JPH0586646B2 - - Google Patents
Info
- Publication number
- JPH0586646B2 JPH0586646B2 JP2444484A JP2444484A JPH0586646B2 JP H0586646 B2 JPH0586646 B2 JP H0586646B2 JP 2444484 A JP2444484 A JP 2444484A JP 2444484 A JP2444484 A JP 2444484A JP H0586646 B2 JPH0586646 B2 JP H0586646B2
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- buffer layer
- film
- metal
- inn
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000758 substrate Substances 0.000 claims description 48
- 239000010408 film Substances 0.000 claims description 41
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 23
- 229910052751 metal Inorganic materials 0.000 claims description 22
- 239000002184 metal Substances 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 17
- 229910052594 sapphire Inorganic materials 0.000 claims description 14
- 239000010980 sapphire Substances 0.000 claims description 14
- 238000004544 sputter deposition Methods 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 10
- 239000011521 glass Substances 0.000 claims description 9
- 239000010409 thin film Substances 0.000 claims description 9
- 239000007789 gas Substances 0.000 claims description 8
- 150000001875 compounds Chemical class 0.000 claims description 5
- 239000004065 semiconductor Substances 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052733 gallium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052738 indium Inorganic materials 0.000 claims description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 2
- 150000004767 nitrides Chemical class 0.000 claims description 2
- 229910001873 dinitrogen Inorganic materials 0.000 claims 1
- 239000012808 vapor phase Substances 0.000 claims 1
- 229910052757 nitrogen Inorganic materials 0.000 description 11
- 238000000927 vapour-phase epitaxy Methods 0.000 description 10
- 239000012159 carrier gas Substances 0.000 description 7
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 6
- 125000002524 organometallic group Chemical group 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 238000005424 photoluminescence Methods 0.000 description 4
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- XOYLJNJLGBYDTH-UHFFFAOYSA-M chlorogallium Chemical compound [Ga]Cl XOYLJNJLGBYDTH-UHFFFAOYSA-M 0.000 description 3
- MUJOIMFVNIBMKC-UHFFFAOYSA-N fludioxonil Chemical compound C=12OC(F)(F)OC2=CC=CC=1C1=CNC=C1C#N MUJOIMFVNIBMKC-UHFFFAOYSA-N 0.000 description 3
- 150000004820 halides Chemical class 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- IBEFSUTVZWZJEL-UHFFFAOYSA-N trimethylindium Chemical compound C[In](C)C IBEFSUTVZWZJEL-UHFFFAOYSA-N 0.000 description 3
- 238000001947 vapour-phase growth Methods 0.000 description 3
- 206010024769 Local reaction Diseases 0.000 description 2
- 230000005587 bubbling Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910021617 Indium monochloride Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- APHGZSBLRQFRCA-UHFFFAOYSA-M indium(1+);chloride Chemical compound [In]Cl APHGZSBLRQFRCA-UHFFFAOYSA-M 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02425—Conductive materials, e.g. metallic silicides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02455—Group 13/15 materials
- H01L21/02458—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Recrystallisation Techniques (AREA)
- Led Devices (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Description
【発明の詳細な説明】
〔技術分野〕
本発明は、基板とエピタキシヤル膜との間にバ
ツフア層を設けた−V族化合物半導体AlX
Ga1-XN(0≦x≦1)およびInNの薄膜の成長方
法に関するものである。[Detailed Description of the Invention] [Technical Field] The present invention relates to a -V group compound semiconductor Al
The present invention relates to a method for growing thin films of Ga 1-x N (0≦x≦1) and InN.
従来、−V族化合物半導体であるGaN膜を
成長させるためには、主に、サフアイアC面を基
板とし、GaCl3とNH3を減圧容器内に導入して基
板上で熱分解させるハライド系気相成長法が用い
られてきた。この気相成長法では、熱平衡からず
れた成長が行なわれること以外に、サフアイア基
板とGaN膜との格子定数のずれ、すなわち格子
不整合のために、成長したGaN膜は、通常、窒
素の空格子点を多く含み、結晶性が悪いという欠
点があつた。また、この窒素空格子点の影響で成
長GaN膜は低抵抗になり、高抵抗GaN膜を得る
には、ZnまたはMgなどのアクセプター・ドーパ
ントを多量に添加しなければならないという欠点
もあつた。これに加えて、GaCl3とNH3が局所的
に反応して均一な膜ができないという問題もあつ
た。
Conventionally, in order to grow a GaN film, which is a -V group compound semiconductor, the main method was to use a sapphire C-plane as a substrate, introduce GaCl 3 and NH 3 into a vacuum container, and then heat the halide gas to be thermally decomposed on the substrate. Phase growth methods have been used. In this vapor phase growth method, in addition to the fact that growth deviates from thermal equilibrium, the grown GaN film usually has nitrogen vacancies due to the difference in lattice constant, or lattice mismatch, between the sapphire substrate and the GaN film. The drawback was that it contained many dots and had poor crystallinity. Another disadvantage was that the grown GaN film had a low resistance due to the influence of the nitrogen vacancies, and in order to obtain a high resistance GaN film, a large amount of acceptor dopant such as Zn or Mg had to be added. In addition to this, there was also the problem that GaCl 3 and NH 3 reacted locally, making it impossible to form a uniform film.
サフアイアC面基板上にトリメチルガリウム
(TMG)−NH3−N2(またはH2)系を用いて薄膜
成長させる有機金属気相成長法では膜の均一性は
良好となるが、格子不整合の問題は解決されず、
成長させたGaN膜は多くの窒素空格子点を含む
という欠点があつた。 Metal-organic vapor phase epitaxy, in which thin films are grown using trimethyl gallium (TMG)-NH 3 -N 2 (or H 2 ) system on saphire C-plane substrates, provides good film uniformity, but the lattice mismatch problem is not resolved,
The grown GaN film had the drawback of containing many nitrogen vacancies.
一方、AlXGa1-XN(0<x<1)薄膜の成長
は、主に、サフアイアC面基板を用い気相成長法
と反応性MBE法が用いられてきた。ハライド系
および有機金属気相成長法では、上述したGaN
膜の場合と同じく、成長したAlXGa1-XN(0<x
1)膜には格子不整合の影響を受け窒素空格子
点が多く存在するという欠点があつた。 On the other hand, for the growth of Al x Ga 1-x N (0<x<1) thin films, vapor phase growth and reactive MBE have been mainly used using sapphire C-plane substrates. In halide-based and organometallic vapor phase epitaxy, the above-mentioned GaN
As in the case of the film, the grown Al x Ga 1-x N (0<x
1) The film had a drawback in that it had many nitrogen vacancies due to lattice mismatch.
Al−Ga−NH3系による反応性MBE法におい
ても、サフアイアC面上の成長膜は、格子不整合
のために多くの窒素空格子点を含むという欠点が
あつた。 Even in the reactive MBE method using the Al-Ga-NH 3 system, the film grown on the Saphire C surface has the drawback that it contains many nitrogen vacancies due to lattice mismatch.
InN薄膜は、主に、サフアイアC面基板を用い
てInCl3−NH3系の気相成長法により成長する。
この場合にも、上述の2例と同じく、熱非平衡下
の成長以外に、格子不整合の影響を受けて窒素空
格子点を多く含むという欠点があつた。 The InN thin film is mainly grown by an InCl 3 -NH 3 based vapor phase growth method using a sapphire C-plane substrate.
In this case as well, in addition to the growth under thermal non-equilibrium conditions, there was a drawback that a large number of nitrogen vacancies were included due to the influence of lattice mismatch, as in the above two examples.
そこで、本発明の目的は、格子整合性を向上さ
せることにより、窒素空格子点の少ない高品質の
AlXGa1-XN(0≦x≦1)またはInNエピタキシ
ヤル膜を成長させることのできる化合物半導体薄
膜の成長方法を提供することにある。
Therefore, the purpose of the present invention is to improve lattice matching to produce high-quality carbon fibers with fewer nitrogen vacancies.
An object of the present invention is to provide a method for growing a compound semiconductor thin film that can grow an Al x Ga 1-x N (0≦x≦1) or InN epitaxial film.
かかる目的を達成するために、本発明では、有
機金属を用いたAlXGa1-XN(0≦x≦1)または
InNエピタキシヤル膜を成長させるにあたつて、
基板とエピタキシヤル膜との間に、エピタキシヤ
ル膜と同一組成のバツフア層を高周波スパツタ法
により設ける。
In order to achieve such an object, the present invention uses organic metal-based Al x Ga 1-x N (0≦x≦1) or
When growing an InN epitaxial film,
A buffer layer having the same composition as the epitaxial film is provided between the substrate and the epitaxial film by high frequency sputtering.
すなわち、本発明は、光学研磨したサフアイア
C面基板または光学研磨したガラスに金属を蒸着
した導電性基板を用い、金属アルミニウム、金属
ガリウム、金属インジウムの少なくとも一つをタ
ーゲツトとし、該ターゲツトと前記基板との間
に、直流バイアスを印加し、窒素ガスを含有した
雰囲気中で高周波スパツタリング法により、−
V族化合物半導体であるAlXGa1-XN(0≦x≦
1)またはInNをバツフア層として前記基板上に
推積させ、次に、減圧された容器内に前記バツフ
ア層の推積した基板を配置し、その基板をNH3
ガスを含有する雰囲気中で加熱し、および族の
有機金属を供給し、当該加熱された基板上に前記
族の有機金属を分解させてその窒化物膜を気相
成長させて、前記バツフア層上に該バツフア層と
同一組成であるAlXGa1-XN(0x1)または
InNをエピタキシヤル成長させることを特徴とす
るものである。 That is, the present invention uses an optically polished sapphire C-plane substrate or an optically polished glass conductive substrate with a metal vapor-deposited, targets at least one of metal aluminum, metal gallium, and metal indium, and connects the target and the substrate. By applying a DC bias between the
Al x Ga 1-x N (0≦x≦
1) Alternatively, InN is deposited as a buffer layer on the substrate, and then the substrate with the buffer layer deposited is placed in a reduced pressure container, and the substrate is exposed to NH 3 .
Heating in an atmosphere containing a gas and supplying a group organic metal, decomposing the group organic metal on the heated substrate and vapor-growing a nitride film thereof on the buffer layer. Al x Ga 1-x N (0x1) having the same composition as the buffer layer or
It is characterized by epitaxial growth of InN.
以下、図面を参照して本発明を詳細に説明す
る。
Hereinafter, the present invention will be explained in detail with reference to the drawings.
第1図はサフアイアC面を基板とした場合に本
発明により成長させた薄膜の膜構成の一例を示
す。ここで、1は光学研磨したサフアイアC面基
板、2はこの基板1上に形成したAlXGa1-XN(0
≦x≦1)またはInNのバツフア層、3はこのバ
ツフア層2と同一組成のAlXGa1-XN(0≦x≦
1)またはInNのエピタキシヤル層である。 FIG. 1 shows an example of the film structure of a thin film grown according to the present invention when a saphire C-plane is used as a substrate. Here, 1 is an optically polished sapphire C-plane substrate, and 2 is an Al x Ga 1-x N (0
≦x≦1) or InN buffer layer 3 is Al x Ga 1-x N (0≦x≦
1) or an epitaxial layer of InN.
第2図は導電性基板を用いた場合に本発明によ
り成長させた薄膜の構成の一例を示す。ここで、
4は光学研磨したガラス基板、5はこのガラス基
板4上に真空蒸着した金属膜、2は金属膜5上に
形成したAlXGa1-XN(0≦x≦1)またはInNの
バツフア層、3はこのバツフア層2と同一組成の
AlXGa1-XN(0≦x≦1)またはInNのエピタキ
シヤル層である。 FIG. 2 shows an example of the structure of a thin film grown according to the present invention when a conductive substrate is used. here,
4 is an optically polished glass substrate, 5 is a metal film vacuum-deposited on this glass substrate 4, and 2 is a buffer layer of Al x Ga 1-X N (0≦x≦1) or InN formed on the metal film 5. , 3 has the same composition as this buffer layer 2.
It is an epitaxial layer of Al x Ga 1-x N (0≦x≦1) or InN.
以下に、本発明による各組成の成長法の具体例
を詳細に説明する。 Specific examples of the growth method for each composition according to the present invention will be described in detail below.
(実施例1) サフアイアC面基板上へのGaN
膜の成長(第1図の構成)
まず、光学研磨したサフアイアC面基板1上
に、直流バイアスを印加した高周波スパツタ法に
よりGaNバツフア層2を1000Å〜7000Åの厚さ
に形成した。高周波スパツタ法によるGaNバツ
フア層2の形成にあたつては、通常は、平行平板
型装置を用い、ターゲツトとしてステンレス容器
に収容した高純度金属ガリウム(Ga、純度6N〜
7N)を用い、これを陰極に配設し、サフアイア
C面基板1を陽極に配設し、アルゴンArと窒素
N2との混合ガスをスパツタガスとして陰極側に
直流バイアスを印加する。本例では、スパツタガ
ス圧を3〜5×10-2Torr(混合比Ar:N2=3:
7)とし、スパツタパワーを30〜50Wとし、基板
温度を300〜450℃とし、直流バイアス電圧を0〜
−100Vとした。このような成長条件で、C軸配
向したGaNバツフア層をサフアイアC面上に形
成した。(Example 1) GaN on Saffire C-plane substrate
Growth of Film (Structure shown in FIG. 1) First, a GaN buffer layer 2 was formed to a thickness of 1000 Å to 7000 Å on an optically polished sapphire C-plane substrate 1 by high frequency sputtering with a DC bias applied. When forming the GaN buffer layer 2 by the high-frequency sputtering method, a parallel plate type device is usually used, and the target is high-purity metallic gallium (Ga, purity 6N to 6N) housed in a stainless steel container.
7N), and placed it on the cathode, placed the Sapphire C-plane substrate 1 on the anode, and
A DC bias is applied to the cathode side using a mixed gas with N 2 as a sputter gas. In this example, the sputtering gas pressure is set at 3 to 5×10 -2 Torr (mixture ratio Ar:N 2 =3:
7), the sputtering power is 30~50W, the substrate temperature is 300~450℃, and the DC bias voltage is 0~50W.
-100V. Under these growth conditions, a C-axis oriented GaN buffer layer was formed on the C-plane of Saphire.
尚、高周波スパツタ装置としては、この平行平
板型のほかに、同心半球型あるいはマグネトロン
型高周波スパツタ装置を用いることも可能であ
る。 As the high frequency sputtering device, in addition to this parallel plate type, it is also possible to use a concentric hemispherical type or a magnetron type high frequency sputtering device.
次に、GaNバツフア層2の上に、有機金属気
相成長法により、GaNエピタキシヤル層3を1
〜10μmの厚さに成長させて、第1図示の構造を
得た。ここで、有機金属としてはトリメチルガリ
ウムTMGを用い、アンモニアNH3ガスおよび窒
素N2キヤリアガスを用いてGaNエピタキシヤル
層3を成長させた。更に詳述すると、基板1を誘
導加熱法により800〜1000℃に加熱し、キヤリア
ガスN2を2l/minとし、NH3を500〜750cc/min
とした。そして、TMGを温度−12℃、キヤリア
ガスN220cc/minでバブリングし、反応管の圧
力を0.1気圧程度の減圧状態にしてC軸配向GaN
エピタキシヤル層3を成長させた。 Next, a GaN epitaxial layer 3 is formed on the GaN buffer layer 2 by metal organic vapor phase epitaxy.
The structure shown in Figure 1 was obtained by growing to a thickness of ~10 μm. Here, trimethylgallium TMG was used as the organic metal, and the GaN epitaxial layer 3 was grown using ammonia NH 3 gas and nitrogen N 2 carrier gas. More specifically, the substrate 1 is heated to 800 to 1000°C by induction heating, the carrier gas N 2 is 2 l/min, and the NH 3 is 500 to 750 cc/min.
And so. Then, TMG was bubbled with carrier gas N 2 at 20 cc/min at a temperature of -12°C, and the pressure in the reaction tube was reduced to about 0.1 atm to produce C-axis oriented GaN.
Epitaxial layer 3 was grown.
このようにバツフア層2を設けて成長させた
GaNエピタキシヤル膜のキヤリア濃度は1018cm-
3、抵抗率は10-1Ωcmであり、バツフア層2のな
い場合に比べてキヤリア濃度で1〜2桁少なく、
抵抗率で2桁程度大きく、窒素空格子点の少ない
エピタキシヤル膜が得られた。 In this way, the buffer layer 2 was provided and grown.
The carrier concentration of GaN epitaxial film is 10 18 cm -
3. The resistivity is 10 -1 Ωcm, which is one to two orders of magnitude lower in carrier concentration than the case without buffer layer 2.
An epitaxial film with resistivity about two orders of magnitude higher and fewer nitrogen vacancies was obtained.
室温におけるフオトルミネツセンスの比較例
を、バツフア層のないGaNエピタキシヤル膜お
よびバツフア層を設けたGaNエピタキシヤル膜
の場合について、第3図および第4図に示す。こ
れら第3図および第4図からわかるように、バツ
フア層のあるGaN膜の発光強度が大きくなつて
いる(波長420nm近傍のフオトルミネツセンスの
ビークAの強度比は(第3図の場合):(第4図の
場合)=1:13)。これは、窒素空格子点が少なく
なつて結晶性が向上し、非発光中心が少なくなつ
たためである。この例からもわかるように、
GaNバツフア層2を設けることによつて、GaN
エピタキシヤル膜の品質は向上する。 Comparative examples of photoluminescence at room temperature are shown in FIGS. 3 and 4 for a GaN epitaxial film without a buffer layer and a GaN epitaxial film provided with a buffer layer. As can be seen from these Figures 3 and 4, the luminescence intensity of the GaN film with the buffer layer is increased (the intensity ratio of peak A of photoluminescence near the wavelength of 420 nm is (in the case of Figure 3) : (in the case of Figure 4) = 1:13). This is because the number of nitrogen vacancies is reduced, the crystallinity is improved, and the number of non-luminescent centers is reduced. As you can see from this example,
By providing the GaN buffer layer 2, GaN
The quality of epitaxial films is improved.
(実施例2) 導電性基板上へのGaN膜の成長
(第2図の構成)
まず、光学研磨した石英ガラスまたはコーニン
グ7059(商品名)ガラスによるガラス基板4上に、
抵抗加熱蒸着法または電子ビーム蒸着法によりク
ロム(Cr)、ニツケル(Ni)、モリブデン(Mo)、
金(Au)、白金(Pt)などの金属を1000〜2000Å
の厚さに蒸着して導電膜5とした。この導電膜5
の上に、実施例1で述べたのと同一条件でGaN
バツフア層2を形成した。次に、このバツフア層
2の上に実施例1で述べたのと同一条件で有機金
属気相成長法でGaNエピタキシヤル層3を成長
させた。(Example 2) Growth of a GaN film on a conductive substrate (Structure shown in FIG. 2) First, on a glass substrate 4 made of optically polished quartz glass or Corning 7059 (trade name) glass,
Chromium (Cr), nickel (Ni), molybdenum (Mo),
Metals such as gold (Au) and platinum (Pt) with a thickness of 1000 to 2000Å
The conductive film 5 was obtained by vapor deposition to a thickness of . This conductive film 5
On top of that, GaN was applied under the same conditions as described in Example 1.
A buffer layer 2 was formed. Next, a GaN epitaxial layer 3 was grown on this buffer layer 2 by organometallic vapor phase epitaxy under the same conditions as described in Example 1.
(実施例3) サフアイアC面基板上へのAlX
Ga1-XN(0<x≦1)膜の成長(第1図の構
成)
まず、サフアイアC面基板1上に直流バイアス
を印加した高周波スパツタ法で、AlXGa1-XN(0
<x≦1)バツフア層2を1000〜7000Åの厚さに
形成した。ターゲツトとしてはGa上にAl片を並
べたものを用いた。例えば、x=0.1の場合、Ga
とAlとのスパツタ率をほぼ同じとしてAl片の面
積をGa表面積の1/10にした。他の成長条件は、
実施例1の場合と同一にしてC軸配向したAlX
Ga1-XN(0<x≦1)バツフア層2をサフアイ
アC面基板1上に形成した。次に、有機金属気相
成長法により、バツフア層2と同一組成のAlX
Ga1-XN(0<x≦1)エピタキシヤル層3をバ
ツフア層2上に1〜10μmの厚さに成長させた。
Al用の有機金属としてはトリメチルアルミニウ
ム(TMA)を用いた。TMAの流量は、組成比
に合わせて、キヤリアガスN2のバブリング量で
制御した。例えば、x=0.1では、TMA流量と
TMG流量との比を1:9にした。他の有機金属
気相成長法の成長条件は、実施例1と同一にして
C軸配向したAlXGa1-XN(0<x≦1)エピタキ
シヤル層3を成長させた。(Example 3) Al X on Saffire C-plane substrate
Growth of Ga 1-X N (0<x≦1) film (configuration shown in Figure 1) First, Al x Ga 1-X N (0
<x≦1) Buffer layer 2 was formed to a thickness of 1000 to 7000 Å. The target used was Al pieces arranged on Ga. For example, if x=0.1, Ga
The area of the Al piece was set to 1/10 of the Ga surface area, with the sputtering rate of Al and Al being almost the same. Other growth conditions are
C-axis oriented Al X as in Example 1
A Ga 1-x N (0<x≦1) buffer layer 2 was formed on a sapphire C-plane substrate 1 . Next, by metalorganic vapor phase epitaxy, Al
A Ga 1-x N (0<x≦1) epitaxial layer 3 was grown on the buffer layer 2 to a thickness of 1 to 10 μm.
Trimethylaluminum (TMA) was used as the organic metal for Al. The flow rate of TMA was controlled by the bubbling amount of carrier gas N 2 according to the composition ratio. For example, at x=0.1, the TMA flow rate and
The ratio with the TMG flow rate was set to 1:9. The growth conditions for other organometallic vapor phase epitaxy methods were the same as in Example 1, and a C-axis oriented Al x Ga 1-x N (0<x≦1) epitaxial layer 3 was grown.
(実施例4) 導電性基板上へのAlXGa1-XN(0
<x≦1)の成長(第2図の構成)
まず、実施例2と同一の工程でガラス基板4上
に導電膜5を蒸着して導電性基板を形成した。次
に、先の実施例3で述べたのと同一成長条件によ
り、AlXGa1-XN(0<x≦1)バツフア層2およ
びAlXGa1-XN(0<x1)エピタキシヤル層3
を成長させた。(Example 4) Al x Ga 1-x N(0
Growth of <x≦1) (Structure shown in FIG. 2) First, in the same process as in Example 2, a conductive film 5 was deposited on a glass substrate 4 to form a conductive substrate. Next, under the same growth conditions as described in Example 3 above, an Al x Ga 1-x N (0<x≦1) buffer layer 2 and an Al x Ga 1-x N (0<x1) epitaxial layer 3
grew.
(実施例5) サフアイアC面基板上へのInN膜
の成長(第1図の構成)
まず、光学研磨したサフアイアC面基板1上に
直流バイアスを印加した高周波スパツタ法により
InNバツフア層2を1000〜7000Åの厚さに形成し
た。高周波スパツタ法によるInN層2の形成にあ
つては、ターゲツトとしてステンレス容器に収容
したIn(純度6N)を用いた。ここで、基板温度を
200〜400℃、スパツタガス圧(混合比Ar:N2=
3:7)を2〜8×10-2Torr、スパツタパワー
を20〜40W、直流バイアス電圧を−100〜−150V
に設定してC軸配向のInN層2を形成した。(Example 5) Growth of an InN film on a sapphire C-plane substrate (configuration shown in Fig. 1) First, on an optically polished sapphire C-plane substrate 1, a high-frequency sputtering method was applied using a DC bias.
InN buffer layer 2 was formed to a thickness of 1000 to 7000 Å. When forming the InN layer 2 by high frequency sputtering, In (purity 6N) contained in a stainless steel container was used as a target. Here, set the substrate temperature to
200-400℃, sputtering gas pressure (mixture ratio Ar:N 2 =
3:7) at 2 to 8 x 10 -2 Torr, sputter power to 20 to 40 W, and DC bias voltage to -100 to -150 V.
The C-axis oriented InN layer 2 was formed by setting the following conditions.
次に、このバツフア層2の上に有機金属気相成
長法により、InNエピタキシヤル層3を成長させ
た。有機金属としてはトリメチルインジウム
(TMI)、窒素供給源としてはNH3、キヤリアガ
スとしてはN2を用いた。TMIの流量を10〜
50cc/min(キヤリアガスN2のバブリング量)と
し、NH3を100〜700cc/min、キヤリアガスN2
を1〜2l/min、基板温度を500〜700℃とし、反
応管の圧力を0.1気圧の減圧状態にして、C軸配
向InNエピタキシヤル層3を成長させた。 Next, an InN epitaxial layer 3 was grown on the buffer layer 2 by metal organic vapor phase epitaxy. Trimethylindium (TMI) was used as the organic metal, NH 3 was used as the nitrogen source, and N 2 was used as the carrier gas. TMI flow rate 10~
50cc/min (bubbling amount of carrier gas N2 ), NH3 at 100 to 700cc/min, carrier gas N2
The C-axis oriented InN epitaxial layer 3 was grown under conditions such as 1 to 2 l/min, a substrate temperature of 500 to 700°C, and a reduced pressure of 0.1 atm in the reaction tube.
(実施例6) 導電性基板上へのInN膜の成長
(第2図の構成)
まず、実施例2と同一の工程でガラス基板4上
に導電膜5を蒸着して導電性基板を形成した。(Example 6) Growth of InN film on a conductive substrate (Structure shown in Figure 2) First, a conductive film 5 was deposited on a glass substrate 4 in the same process as in Example 2 to form a conductive substrate. .
次に、先の実施例5で述べたのと同一成長条件
により、InNバツフア層2、ついでInNエピタキ
シヤル層3を成長させた。 Next, the InN buffer layer 2 and then the InN epitaxial layer 3 were grown under the same growth conditions as described in Example 5 above.
尚、以上に述べた6つの実施例においては、バ
ツフア層2とエピタキシヤル層3の組成が同一の
ものを用いたが、バツフア層2とエピタキシヤル
層3の組成が異なる構成、例えば、AlNバツフ
ア層上のGaNエピタキシヤル層の場合であつて
も、バツフア層を用いない場合に比べ格子整合性
がよく、本発明による薄膜の成長はかかる場合も
含むものとする。 In the six embodiments described above, the buffer layer 2 and the epitaxial layer 3 have the same composition, but the buffer layer 2 and the epitaxial layer 3 may have different compositions, for example, an AlN buffer layer. Even in the case of a GaN epitaxial layer on top of the GaN layer, the lattice matching is better than when no buffer layer is used, and the thin film growth according to the present invention includes such a case.
以上説明したように、本発明では、窒素空格子
点の少ない高品質のAlXGa1-XN(0≦x≦1)ま
たはInNエピタキシヤル膜を成長させることがで
きるので、従来の気相成長法に比べて、NIS素子
を作製する場合に、絶縁層作製のためのドープ量
を少なくでき、また、高輝度の発光素子を作製で
きる利点がある。この利点は、特に、GaNでの
青色発光素子を製造する場合に有利である。
As explained above, in the present invention , it is possible to grow a high-quality Al Compared to the growth method, this method has the advantage that when producing an NIS device, the amount of doping for producing an insulating layer can be reduced, and that a high-luminance light-emitting device can be produced. This advantage is particularly advantageous when manufacturing blue light emitting devices in GaN.
また、本発明では、GaClとNH3の局所反応が
問題となるハライド気相成長法を用いずに、局所
反応の起きない有機金属気相成長法を用い、しか
も基板とエピタキシヤル膜との格子整合性がよい
ので、均一性に優れたエピタキシヤル膜が得られ
るという利点をも有する。 In addition, in the present invention, instead of using halide vapor phase epitaxy, which causes a problem of local reactions between GaCl and NH 3 , we use organometallic vapor phase epitaxy, which does not cause local reactions. Since the matching is good, it also has the advantage that an epitaxial film with excellent uniformity can be obtained.
さらに加えて、本発明の方法は、普及度の高い
高周波スパツタ法と均一性がよく、しかも成長速
度の速い有機金属気相成長法とを併用するので、
工業化および低コスト化を図り易いという利点も
有する。 In addition, the method of the present invention uses the highly popular high-frequency sputtering method in combination with the organometallic vapor phase epitaxy method, which has good uniformity and a fast growth rate.
It also has the advantage of being easy to industrialize and reduce costs.
第1図は本発明により、サフアイアC面基板を
用いたAlXGa1-XN(0≦x≦1)またはInNエピ
タキシヤル膜を成長させた構成例を示す断面図、
第2図は、本発明により、導電性基板を用いた
AlXGa1-XN(0≦x≦1)またはInNエピタキシ
ヤル膜を成長させた構成例を示す断面図、第3図
はサフアイアC面上にバツフア層を設けずに直接
GaNエピタキシヤル膜を成長させた場合の室温
におけるフオトルミネツセンスの特性曲線図、第
4図は本発明によりサフアイアC面上にGaNバ
ツフア層を設け、その上にGaNエピタキシヤル
膜を成長させた場合の室温におけるフオトルミネ
ツセンスの特性曲線図である。
1……サフアイアC面基板、2……AlXGa1-X
N(0≦x≦1)またはInNバツフア層、3……
AlXGa1-XN(0≦x≦1)またはInNエピタキシ
ヤル層、4……ガラス基板、5……蒸着金属膜。
FIG. 1 is a cross-sectional view showing a configuration example in which an Al x Ga 1-x N (0≦x≦1) or InN epitaxial film is grown using a sapphire C-plane substrate according to the present invention;
FIG. 2 shows a method using a conductive substrate according to the present invention.
A cross-sectional view showing an example of a structure in which an Al x Ga 1-x N (0≦x≦1) or InN epitaxial film is grown.
Figure 4 shows a characteristic curve of photoluminescence at room temperature when a GaN epitaxial film is grown, and a GaN buffer layer is provided on the sapphire C surface according to the present invention, and a GaN epitaxial film is grown on it. FIG. 3 is a characteristic curve diagram of photoluminescence at room temperature in the case of FIG. 1...Saphire C-plane substrate, 2...Al X Ga 1-X
N (0≦x≦1) or InN buffer layer, 3...
Al x Ga 1-x N (0≦x≦1) or InN epitaxial layer, 4... glass substrate, 5... evaporated metal film.
Claims (1)
研磨したガラスに金属を蒸着した導電性基板を用
い、金属アルミニウム、金属ガリウム、金属イン
ジウムの少なくとも一つをターゲツトとし、該タ
ーゲツトと前記基板との間に、直流バイアスを印
加し、窒素ガスを含有した雰囲気中で高周波スパ
ツタリング法により、−V族化合物半導体であ
るAlXGa1-XN(0≦x≦1)またはInNをバツフ
ア層として前記基板上に推積させ、次に、減圧さ
れた容器内に前記バツフア層の推積した基板を配
置し、その基板をNH3ガスを含有する雰囲気中
で加熱し、および族の有機金属を供給し、当該
加熱された基板上に前記族の有機金属を分解さ
せてその窒化物膜を気相成長させて、前記バツフ
ア層上に該バツフア層と同一組成であるAlX
Ga1-XN(0x1)またはInNをエピタキシヤ
ル成長させることを特徴とする化合物半導体薄膜
の成長方法。1. Using an optically polished sapphire C-plane substrate or an optically polished glass conductive substrate with metal vapor-deposited, at least one of metal aluminum, metal gallium, and metal indium is used as a target, and between the target and the substrate, By applying a DC bias and using a high frequency sputtering method in an atmosphere containing nitrogen gas, a -V group compound semiconductor, Al x Ga 1-x N (0≦x≦1) or InN, is formed as a buffer layer on the substrate. Then, the substrate with the buffer layer deposited thereon is placed in a container under reduced pressure, the substrate is heated in an atmosphere containing NH 3 gas, and the organic metal of the group is supplied. An organic metal of the above group is decomposed and a nitride film thereof is grown in a vapor phase on a heated substrate, and AlX having the same composition as that of the buffer layer is formed on the buffer layer.
A method for growing a compound semiconductor thin film, which comprises epitaxially growing Ga 1-x N (0x1) or InN.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59024444A JPS60173829A (en) | 1984-02-14 | 1984-02-14 | Growing method of compound semiconductor thin-film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59024444A JPS60173829A (en) | 1984-02-14 | 1984-02-14 | Growing method of compound semiconductor thin-film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60173829A JPS60173829A (en) | 1985-09-07 |
JPH0586646B2 true JPH0586646B2 (en) | 1993-12-13 |
Family
ID=12138309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59024444A Granted JPS60173829A (en) | 1984-02-14 | 1984-02-14 | Growing method of compound semiconductor thin-film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60173829A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11163404A (en) * | 1997-11-25 | 1999-06-18 | Toyoda Gosei Co Ltd | Gan-based semiconductor |
WO2007129773A1 (en) | 2006-05-10 | 2007-11-15 | Showa Denko K.K. | Iii nitride compound semiconductor laminated structure |
WO2008020599A1 (en) | 2006-08-18 | 2008-02-21 | Showa Denko K.K. | Method for manufacturing group iii nitride compound semiconductor light-emitting device, group iii nitride compound semiconductor light-emitting device, and lamp |
WO2008041499A1 (en) | 2006-09-29 | 2008-04-10 | Showa Denko K.K. | Filming method for iii-group nitride semiconductor laminated structure |
WO2008075559A1 (en) | 2006-12-20 | 2008-06-26 | Showa Denko K.K. | Method for manufacturing group iii nitride semiconductor light-emitting device, group iii nitride semiconductor light-emitting device, and lamp |
WO2009041256A1 (en) | 2007-09-27 | 2009-04-02 | Showa Denko K.K. | Group iii nitride semiconductor light-emitting device, method for manufacturing the same, and lamp |
DE112007002182T5 (en) | 2006-09-26 | 2009-07-09 | Showa Denko K.K. | Group III nitride compound semiconductor light emitting device, method of manufacturing a group III nitride compound semiconductor light emitting device, and lamp |
WO2009113458A1 (en) | 2008-03-13 | 2009-09-17 | 昭和電工株式会社 | Group iii nitride semiconductor device and method for manufacturing the same, group iii nitride semiconductor light-emitting device and method for manufacturing the same, and lamp |
JP2009277882A (en) * | 2008-05-14 | 2009-11-26 | Showa Denko Kk | Method of manufacturing group iii nitride semiconductor light emitting element, group iii nitride semiconductor light emitting element, and lamp |
US8097482B2 (en) | 2007-06-11 | 2012-01-17 | Showa Denko K.K | Method for manufacturing group III nitride semiconductor, method for manufacturing group III nitride semiconductor light-emitting device, group III nitride semiconductor light-emitting device, and lamp |
US8106419B2 (en) | 2006-11-08 | 2012-01-31 | Showa Denko K.K. | Group-III nitride compound semiconductor light-emitting device, method of manufacturing group-III nitride compound semiconductor light-emitting device, and lamp |
US8198179B2 (en) | 2007-02-21 | 2012-06-12 | Showa Denko K.K. | Method for producing group III nitride semiconductor light-emitting device |
US8557092B2 (en) | 2006-10-20 | 2013-10-15 | Toyoda Gosei Co., Ltd. | Sputtering deposition apparatus and backing plate for use in sputtering deposition apparatus |
US8674398B2 (en) | 2007-07-04 | 2014-03-18 | Toyoda Gosei Co., Ltd. | Group III nitride semiconductor light emitting device and production method thereof, and lamp |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63188938A (en) * | 1987-01-31 | 1988-08-04 | Toyoda Gosei Co Ltd | Method for vapor growth of gallium nitride compound semiconductor |
JP2631285B2 (en) * | 1987-01-31 | 1997-07-16 | 豊田合成 株式会社 | Gas phase growth method of gallium nitride based compound semiconductor |
JP2631286B2 (en) * | 1987-01-31 | 1997-07-16 | 豊田合成 株式会社 | Gas phase growth method of gallium nitride based compound semiconductor |
US6830992B1 (en) | 1990-02-28 | 2004-12-14 | Toyoda Gosei Co., Ltd. | Method for manufacturing a gallium nitride group compound semiconductor |
EP0444630B1 (en) | 1990-02-28 | 1997-05-21 | Toyoda Gosei Co., Ltd. | Light-emitting semiconductor device using gallium nitride group compound |
US6362017B1 (en) | 1990-02-28 | 2002-03-26 | Toyoda Gosei Co., Ltd. | Light-emitting semiconductor device using gallium nitride group compound |
JP2623466B2 (en) * | 1990-02-28 | 1997-06-25 | 豊田合成株式会社 | Gallium nitride based compound semiconductor light emitting device |
JPH088217B2 (en) * | 1991-01-31 | 1996-01-29 | 日亜化学工業株式会社 | Crystal growth method for gallium nitride-based compound semiconductor |
JP2791448B2 (en) * | 1991-04-19 | 1998-08-27 | 日亜化学工業 株式会社 | Light emitting diode |
JPH0583184U (en) * | 1991-05-30 | 1993-11-09 | 株式会社工業技術研究所 | Mobile scaffolding |
JP3352712B2 (en) * | 1991-12-18 | 2002-12-03 | 浩 天野 | Gallium nitride based semiconductor device and method of manufacturing the same |
JP2657743B2 (en) * | 1992-10-29 | 1997-09-24 | 豊田合成株式会社 | Nitrogen-3 group element compound semiconductor light emitting device |
DE19613265C1 (en) * | 1996-04-02 | 1997-04-17 | Siemens Ag | Circuit element, e.g. laser diode |
US6713789B1 (en) | 1999-03-31 | 2004-03-30 | Toyoda Gosei Co., Ltd. | Group III nitride compound semiconductor device and method of producing the same |
JP3994623B2 (en) | 2000-04-21 | 2007-10-24 | 豊田合成株式会社 | Method for producing group III nitride compound semiconductor device |
GB2372635B (en) * | 2000-08-18 | 2005-01-19 | Showa Denko Kk | Method of fabricating group-III nitride semiconductor crystals. |
JP3631724B2 (en) | 2001-03-27 | 2005-03-23 | 日本電気株式会社 | Group III nitride semiconductor substrate and manufacturing method thereof |
JP3521201B2 (en) * | 2001-08-06 | 2004-04-19 | 豊田合成株式会社 | Method of manufacturing gallium nitride compound semiconductor |
JP4289203B2 (en) * | 2004-04-15 | 2009-07-01 | 豊田合成株式会社 | GaN-based semiconductor |
JP2007533164A (en) | 2004-04-15 | 2007-11-15 | トラスティーズ オブ ボストン ユニバーシティ | Optical device featuring a textured semiconductor layer |
US8035113B2 (en) | 2004-04-15 | 2011-10-11 | The Trustees Of Boston University | Optical devices featuring textured semiconductor layers |
US8299451B2 (en) | 2005-11-07 | 2012-10-30 | Showa Denko K.K. | Semiconductor light-emitting diode |
JP4637781B2 (en) | 2006-03-31 | 2011-02-23 | 昭和電工株式会社 | GaN-based semiconductor light emitting device manufacturing method |
JP2009054767A (en) * | 2006-10-10 | 2009-03-12 | Showa Denko Kk | Laminate structure of group iii nitride semiconductor, manufacturing method thereof, semiconductor light-emitting element, and lamp |
JP2008177523A (en) * | 2006-12-20 | 2008-07-31 | Showa Denko Kk | Method for producing group III nitride compound semiconductor light emitting device, group III nitride compound semiconductor light emitting device, and lamp |
JP2008153603A (en) | 2006-12-20 | 2008-07-03 | Showa Denko Kk | Method for producing group III nitride compound semiconductor light emitting device, group III nitride compound semiconductor light emitting device, and lamp |
JP4908381B2 (en) * | 2006-12-22 | 2012-04-04 | 昭和電工株式会社 | Group III nitride semiconductor layer manufacturing method, group III nitride semiconductor light emitting device, and lamp |
KR101071450B1 (en) * | 2006-12-22 | 2011-10-10 | 쇼와 덴코 가부시키가이샤 | Method for producing group iii nitride semiconductor layer, group iii nitride semiconductor light-emitting device, and lamp |
WO2009111790A1 (en) | 2008-03-07 | 2009-09-11 | Trustees Of Boston University | Optical devices featuring nonpolar textured semiconductor layers |
JP2009283785A (en) * | 2008-05-23 | 2009-12-03 | Showa Denko Kk | Group iii nitride semiconductor laminate structure and manufacturing method thereof |
JP2009283895A (en) * | 2008-12-15 | 2009-12-03 | Showa Denko Kk | Group iii nitride semiconductor laminate structure |
JP2011082570A (en) * | 2011-01-11 | 2011-04-21 | Showa Denko Kk | Method of manufacturing group iii nitride semiconductor light emitting device |
-
1984
- 1984-02-14 JP JP59024444A patent/JPS60173829A/en active Granted
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11163404A (en) * | 1997-11-25 | 1999-06-18 | Toyoda Gosei Co Ltd | Gan-based semiconductor |
WO2007129773A1 (en) | 2006-05-10 | 2007-11-15 | Showa Denko K.K. | Iii nitride compound semiconductor laminated structure |
WO2008020599A1 (en) | 2006-08-18 | 2008-02-21 | Showa Denko K.K. | Method for manufacturing group iii nitride compound semiconductor light-emitting device, group iii nitride compound semiconductor light-emitting device, and lamp |
US8227284B2 (en) | 2006-08-18 | 2012-07-24 | Showa Denko K.K. | Group-III nitride compound semiconductor light-emitting device, method of manufacturing group-III nitride compound semiconductor light-emitting device, and lamp |
DE112007002182B4 (en) | 2006-09-26 | 2023-02-16 | Toyoda Gosei Co., Ltd. | Method of manufacturing a group III nitride compound semiconductor light emitting device |
DE112007002182T5 (en) | 2006-09-26 | 2009-07-09 | Showa Denko K.K. | Group III nitride compound semiconductor light emitting device, method of manufacturing a group III nitride compound semiconductor light emitting device, and lamp |
WO2008041499A1 (en) | 2006-09-29 | 2008-04-10 | Showa Denko K.K. | Filming method for iii-group nitride semiconductor laminated structure |
US8389313B2 (en) | 2006-09-29 | 2013-03-05 | Toyoda Gosei Co., Ltd. | Deposition method of III group nitride compound semiconductor laminated structure |
US8557092B2 (en) | 2006-10-20 | 2013-10-15 | Toyoda Gosei Co., Ltd. | Sputtering deposition apparatus and backing plate for use in sputtering deposition apparatus |
US8106419B2 (en) | 2006-11-08 | 2012-01-31 | Showa Denko K.K. | Group-III nitride compound semiconductor light-emitting device, method of manufacturing group-III nitride compound semiconductor light-emitting device, and lamp |
WO2008075559A1 (en) | 2006-12-20 | 2008-06-26 | Showa Denko K.K. | Method for manufacturing group iii nitride semiconductor light-emitting device, group iii nitride semiconductor light-emitting device, and lamp |
US8198179B2 (en) | 2007-02-21 | 2012-06-12 | Showa Denko K.K. | Method for producing group III nitride semiconductor light-emitting device |
US8097482B2 (en) | 2007-06-11 | 2012-01-17 | Showa Denko K.K | Method for manufacturing group III nitride semiconductor, method for manufacturing group III nitride semiconductor light-emitting device, group III nitride semiconductor light-emitting device, and lamp |
US8674398B2 (en) | 2007-07-04 | 2014-03-18 | Toyoda Gosei Co., Ltd. | Group III nitride semiconductor light emitting device and production method thereof, and lamp |
WO2009041256A1 (en) | 2007-09-27 | 2009-04-02 | Showa Denko K.K. | Group iii nitride semiconductor light-emitting device, method for manufacturing the same, and lamp |
WO2009113458A1 (en) | 2008-03-13 | 2009-09-17 | 昭和電工株式会社 | Group iii nitride semiconductor device and method for manufacturing the same, group iii nitride semiconductor light-emitting device and method for manufacturing the same, and lamp |
JP2009277882A (en) * | 2008-05-14 | 2009-11-26 | Showa Denko Kk | Method of manufacturing group iii nitride semiconductor light emitting element, group iii nitride semiconductor light emitting element, and lamp |
Also Published As
Publication number | Publication date |
---|---|
JPS60173829A (en) | 1985-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0586646B2 (en) | ||
US4855249A (en) | Process for growing III-V compound semiconductors on sapphire using a buffer layer | |
JP2704181B2 (en) | Method for growing compound semiconductor single crystal thin film | |
Davis | III-V nitrides for electronic and optoelectronic applications | |
Amano et al. | Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer | |
CN105861987B (en) | Growth method of gallium nitride based on hexagonal boron nitride and magnetron sputtered aluminum nitride | |
JP3440873B2 (en) | Method for manufacturing group III nitride compound semiconductor device | |
JPH10326911A (en) | P-type group III nitride compound semiconductor and method for producing the same | |
JP3198912B2 (en) | Method for producing group 3-5 compound semiconductor | |
JP2002252177A (en) | Semiconductor element | |
JP3716440B2 (en) | Boron-containing aluminum nitride thin film and manufacturing method | |
JP3140751B2 (en) | Gallium nitride based compound semiconductor light emitting device | |
US5650198A (en) | Defect reduction in the growth of group III nitrides | |
JPH0331678B2 (en) | ||
JPH09251957A (en) | Method for producing group 3-5 compound semiconductor | |
JPH1012554A (en) | Method for manufacturing compound semiconductor | |
JP3174257B2 (en) | Method for producing nitride-based compound semiconductor | |
JPH09107124A (en) | Method for producing group 3-5 compound semiconductor | |
JPH08186329A (en) | Method for growing gallium nitride based semiconductor crystal | |
US6306739B1 (en) | Method and apparatus for depositing thin films of group III nitrides and other films and devices made therefrom | |
JPH07283436A (en) | Group 3-5 compound semiconductor and light emitting device | |
JPH07240374A (en) | Group 3-5 compound semiconductor crystal | |
JP3991815B2 (en) | Method for growing zinc oxide crystal film | |
JP3743013B2 (en) | Epitaxial wafer manufacturing method | |
JPS61179527A (en) | Growth method of compound semiconductor single crystal film and equipment therefor |