JPH0586618B2 - - Google Patents
Info
- Publication number
- JPH0586618B2 JPH0586618B2 JP16679185A JP16679185A JPH0586618B2 JP H0586618 B2 JPH0586618 B2 JP H0586618B2 JP 16679185 A JP16679185 A JP 16679185A JP 16679185 A JP16679185 A JP 16679185A JP H0586618 B2 JPH0586618 B2 JP H0586618B2
- Authority
- JP
- Japan
- Prior art keywords
- fluorescent lamp
- color temperature
- chromaticity
- light source
- color
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000010586 diagram Methods 0.000 claims description 14
- 230000005540 biological transmission Effects 0.000 claims description 9
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 7
- 230000002596 correlated effect Effects 0.000 claims description 7
- 239000011521 glass Substances 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 230000003595 spectral effect Effects 0.000 description 20
- 239000004033 plastic Substances 0.000 description 11
- 238000002834 transmittance Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 108010010803 Gelatin Proteins 0.000 description 3
- 239000008273 gelatin Substances 0.000 description 3
- 229920000159 gelatin Polymers 0.000 description 3
- 235000019322 gelatine Nutrition 0.000 description 3
- 235000011852 gelatine desserts Nutrition 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000011022 opal Substances 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Landscapes
- Vessels And Coating Films For Discharge Lamps (AREA)
Description
〔発明の技術分野〕
本発明は標準白色光源に関し、更に詳しくはカ
ラーテレビジヨンなどの生産工場において、色再
現に最も重要な要素である基準白色の維持、管理
用として長期間安定に維持できる標準白色光源装
置に関する。
〔発明の技術的背景と問題点〕
カラーテレビジヨンの基準白色の色度点は使用
する3原色(赤、緑、青)螢光体の色度点で定ま
る色度図上の3角形の範囲であれば任意に設定で
きる。例えば日本国内製品の場合は相関色温度が
約9000〜12000K、外国の一部は約6500Kという
ようになつている。
この白色色度点がばらつくことにより製品の色
再現に次のような問題が起こる。例えば設定色温
度10000Kに対して製品の色温度が12000Kと高く
なつた場合の画像は全体的に青味が強調されると
同時に白いYシヤツなどは青白く異様に感じられ
る。逆に8000K程度に低くなつた場合の画像は全
体的にアンバー気味になり白いYシヤツなどは古
ぼけた感じがするようになる。このようにカラー
テレビジヨンの基準白色の色度点は最終的な受信
画像に大きな影響を与えることから厳密な色管理
が要求される。
ところでこの基準白色の調整作業には種々の方
法があるが、大部分は分光側色により基準白色の
色度座標及び輝度に設定された標準白色光源装置
との視感等色によるものや、視感等色により等色
したカラーテレビジヨン発光面色度値を記憶した
色彩チエツカーなどを用いており、いずれもその
基本となるのは、標準白色光源装置である。
これら標準白色光源の一般的な構成としては例
えば相関色温度10000Kの発光面を得る場合は、
色温度6500Kの昼光色螢光ランプと反射板、プラ
スチツク又はゼラチン製の色温度変換フイルタ
ー、偏差変換フイルター及び輝度調整用減光フイ
ルターの挿入されたフイルター枠と拡散透過板な
どからなつているが次のような問題点を有してい
る。
つまり、色温度、偏差及び輝度を調整する為に
用いるプラスチツク又はゼラチン製フイルターの
分光透過率特性が長期間の使用に対し、経年変化
を起こし、使用中に色温度は低下、偏差は上昇す
ることにより色度変化が生じるという問題がり改
善が望まれていた。
〔発明の目的〕
本発明は上記した問題点を解消し、カラーテレ
ビジヨンの色再現に最も重要な白色光を長期間、
安定に維持できる標準白色光源装置の提供を目的
とする。
〔発明の概要〕
本発明者らは、従来、色度調整に使用されてい
たプラスチツク又はゼラチン製フイルターを使用
しないで所望の色度点の得られる標準白色光源装
置に関し、検討を加えた結果以下のようにして構
成される本発明の標準白色光源装置を開発するに
致つた。
すなわち、本発明の標準白色光源装置はガラス
管の内面に螢光体を塗布被着せしめてなる螢光ラ
ンプを光源とし、前記光源からの光出力を前面に
反射するための反射板と、輝度調整用メツシユフ
イルター及び拡散透過板を介して放射されるよう
な装置において内蔵する螢光ランプはその逆数相
関色温度が発光面の逆数相関色温度よりも小さい
ことを特徴とし、より好ましくは15〜35(MK-1)
小さくまたCIEuv色度図上における色度座標が完
全放射体軌跡からの距離で0〜0.01(uv)それぞ
れ小さいことを特徴とするものである。ここで、
本発明の装置に用いられる螢光ランプの最適な色
温度、偏差範囲は次のようにして求められる。例
えば、標準白色光源装置に用いると考えられる反
射板、拡散透過板等の分光反射、透過特性を測定
し、使用光源に近似した分光エネルギー分布とか
らシミユレーシヨンにより発光面の色度を予測す
る。現在では光源の分光エネルギー分布のシミユ
レーシヨンは使用螢光体の発光スペクトルから容
易にしかも精度よくできることから前述の予測計
算〓種々の材料について行なうことによつて、使
用螢光ランプの色度点は分光反射、透過特性が少
し異なる場合でも精度よく予測できる。
以上のような予測計算を現在市販されている反
射板(例えばアルミニウム梨地反射板など)、拡
散透過板(例えばきせかけガラス全乳白ガラス、
オパールガラスなど)、減光フイルター(例えば
ナイロンメツシユフイルターなど)などの組合わ
せについて行ない前述のような螢光ランプの最適
範囲を見い出したものである。
ここで、色温度、偏差の範囲を規定したのは、
反射板及びメツシユフイルター、拡散透過板の分
光反射率及び分光透過率特性がそれぞれ特許請求
の範囲第2項に定められた場合であつて、その範
囲を越える特性をもつ材料の場合は当然ながら前
述の色温度、偏差の数値範囲外になる。しかし、
そのような特性をもつ材料は色彩学的見知から反
射、透過材料としては本装置のように白色を調整
する場合には好ましくない。
〔発明の実施例〕
本発明の装置の構成図を第1図に示す。螢光ラ
ンプ1からの発光は反射板2からの反射光も含め
て、フイルター枠3及び拡散透過板4を介して前
面に放射される第2図に本発明に用いた反射板の
分光反射率を、第3図に同じくメツシユフイルタ
ーの分光透過を、さらに第4図に拡散透過板の分
光透過率の一例を示す。
また、第5図に本発明の装置に用いる螢光ラン
プの構成図を示す。
実施例 1
第2図の5、第3図の8及び第4図の11の反
射板、メツシユフイルター及び拡散板を使用して
発光面の色温度6500K、偏差0.003uvの装置を得
る場合の使用螢光ランプを第1表に示す螢光体A
とDを用いて製作した場合のランプの色温度、偏
差を第2表に示す。さらに螢光ランプ及び発光面
の分光エネルギー分布を第6図及び第7図に示
す。
実施例 2
第2図の6、第3図の9及び第4図の12の反
射板、メツシユフイルター及び拡散板を使用して
発光面の色温度9300K、偏差0.005uvの装置を得
る場合の使用螢光ランプを第1表に示す螢光体B
とDを用いて製作した場合のランプの色温度、偏
差を第2表に併記する。また、螢光ランプ及び発
光面の分光エネルギー分布も第6図及び第7図に
合わせて示す。
実施例 3
第2図の7、第3図の10及び第4図の13の
反射板、メツシユフイルター及び拡散板を使用し
て、発光面の色温度12000K、偏差0.008uvの装置
を得る場合の使用螢光ランプを第1表に示す螢光
体CとDを用いて製作した場合のランプの色温
度、偏差を第2表に併記する。また、螢光ランプ
及び発光面の分光エネルギー分布も第6図及び第
7図に合わせて示す。
比較例
実施例3にあるような発光面色度を得る場合、
市販の昼光色螢光ランプ(使用螢光体は第1表に
示す螢光体E)を使用して第2図の7、第3図の
10の反射板、拡散板とフイルター枠には、第8
図の14に示すプラスチツク減光フイルター(例
えば襲電社製ND−50)と第8図の15,16の
プラスチツク色温度変換フイルター(例えば東京
舞台照明製TB1,TB3)と第8図の17,18の
プラスチツク偏差変換フイルター(例えば襲電社
製PU1,PU4)を挿入して製作する。第2表及び
第6図、第7図にその結果を合わせて示す。な
お、図中のそれぞれの記号は第2表の発光面色度
及びランプ記号と対応している。
以上の実施例から明らかなように、従来のプラ
スチツクフイルターを使用する方法に対して本発
明の装置は実施例にあるようなそれぞれの色度の
螢光ランプを製作するだけで所定の発光面色度が
得られることがわかる。また光退色の避けられな
いプラスチツクフイルターを使用しないでも得ら
れることから、第2表に示すように経年変化が非
常に少なく点灯1000時間後でもその色度ズレは問
題にならない程度まで改善されている。
尚、本発明の装置に用いられる螢光ランプに使
用する螢光体は実施例以外の一種の螢光体や組成
式の異なる複数の螢光体の混合でもよく、要する
に前述の色度範囲にあるならば使用螢光体は第1
表に何ら制限されるものではない。
〔発明の効果〕
以上の説明から明らかなように本発明の装置は
所定の色度に設定された螢光ランプを使用するこ
とによつて、色度ズレの原因であるプラスチツク
フイルターを使用しなくても所望の発光面色度が
得られる。また従来はプラスチツクフイルターの
透過率が階段的に設定されていた為に色温度、、
偏差も段階的により調整できなかつたものが、本
発明の装置によれば螢光ランプの色度は任意に設
定できることから色度設定もリニアにできるなど
の効果もある。
[Technical Field of the Invention] The present invention relates to a standard white light source, and more specifically, to a standard white light source that can be stably maintained over a long period of time for use in maintaining and controlling reference white, which is the most important element for color reproduction, in factories producing color televisions and other products. The present invention relates to a white light source device. [Technical background and problems of the invention] The chromaticity point of the reference white color of color television is the range of a triangle on the chromaticity diagram determined by the chromaticity points of the three primary color (red, green, blue) phosphors used. It can be set arbitrarily. For example, the correlated color temperature of Japanese domestic products is approximately 9,000 to 12,000K, while some foreign products are approximately 6,500K. This variation in white chromaticity point causes the following problems in color reproduction of products. For example, if the color temperature of the product is set to 12,000K compared to the set color temperature of 10,000K, the entire image will have a bluish tinge, and at the same time, white Y-shirts will appear pale and strange. On the other hand, if the value is lowered to around 8000K, the image will look amber overall and white Y-shirts will look old. As described above, the chromaticity point of the reference white color of color television has a great influence on the final received image, and therefore strict color management is required. By the way, there are various methods for adjusting this reference white, but most of them are based on luminous matching with the standard white light source device, which is set to the chromaticity coordinates and brightness of the reference white according to the spectral side color, or by visual matching. A color checker or the like is used that stores the chromaticity values of the color television light-emitting surface that have been color-matched by color matching, and the basis of both is a standard white light source device. The general configuration of these standard white light sources is, for example, to obtain a light emitting surface with a correlated color temperature of 10,000K.
It consists of a daylight color fluorescent lamp with a color temperature of 6500K, a reflector, a color temperature conversion filter made of plastic or gelatin, a deviation conversion filter, a filter frame with a brightness adjustment dimming filter inserted, and a diffuser transmission plate, etc. It has the following problems. In other words, the spectral transmittance characteristics of plastic or gelatin filters used to adjust color temperature, deviation, and brightness change over time due to long-term use, and color temperature decreases and deviation increases during use. There has been a desire to improve the problem of chromaticity changes caused by chromaticity changes. [Object of the Invention] The present invention solves the above-mentioned problems and makes it possible to use white light, which is most important for color reproduction in color television, for a long period of time.
The purpose is to provide a standard white light source device that can be stably maintained. [Summary of the Invention] The present inventors have conducted studies on a standard white light source device that can obtain a desired chromaticity point without using plastic or gelatin filters conventionally used for chromaticity adjustment, and have found the following results. A standard white light source device of the present invention constructed as follows has been developed. That is, the standard white light source device of the present invention uses a fluorescent lamp made by coating the inner surface of a glass tube with a phosphor as a light source, a reflector plate for reflecting the light output from the light source to the front, and a luminance A fluorescent lamp incorporated in a device that emits light through an adjusting mesh filter and a diffuser-transmitting plate is characterized in that its reciprocal correlated color temperature is smaller than the reciprocal correlated color temperature of the light emitting surface, and more preferably 15 ~35 (MK -1 )
It is characterized in that it is small and its chromaticity coordinates on the CIE uv chromaticity diagram are small by 0 to 0.01 (uv) in terms of distance from the perfect radiator locus. here,
The optimum color temperature and deviation range of the fluorescent lamp used in the apparatus of the present invention are determined as follows. For example, the spectral reflection and transmission characteristics of a reflector, diffuse transmission plate, etc. that are considered to be used in a standard white light source device are measured, and the chromaticity of the light emitting surface is predicted by simulation from the spectral energy distribution that approximates the light source used. Nowadays, simulation of the spectral energy distribution of a light source can be easily and accurately performed from the emission spectrum of the fluorescent material used, so by performing the aforementioned predictive calculations on various materials, the chromaticity point of the fluorescent lamp used can be determined using the spectral energy distribution. Even if the reflection and transmission characteristics are slightly different, predictions can be made with high accuracy. The above prediction calculations can be performed using currently commercially available reflectors (for example, aluminum satin reflectors), diffuse transmitting plates (for example, decorative glass, all milky white glass,
The optimal range of the fluorescent lamp as described above was found by examining combinations of light-reducing filters (eg, nylon mesh filters), etc. (opal glass, etc.). Here, the color temperature and deviation range were defined as follows.
In the case where the spectral reflectance and spectral transmittance characteristics of the reflector, mesh filter, and diffuser are respectively defined in claim 2, and the material has characteristics exceeding those ranges, of course The color temperature and deviation are outside the numerical ranges mentioned above. but,
From a chromatic perspective, materials with such characteristics are not preferred as reflective or transparent materials when adjusting white color as in this device. [Embodiments of the Invention] FIG. 1 shows a configuration diagram of an apparatus of the present invention. The light emitted from the fluorescent lamp 1, including the reflected light from the reflector 2, is radiated to the front via the filter frame 3 and the diffuser transmitting plate 4. Figure 2 shows the spectral reflectance of the reflector used in the present invention. Similarly, FIG. 3 shows the spectral transmission of the mesh filter, and FIG. 4 shows an example of the spectral transmission of the diffuse transmission plate. Furthermore, FIG. 5 shows a configuration diagram of a fluorescent lamp used in the apparatus of the present invention. Example 1 When obtaining a device with a color temperature of 6500K and a deviation of 0.003 uv on the light emitting surface using the reflector plate 5 in Fig. 2, 8 in Fig. 3, and 11 in Fig. 4, a mesh filter, and a diffuser plate. The fluorescent lamp used is Fluorescent A as shown in Table 1.
Table 2 shows the color temperature and deviation of the lamp manufactured using D and D. Furthermore, the spectral energy distribution of the fluorescent lamp and the light emitting surface are shown in FIGS. 6 and 7. Example 2 When obtaining a device with a color temperature of 9300K and a deviation of 0.005 uv on the light emitting surface using the reflector plate 6 in Fig. 2, 9 in Fig. 3, and 12 in Fig. 4, a mesh filter, and a diffuser plate. Fluorescent lamp B used is shown in Table 1.
Table 2 also lists the color temperature and deviation of lamps manufactured using D and D. Further, the spectral energy distribution of the fluorescent lamp and the light emitting surface is also shown in conjunction with FIGS. 6 and 7. Example 3 When using the reflector, mesh filter, and diffuser plate 7 in FIG. 2, 10 in FIG. 3, and 13 in FIG. Table 2 also shows the color temperature and deviation of the fluorescent lamps manufactured using the phosphors C and D shown in Table 1. Further, the spectral energy distribution of the fluorescent lamp and the light emitting surface is also shown in conjunction with FIGS. 6 and 7. Comparative Example When obtaining the luminous surface chromaticity as in Example 3,
Using a commercially available daylight fluorescent lamp (the phosphor used is Fluorescent E shown in Table 1), the reflector plate 7 in Figure 2 and 10 in Figure 3, the diffuser plate and the filter frame were coated with the 8
The plastic neutral density filter shown in 14 in the figure (for example, ND-50 made by Soudensha), the plastic color temperature conversion filters 15 and 16 in Fig. 8 (for example, TB 1 and TB 3 made by Tokyo Stage Lighting), and No. 17 and 18 plastic deviation conversion filters (for example, PU 1 and PU 4 manufactured by Soudensha) are inserted and manufactured. The results are shown in Table 2 and Figures 6 and 7. Note that each symbol in the figure corresponds to the light emitting surface chromaticity and lamp symbol in Table 2. As is clear from the above embodiments, in contrast to the conventional method using a plastic filter, the apparatus of the present invention can achieve a predetermined luminous surface chromaticity by simply manufacturing a fluorescent lamp of each chromaticity as shown in the embodiments. It can be seen that the following can be obtained. In addition, since it can be obtained without using plastic filters that inevitably suffer from photobleaching, as shown in Table 2, there is very little change over time, and the chromaticity shift has been improved to the extent that it does not become a problem even after 1000 hours of lighting. . Incidentally, the phosphor used in the fluorescent lamp used in the device of the present invention may be a type of phosphor other than the examples or a mixture of a plurality of phosphors with different composition formulas, and in short, a phosphor within the above-mentioned chromaticity range. If there is, the phosphor used is the first one.
It is not limited to the table in any way. [Effects of the Invention] As is clear from the above description, the device of the present invention uses a fluorescent lamp set to a predetermined chromaticity, thereby eliminating the need for a plastic filter that causes chromaticity deviation. However, the desired chromaticity of the light emitting surface can be obtained. Also, in the past, the transmittance of plastic filters was set in steps, so the color temperature...
Although it was not possible to adjust the deviation stepwise, the device of the present invention has the advantage that the chromaticity of the fluorescent lamp can be set arbitrarily, so that the chromaticity can also be set linearly.
【表】【table】
【表】【table】
第1図は本発明の装置を説明する為の概略図、
第2図は本発明の装置に用いる反射板の分光反射
率を示す特性図、第3図は本発明のメツシユフイ
ルターの分光透過率を示す特性図、第4図は本発
明の拡散板の分光透過率を示す特性図、第5図は
同じく螢光ランプの概略図、第6図及び第7図は
それぞれ実施例にある螢光ランプ及び発光面の分
光エネルギー分布を示す図、第8図は従来例にあ
るプラスチツクフイルターの分光透過率を示す
図、第9図は実施例にある螢光ランプと発光面の
光色を示す色度図。
19……ガラス管、20……螢光体、21……
口金、22……口金ピン、23……電極、1……
螢光ランプ、2……反射板、3……フイルター
枠、4……拡散透過板。
FIG. 1 is a schematic diagram for explaining the device of the present invention,
Fig. 2 is a characteristic diagram showing the spectral reflectance of the reflector used in the device of the present invention, Fig. 3 is a characteristic diagram showing the spectral transmittance of the mesh filter of the present invention, and Fig. 4 is a characteristic diagram showing the spectral transmittance of the mesh filter of the present invention. A characteristic diagram showing the spectral transmittance, FIG. 5 is a schematic diagram of the fluorescent lamp, FIGS. 6 and 7 are diagrams showing the spectral energy distribution of the fluorescent lamp and the light emitting surface in the example, respectively, and FIG. 8 9 is a diagram showing the spectral transmittance of a plastic filter in a conventional example, and FIG. 9 is a chromaticity diagram showing the light color of a fluorescent lamp and a light emitting surface in an embodiment. 19... Glass tube, 20... Fluorescent material, 21...
Base, 22...Base pin, 23...Electrode, 1...
Fluorescent lamp, 2...reflection plate, 3...filter frame, 4...diffuse transmission plate.
Claims (1)
なる螢光ランプを光源とし、前記光源からの光出
力を前面に反射するための反射板と前記光出力が
輝度調整用メツシユフイルター及び拡散透過板を
介して放射されるように構成され、前記螢光ラン
プは、その逆数相関色温度が発光面の逆数相関色
温度よりも小さいことを特徴とする標準白色光源
装置。 2 前記螢光ランプは、その逆数相関色温度が発
光面の逆数相関色温度よりも15〜35(MK-1)小
さく、またCIEuv色度図上における色度座標が完
全放射体軌跡からの距離で0〜0.01(uv)小さい
ことを特徴とする特許請求の範囲第1項記載の標
準白色光源装置。[Scope of Claims] 1. The light source is a fluorescent lamp formed by coating the inner surface of a glass tube with a phosphor, and a reflector plate for reflecting the light output from the light source to the front, and the light output has a brightness. A standard white light source configured to emit light through an adjusting mesh filter and a diffuser transmission plate, wherein the fluorescent lamp has a reciprocal correlated color temperature smaller than that of the light emitting surface. Device. 2 The fluorescent lamp has a reciprocal correlated color temperature that is 15 to 35 (MK -1 ) lower than the reciprocal correlated color temperature of the light emitting surface, and the chromaticity coordinates on the CIE UV chromaticity diagram are different from the perfect radiator locus. The standard white light source device according to claim 1, characterized in that the distance is 0 to 0.01 (uv) smaller.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16679185A JPS6229053A (en) | 1985-07-30 | 1985-07-30 | Illuminant device for white color standard |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16679185A JPS6229053A (en) | 1985-07-30 | 1985-07-30 | Illuminant device for white color standard |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6229053A JPS6229053A (en) | 1987-02-07 |
JPH0586618B2 true JPH0586618B2 (en) | 1993-12-13 |
Family
ID=15837735
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16679185A Granted JPS6229053A (en) | 1985-07-30 | 1985-07-30 | Illuminant device for white color standard |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6229053A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH066334B2 (en) * | 1988-07-15 | 1994-01-26 | 味の素株式会社 | Method for manufacturing container material composed of laminated body |
TW326096B (en) * | 1995-08-24 | 1998-02-01 | Matsushita Electric Ind Co Ltd | Discharge lamp for general lighting services and lighting appliance for general lighting services |
-
1985
- 1985-07-30 JP JP16679185A patent/JPS6229053A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6229053A (en) | 1987-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7731390B2 (en) | Illumination system with multiple sets of light sources | |
US7235792B2 (en) | Color-tuned volumetric light using high quantum yield nanocrystals | |
JP5186526B2 (en) | Lighting device | |
US7821194B2 (en) | Solid state lighting devices including light mixtures | |
US8933620B2 (en) | White light LED module with green and red phosphors and illumination device having the same | |
CN101697654B (en) | Correlated color temperature and color rendering index self-calibration circuit of LED light source composed of multiple light colors | |
RU2621718C2 (en) | Directly visible lighting device based on led (light emitting diode) with homogeneous external lightning | |
RU2633391C2 (en) | Direct view light based on light emitting diodes (leds) with homogeneous mixing of output light | |
KR20110026490A (en) | Solid state lighting device including light mixture | |
US2831966A (en) | Lighting fixtures | |
TW200946820A (en) | Lighting system | |
JPH08293391A (en) | Variable color fluorescent lamp lighting device | |
JPH0586618B2 (en) | ||
JPH0794146A (en) | Lighting lamp, lighting fixture, lighting device and lighting environment system including the same | |
Shakir et al. | Evaluating white LEDs for outdoor landscape lighting application | |
RavindraKumar et al. | A Tunable LED Daylight Luminaire for Textile and Printing Light Booth Application with Optimum LEDs | |
Petrinska et al. | Feasibility study of the reflective properties of façade materials for architectural lighting design | |
CN111911830A (en) | A stepless dimming and color-changing LED lamp and its control method, and a multi-color point LED light distribution method | |
CN220506558U (en) | Automotive LED lighting components and vehicle exterior LED lights containing the same | |
JP3237501B2 (en) | Lighting lamps and lighting equipment | |
CN119993029A (en) | A light emitting method and light emitting device facing limited conditions | |
JP2000231810A (en) | Guide light fixture | |
JP2949126B2 (en) | Lighting reflector | |
JP2024546564A (en) | White light producing device based on crystallized glass panel and its light color adjusting method | |
CN119630151A (en) | A kind of solar lamp bead packaging structure and packaging method thereof |