 34 Air supply discharge passage 35 Air flow rate adjusting throttle device 36 Connection pipe 37 Heat exchanger 38 Connection pipe 39 Connection pipe 40 Connection pipe 41 Connection tube

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 過給機の排気タービンのタービン面積を
小さくしたターボ過給機関において、 内燃機関の機関本体と過給機の空気圧縮機とを連通する
給気通路から分岐された給気バイパス通路中に設けられ
た空気流量調節絞り装置と、該空気流量調節絞り装置に
接続管を介して接続され且つ過給機の排気タービンから
の排気ガス廃熱の回収で給気バイパス通路からの給気が
加熱される熱交換器と、該熱交換器に接続された付加容
積管とから構成された給気バイパス装置、並びに該過給
機の空気圧縮機と連通する給気通路から分岐された給気
放出通路と、該給気放出通路中に設けられた別の空気流
量調節絞り装置と、該空気流量調節絞り装置に接続され
て且つ該過給機の排気タービンからの排気ガス廃熱の回
収により該給気放出通路を流れる給気が加熱される別の
熱交換器とから構成された熱風供給装置、 を備えたことを特徴とするターボ過給機関。
1. A turbocharged engine in which a turbine area of an exhaust turbine of a supercharger is reduced, and an air supply bypass branched from an air supply passage that connects an engine body of an internal combustion engine and an air compressor of the supercharger. An air flow rate adjusting throttle device provided in the passage, and a supply from the air supply bypass passage for recovering exhaust gas waste heat from the exhaust turbine of the supercharger, which is connected to the air flow rate adjusting throttle device via a connecting pipe. A supply air bypass device composed of a heat exchanger for heating the air and an additional volume pipe connected to the heat exchanger, and a supply air passage communicating with the air compressor of the supercharger. A supply air discharge passage, another air flow rate adjusting throttle device provided in the supply air discharge passage, and exhaust gas waste heat from the exhaust turbine of the supercharger connected to the air flow rate adjusting throttle device. Supply that flows through the supply air discharge passage by recovery There turbocharged engine characterized by comprising a hot air supply device, which is composed of a separate heat exchanger to be heated.
JP3109404A 1991-05-14 1991-05-14 Turbocharged engine Pending JPH0586877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3109404A JPH0586877A (en) 1991-05-14 1991-05-14 Turbocharged engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3109404A JPH0586877A (en) 1991-05-14 1991-05-14 Turbocharged engine

Publications (1)

Publication Number Publication Date
JPH0586877A true JPH0586877A (en) 1993-04-06

Family

ID=14509393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3109404A Pending JPH0586877A (en) 1991-05-14 1991-05-14 Turbocharged engine

Country Status (1)

Country Link
JP (1) JPH0586877A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106574548A (en) * 2014-07-24 2017-04-19 Ifp新能源公司 Device for controlling the quantity of air admitted to a supercharged internal combustion engine and method using such a device dispositif
CN107636278A (en) * 2015-05-28 2018-01-26 Ifp新能源公司 Apparatus for controlling the amount of air fed to the intake of a supercharged internal combustion engine and cooling the exhaust gas and method of using such an apparatus
US20180149075A1 (en) * 2015-04-22 2018-05-31 IFP Energies Nouvelles Method of controlling the amount of air fed into the intake of a supercharged internal combustion engine

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106574548A (en) * 2014-07-24 2017-04-19 Ifp新能源公司 Device for controlling the quantity of air admitted to a supercharged internal combustion engine and method using such a device dispositif
US20170211466A1 (en) * 2014-07-24 2017-07-27 IFP Energies Nouvelles Device for controlling the quantity of air admitted to a supercharged internal combustion engine and method using such a device dispositif
JP2017521602A (en) * 2014-07-24 2017-08-03 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Device for regulating the amount of air introduced into a supercharged internal combustion engine and method of using such a device
US10450947B2 (en) * 2014-07-24 2019-10-22 IFP Energies Nouvelles Device for controlling the quantity of air admitted to a supercharged internal combustion engine and method of use thereof
US20180149075A1 (en) * 2015-04-22 2018-05-31 IFP Energies Nouvelles Method of controlling the amount of air fed into the intake of a supercharged internal combustion engine
US10619559B2 (en) * 2015-04-22 2020-04-14 IFP Energies Nouvelles Method of controlling the amount of air fed into the intake of a supercharged internal combustion engine
CN107636278A (en) * 2015-05-28 2018-01-26 Ifp新能源公司 Apparatus for controlling the amount of air fed to the intake of a supercharged internal combustion engine and cooling the exhaust gas and method of using such an apparatus
JP2018515716A (en) * 2015-05-28 2018-06-14 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Device for controlling the amount of air supplied to the intake port of a supercharged internal combustion engine and cooling the exhaust port, and method of using such a device
US20180171866A1 (en) * 2015-05-28 2018-06-21 IFP Energies Nouvelles Device for controlling a quantity of air fed into the intake of a supercharged internal combustion engine and cooling the exhaust - method using such a device
US10570811B2 (en) * 2015-05-28 2020-02-25 IFP Energies Nouvelles Device for controlling a quantity of air fed into the intake of a supercharged internal combustion engine and cooling the exhaust—method using such a device
CN107636278B (en) * 2015-05-28 2020-05-26 Ifp新能源公司 Apparatus for controlling air volume and cooling exhaust air and method of using the same

Similar Documents

Publication Publication Date Title
US7941999B2 (en) Internal combustion engine
US6422222B1 (en) Bi-turbocharger internal combustion engine with exhaust gas recycling
US8789367B2 (en) System for recovering engine exhaust energy
FI106573B (en) Method and apparatus for recirculating exhaust gas on the high-pressure side of a pressurized internal combustion engine
US20110271936A1 (en) Air intake powered engine backpressure reducing system
CN104632356B (en) Parallel type engine two-stage pressurization system with compressed air storage device and vehicle
CN105464769B (en) Double-flow-passage power turbine system and control method thereof
JPS58185908A (en) Method of recovering energy of power generator and power generator
CN113738519B (en) Diesel engine variable altitude self-adaptive energy regulation and control method
JPS5982526A (en) Supercharger for internal-combustion engine
CN109339938A (en) Three-state two-stage sequential supercharging system and control method thereof
KR101947977B1 (en) For cleaning a charge air cooler and an internal combustion engine
WO2018147766A1 (en) Device for controlling turbocharging of an internal combustion engine
CN108643994B (en) A multi-stage combined recovery device for vehicle engine exhaust energy
CN107060989B (en) Three stage of the three turbocharger sequential turbocharging device and its control method of function are realized with EGR
JPH0586877A (en) Turbocharged engine
CN108716435A (en) A kind of pressurization system of internal combustion engine of integrated waste heat recovery
CN100504049C (en) Exhaust system of a turbocharged internal combustion engine
JP2005054710A (en) Exhaust gas recirculation device for turbo compound engine
CN110566340A (en) Engine system and method of using same
JPS6210422A (en) Device for supercharging to multicylinder internal combustion engine
JPH0441932A (en) Hot air supply device for turbo supercharging engine with fuel combustion device
CN102183003A (en) Bypass afterburning composite regenerative turbo supercharging system of boiler
JPS6088821A (en) Suction air cooling device for supercharged engine
JPS6136743Y2 (en)