[go: up one dir, main page]

JPH058495B2 - - Google Patents

Info

Publication number
JPH058495B2
JPH058495B2 JP58216863A JP21686383A JPH058495B2 JP H058495 B2 JPH058495 B2 JP H058495B2 JP 58216863 A JP58216863 A JP 58216863A JP 21686383 A JP21686383 A JP 21686383A JP H058495 B2 JPH058495 B2 JP H058495B2
Authority
JP
Japan
Prior art keywords
recording
optical
recording medium
spot
objective lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58216863A
Other languages
Japanese (ja)
Other versions
JPS60109033A (en
Inventor
Kuninori Shino
Tamotsu Ishii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP58216863A priority Critical patent/JPS60109033A/en
Publication of JPS60109033A publication Critical patent/JPS60109033A/en
Publication of JPH058495B2 publication Critical patent/JPH058495B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光学式記録媒体に光学的に信号を記録
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for optically recording signals on an optical recording medium.

背景技術とその問題点 光学式デイスク、光学式カード等の光学式記録
媒体に、信号で変調されたビームを照射して光学
的にその信号を記録する場合、従来は光学式記録
媒体に対する信号の記録密度の向上を図るため
に、記録媒体にビームの照射によつて形成される
スポツト状記録痕跡の径を可及的に小さくしてい
た。
BACKGROUND TECHNOLOGY AND PROBLEMS When optically recording a signal by irradiating a beam modulated with a signal onto an optical recording medium such as an optical disk or an optical card, conventional methods have been used to record the signal on the optical recording medium. In order to improve the recording density, the diameter of the spot-like recording traces formed by beam irradiation on the recording medium has been made as small as possible.

しかし、この記録痕跡の径を小さくすればする
程、高度なフオーカシング及びトラツキングサー
ボ手段並びに誤り訂正及び修整手段が必要となつ
て来る。
However, the smaller the diameter of this recorded trace, the more sophisticated focusing and tracking servo means and error correction and correction means become necessary.

そこで、逆に、フオーカシング及びトラツキン
グサーボ手段並びに誤り訂正及び修整手段の簡易
化を図ろうとすると、必然的に記録痕跡の径を大
きくしなければならない。
On the other hand, if an attempt is made to simplify the focusing and tracking servo means and the error correction and modification means, it is necessary to increase the diameter of the recorded trace.

この場合、記録痕跡の記録トラツク方向の径を
大きくするのは、記録媒体に対するビームの相対
的移動照射距離を長くすることで、容易に実現で
きる。
In this case, increasing the diameter of the recording trace in the recording track direction can be easily achieved by increasing the relative movement and irradiation distance of the beam with respect to the recording medium.

しかし、記録痕跡の記録トラツク方向と直交す
る方向の径を大きくするには、光源からのビーム
のパワーをその径の2乗に比例して大きくしなけ
ればならないが、レーザ光源の出力光パワーには
自ずから限界があるので、現状では実現困難であ
る。
However, in order to increase the diameter of the recording trace in the direction perpendicular to the recording track direction, the power of the beam from the light source must be increased in proportion to the square of the diameter, but this requires increasing the output optical power of the laser light source. has its own limitations, so it is currently difficult to realize.

発明の目的 かかる点に鑑み、本発明は、単一のレーザ光源
からのビームの光パワーを増大させることなく、
ビーム照射により光学式記録媒体上に形成される
スポツト状記録痕跡の記録トラツク方向と略直交
する方向の径を、実質的に増大させることのでき
る光学式信号記録方法を提案しようとするもので
ある。
OBJECT OF THE INVENTION In view of the above, the present invention provides a method for increasing the optical power of a beam from a single laser light source.
The present invention attempts to propose an optical signal recording method that can substantially increase the diameter of a spot-like recording trace formed on an optical recording medium by beam irradiation in a direction substantially perpendicular to the recording track direction. .

発明の概要 本発明による光学式信号記録方法は、光学式記
録媒体にその記録トラツク方向に対し略直交する
方向に、同一の信号で変調され、対物レンズにて
集光された記録可能閾値以上の光パワーを持つ第
1のビームと、その第1のビームの光軸及び対物
レンズに対して夫々斜めに入射する第2のビーム
とから成る少なくとも2本のビームを並べて照射
して信号の記録を行ない、第1及び第2のビーム
の光学式記録媒体上の各スポツト間の距離dを d≦2dl (但し、dl=0.61λ/NA、ここでλは上記ビームの 波長、NAは対物レンズの開口数) に選定したものである。
SUMMARY OF THE INVENTION The optical signal recording method according to the present invention is characterized in that the optical signal is modulated with the same signal onto an optical recording medium in a direction substantially perpendicular to the recording track direction thereof, and is focused by an objective lens. A signal is recorded by irradiating at least two beams in parallel, each consisting of a first beam having optical power and a second beam obliquely incident on the optical axis of the first beam and the objective lens, respectively. and the distance d between each spot of the first and second beams on the optical recording medium is d≦2dl (however, dl=0.61λ/NA, where λ is the wavelength of the above beam, and NA is the distance of the objective lens. numerical aperture).

かかる本発明によれば、単一のレーザ光源から
のビームの光パワーを増大させることなく、ビー
ム照射により光学式記録媒体上に形成されるスポ
ツト状記録痕跡の記録トラツク方向と略直交する
方向の径を、実質的に増大させることのできる光
学式信号記録方法を得ることができる。
According to the present invention, spot-shaped recording traces formed on an optical recording medium by beam irradiation can be detected in a direction substantially perpendicular to the recording track direction without increasing the optical power of the beam from a single laser light source. It is possible to obtain an optical signal recording method in which the diameter can be substantially increased.

実施例 以下に図面を参照して、本発明の一実施例を詳
細に説明する。先ず、第1図を参照して、本発明
方法を適用した光学式信号記録装置の一例を第1
図を参照して説明する。ある軸AX1上に半導体
レーザ光源1a、コリメータレンズ2a、偏光ビ
ームスプリツタ3及び対物レンズ(集光レンズ)
4を順次配し、この軸AX1に対し直角に光学式
記録媒体5を配する。かくすると、光源1aより
の発散レーザビームはコリメータレンズ2aを通
過することにより平行ビームとなされ、この平行
ビーム(平面波ビーム)が偏光ビームスプリツタ
3を通じて対物レンズ4に入射し、これより集束
ビームBMaが光学式記録媒体5の記録面を照射
する。このビームBMaの光学式記録媒体5の記
録面上のスポツトをSPaとする。
Embodiment An embodiment of the present invention will be described in detail below with reference to the drawings. First, referring to FIG. 1, a first example of an optical signal recording device to which the method of the present invention is applied is shown.
This will be explained with reference to the figures. A semiconductor laser light source 1a , a collimator lens 2a, a polarizing beam splitter 3, and an objective lens (condensing lens) are arranged on a certain axis AX1.
4 are arranged one after another, and an optical recording medium 5 is arranged at right angles to this axis AX1 . In this way, the diverging laser beam from the light source 1a is made into a parallel beam by passing through the collimator lens 2a, and this parallel beam (plane wave beam) enters the objective lens 4 through the polarizing beam splitter 3, and from this the focused beam BMa irradiates the recording surface of the optical recording medium 5. Let SPa be the spot of this beam BMa on the recording surface of the optical recording medium 5.

又、偏光ビームスプリツタ3の反射面(平面)
3aと直交する面内に於いて軸AX1と直交する
軸AX2を設ける。更に、この軸AX1及び軸AX2
を含む面内に於いて、軸AX2に対し軸AX1寄り
に微小角θをなす軸AX3上に他の半導体レーザ
光源1b、コリメータレンズ2bを順次配する。
かくすると、光源1bよりの発散レーザビーム
(その偏光方向は光源1aよりの発散レーザビー
ムの偏光方向に対し直交している)はコリメータ
レンズ2bを通過ることにより平行ビームになさ
れ、この平行ビームが偏光ビームスプリツタ3の
反射面3aで反射した後対物レンズ4に入射し、
これよりの集束ビームBMbが光学式記録媒体5
の記録面に入射する。このビームBMbの光学式
記録媒体5の記録面上のスポツトをSPbとする。
Also, the reflective surface (plane) of the polarizing beam splitter 3
An axis AX 2 perpendicular to the axis AX 1 is provided in a plane perpendicular to 3a. Furthermore, this axis AX 1 and axis AX 2
Another semiconductor laser light source 1b and a collimator lens 2b are sequentially disposed on an axis AX3 that forms a small angle θ toward the axis AX1 with respect to the axis AX2.
In this way, the diverging laser beam from the light source 1b (its polarization direction is orthogonal to the polarization direction of the diverging laser beam from the light source 1a) is made into a parallel beam by passing through the collimator lens 2b, and this parallel beam is After being reflected by the reflective surface 3a of the polarizing beam splitter 3, it enters the objective lens 4,
The focused beam BMb from this is the optical recording medium 5
incident on the recording surface of The spot of this beam BMb on the recording surface of the optical recording medium 5 is designated as SPb.

又、両半導体レーザ光源1a,1bは同じ信号
電流で駆動され、従つてビームBMa,BMbは同
じ信号で光変調されたことになる。又、このビー
ムBMa,BMbは夫々記録可能閾値以上のパワー
を持つている。
Further, both semiconductor laser light sources 1a and 1b are driven with the same signal current, so the beams BMa and BMb are optically modulated with the same signal. Further, each of the beams BMa and BMb has a power exceeding the recordable threshold.

両スポツトSPa,SPb間の距離をdとすると
き、この距離dを d≦2dl (但し、dl=0.61λ/NA、ここでλは両レーザ光源 1a,1bよりのレーザビームの波長、NAは対
物レンズの開口数) に選定する。dIはデイー・レーリーと呼ばれ、記
録媒体5に入射するビームの中心からの距離に対
する光パワーの分布が、対物レンズ4の存在によ
り第7図に示す如く、エアリー分布となり、その
光パワー第1最小値のときの距離に相当する。第
7図の横軸は距離をdlの倍数で表わしている。こ
の場合記録トラツク方向は紙面に垂直となる。
When the distance between both spots SPa and SPb is d, this distance d is d≦2dl (however, dl=0.61λ/NA, where λ is the wavelength of the laser beam from both laser light sources 1a and 1b, and NA is (numerical aperture of the objective lens). dI is called the Airy distribution, and due to the existence of the objective lens 4, the distribution of optical power with respect to the distance from the center of the beam incident on the recording medium 5 becomes an Airy distribution as shown in FIG. Corresponds to the distance at the minimum value. The horizontal axis in FIG. 7 represents distance as a multiple of dl. In this case, the recording track direction is perpendicular to the paper surface.

第2図Aに上述のビームBMa,BMbのスポツ
トSPa,SPbの配置関係を示し、記録トラツク方
向xに対し、直交する方向に配されている。第2
図BのRMはこのビームBMa,BMbによつて光
学式記録媒体5上に記録形成されたスポツト状記
録痕跡を示し、同図のSPpは再生ビームのスポツ
トを示す。このスポツトSPpは相隣る記録痕跡
RM上に跨ることがないように、その最小間隔が
設定されている。
FIG. 2A shows the arrangement of the spots SPa and SPb of the beams BMa and BMb, which are arranged in a direction perpendicular to the recording track direction x. Second
RM in FIG. B indicates a spot-like recording trace formed on the optical recording medium 5 by the beams BMa and BMb, and SPp in the same figure indicates a spot of the reproduction beam. This spot SPp is a neighboring record trace.
The minimum interval is set so that it does not cross over the RM.

因みに、第3図Aのように、ビームBMa,
BMbのスポツトSPa,SPbを結ぶ直線の記録ト
ラツク方向xに対する角度が90°から大幅にずれ
ているときは、第3図Bに示す如く相隣る記録痕
跡RM間の最小間隔を第2図Bと同じ値に選んで
も、再生ビームのスポツトSPpが相隣る記録痕跡
RMに跨る可能性があり、第3図の場合は第2図
の場合に比し再生の分解能が低下していることが
分る。
Incidentally, as shown in Figure 3A, the beams BMa,
When the angle of the straight line connecting spots SPa and SPb of BMb with respect to the recording track direction x is significantly different from 90°, the minimum interval between adjacent recording traces RM is set as shown in Figure 2B, as shown in Figure 3B. Even if the same value is selected, the recording traces where the playback beam spots SPp are adjacent to each other
It can be seen that the reproduction resolution is lower in the case of Fig. 3 than in the case of Fig. 2, since there is a possibility of straddling the RM.

次に、記録媒体として、アクリル基板上にTe,
In,Bi,CS2−Te,Te−C,TeOx等の金属薄
膜を蒸着し、これに上述した如き半導体レーザ光
源を用いた光学式信号記録装置からの信号で変調
された2本の集束レーザビームを照射することに
より金属薄膜の非晶質→結晶の相転移による光反
射率の変化に基づくスポツト状記録痕跡を形成す
るようにした場合に於ける、ビームの光パワーの
記録可能閾値について検討する。
Next, as a recording medium, Te was placed on an acrylic substrate.
A metal thin film such as In, Bi, CS 2 -Te, Te-C, TeOx, etc. is deposited, and two focused lasers are modulated by the signal from an optical signal recording device using a semiconductor laser light source as described above. Study on the recordable threshold of the optical power of the beam when irradiating the beam to form a spot-like recording trace based on the change in light reflectance due to the amorphous-to-crystalline phase transition of a metal thin film. do.

金属薄膜に2本のビームを照射した場合に於け
る熱伝導の方程式は、次式のように表わされる。
但し、Tは温度、tは時間、Uは金属薄膜の熱伝
導率である。
The equation of heat conduction when a metal thin film is irradiated with two beams is expressed as follows.
However, T is temperature, t is time, and U is the thermal conductivity of the metal thin film.

∂T/∂T=U▽2T ……(1) この(1)式を差分方程式に直し、一次元でシユミ
レートした結果を第4図及び第5図に示す。第4
図及び第5図共、横軸は金属薄膜上の2つのビー
ムスポツトの中心からの距離、縦軸は金属薄膜の
温度を示す。第4図は2つのビームスポツトの中
心間距離が0の場合、第5図は1.2dlの場合であ
る。第4図及び第5図に於いて曲線a,b,c;
a′,b′,c′は、レーザビームにより金属薄膜に熱
分布が与えられ、その直後から次第に金属薄膜の
熱が崩壊していく過程の一部を順次示したもので
ある。又、曲線S,S′は夫々曲線a,b,c;
a′,b′,c′を含む無数の熱崩解曲線のうちの各距
離に於ける温度の最高値を結んで形成された包絡
線を示している。又、直線L1,L2,L3,;L1′,
L2′,L3′は金属薄膜の光学的特性変化の閾値の
例を示しており、夫々感度が低、中、高の順にな
つており、これの直線上の包絡線S,S′の幅が金
属薄膜上の2つのスポツト状記録痕跡の記録トラ
ツクと直交する方向の径に対応する。
∂T/∂T=U▽ 2 T...(1) Equation (1) is converted into a difference equation and the results of one-dimensional simulation are shown in FIGS. 4 and 5. Fourth
In both the figure and FIG. 5, the horizontal axis represents the distance from the center of the two beam spots on the metal thin film, and the vertical axis represents the temperature of the metal thin film. Fig. 4 shows the case where the distance between the centers of the two beam spots is 0, and Fig. 5 shows the case when the distance between the centers of the two beam spots is 1.2 dl. Curves a, b, c in Figures 4 and 5;
a', b', and c' sequentially show part of the process in which heat distribution is imparted to the metal thin film by the laser beam, and immediately after that, the heat in the metal thin film gradually collapses. Also, curves S and S' are curves a, b, and c, respectively;
It shows the envelope formed by connecting the highest temperature values at each distance among the countless thermal disintegration curves including a', b', and c'. Also, the straight lines L 1 , L 2 , L 3 , ;L 1 ′,
L 2 ′ and L 3 ′ show examples of threshold values for changes in optical properties of metal thin films, and the sensitivity is in the order of low, medium, and high, respectively, and the envelopes S and S′ on the straight line are The width corresponds to the diameter of two spot-like recording traces on the metal thin film in the direction perpendicular to the recording track.

次に、ビームスポツト間距離(横軸)に対する
金属薄膜上の2つのスポツト状記録痕跡の記録ト
ラツクと直交する方向の径(ピツト径)(縦軸)
の関係を第6図に示す。ここで第6図の横軸及び
縦軸は夫々距離及び径をdlの倍数で表わしてい
る。尚、第6図では、上述の感度L1(=L1′),L2
(=L2′),L3(=L3′)をパラメータとしている。
又、第6図の縦軸上の「*」は単一ビームの場合
の上述の各感度L1,L2,L3に於けるピツト径を
示す。第6図に於いて、曲線の白丸の部分は2つ
のビームスポツトが重なり合つて一つになつてい
る部分を、黒丸の部分は2つのビームスポツトが
分離しているが、その各周縁の最短距離d′がd′≦
dlで、そのビームスポツトに基づくスポツト状記
録痕跡が1つの記録痕跡として再生され得る範囲
内にある部分を示す。従つて、第6図から、2つ
のビームスポツト間距離dが d≦2dl の範囲で、2つのビームスポツトの記録方向と直
交する方向の径が、1つのビームのスポツトの径
より大となつており、しかもd′≦dlの条件を満足
していることが分る。尚、dが0.5dIを越えると、
スポツト径がd=0のときのスポツト径より大と
なるので、効果的である。
Next, the diameter (pit diameter) in the direction perpendicular to the recording track of the two spot-shaped recording traces on the metal thin film (vertical axis) with respect to the distance between the beam spots (horizontal axis)
The relationship is shown in Figure 6. Here, the horizontal and vertical axes in FIG. 6 represent distance and diameter, respectively, as multiples of dl. In addition, in FIG. 6, the above-mentioned sensitivities L 1 (=L 1 ′) and L 2
(=L 2 ′) and L 3 (=L 3 ′) are used as parameters.
Further, "*" on the vertical axis in FIG. 6 indicates the pit diameter at each of the above-mentioned sensitivities L 1 , L 2 , and L 3 in the case of a single beam. In Figure 6, the white circle part of the curve is the part where two beam spots overlap and become one, and the black circle part is the part where the two beam spots are separated, but the shortest point on each peripheral edge is the part of the curve. Distance d′ is d′≦
dl indicates a portion within a range where a spot-like recording trace based on the beam spot can be reproduced as one recording trace. Therefore, from Fig. 6, when the distance d between the two beam spots is in the range d≦2dl, the diameters of the two beam spots in the direction perpendicular to the recording direction are larger than the diameter of the spot of one beam. It can be seen that the condition d′≦dl is satisfied. Furthermore, if d exceeds 0.5dI,
This is effective because the spot diameter is larger than the spot diameter when d=0.

次に第8図以下を参照して、本発明を適用し得
る光学式記録装置の他の例を説明する。
Next, another example of an optical recording device to which the present invention can be applied will be described with reference to FIG. 8 and subsequent figures.

第8図の装置では、記録トラツク方向に対し平
行で、所定間隔を置いて互いに平行な平面を設け
る。一方の平面内の光学式記録媒体5の記録面に
対し直角な軸上に於いて半導体レーザ光源1aか
らのレーザビームがコリメータレンズ2a、偏光
ビームスプリツタ3、対物レンズ4を順次通じて
光学式記録媒体5上に照射せしめられる。他方の
面内の光学式記録媒体5の記録面に対し平行な軸
上に於いて、半導体レーザ光源1bからのレーザ
ビームが、コリメータレンズ2bを通じて偏光ビ
ームスプリツタ3に入射し、そこで90°偏光され
て光学式記録媒体5の記録面に対し垂直なビーム
となされた後、対物レンズ4によつて集光され
て、光学式記録媒体5の記録面が照射せしめられ
る。しかして、上述の互いに平行な2つの平面間
の間隔を選定することによつて、記録媒体5の記
録面上に於ける2つのビームスポツトSPa,SPb
間の距離dを上述の範囲に設定することができ
る。
In the apparatus shown in FIG. 8, planes parallel to the direction of the recording track and parallel to each other are provided at predetermined intervals. On the axis perpendicular to the recording surface of the optical recording medium 5 in one plane, the laser beam from the semiconductor laser light source 1a sequentially passes through the collimator lens 2a, the polarizing beam splitter 3, and the objective lens 4 into an optical system. The recording medium 5 is irradiated with light. On the axis parallel to the recording surface of the optical recording medium 5 in the other plane, the laser beam from the semiconductor laser light source 1b enters the polarizing beam splitter 3 through the collimator lens 2b, where it is polarized by 90 degrees. After the beam is perpendicular to the recording surface of the optical recording medium 5, it is focused by the objective lens 4, and the recording surface of the optical recording medium 5 is irradiated. Therefore, by selecting the spacing between the two planes parallel to each other, the two beam spots SPa and SPb on the recording surface of the recording medium 5 can be
The distance d between them can be set within the above range.

第9図の装置では、レーザ光源として、3つの
レーザ半導体素子1a,1b,1cのアレイから
成る半導体レーザ光源1を設け、素子1aよりの
レーザビームを光学式記録媒体5の記録面に対
し、直角となるように発射せしめると共に、その
両側の素子1b,1cよりのレーザビームを素子
1aよりのレーザビームに対し互いに対称に互い
の角度を持たせるようにする。かくすれば、光学
系の構成が簡単、コンパクト及び調整容易とな
る。しかして、素子1a,1b,1cからのレー
ザビームをコリメータレンズ2、偏光ビームスプ
リツタ3、1/4波長板6、対物レンズ4を順次通 じて、光学式記録媒体5の記録面を照射せしめ
る。この場合、各ビームBMa,BAb,BMcの角
度を選定することにより、記録媒体5の記録面上
のビームスポツトSPa,SPb,SPc間の距離dを
上述の範囲に設定する。この例は、再生装置をも
兼ねており、偏光ビームスプリツタより再生ビー
ムが得られるようになされているが、記録装置の
みであれば、偏光ビームスプリツタ3及び1/4波 長板6を省略し得る。
In the apparatus shown in FIG. 9, a semiconductor laser light source 1 consisting of an array of three laser semiconductor elements 1a, 1b, and 1c is provided as a laser light source, and the laser beam from the element 1a is directed against the recording surface of the optical recording medium 5. The laser beams from elements 1b and 1c on both sides are emitted at right angles, and the laser beams from elements 1b and 1c on both sides are made to have angles symmetrical to each other with respect to the laser beam from element 1a. In this way, the configuration of the optical system becomes simple, compact, and easy to adjust. Thus, the laser beams from the elements 1a, 1b, and 1c are sequentially passed through the collimator lens 2, the polarizing beam splitter 3, the quarter-wave plate 6, and the objective lens 4 to irradiate the recording surface of the optical recording medium 5. . In this case, by selecting the angles of the beams BMa, BAb, and BMc, the distance d between the beam spots SPa, SPb, and SPc on the recording surface of the recording medium 5 is set within the above range. This example also serves as a reproducing device, and the reproducing beam is obtained from the polarizing beam splitter, but if it is only a recording device, the polarizing beam splitter 3 and quarter-wave plate 6 can be omitted. It is possible.

尚、この場合、半導体レーザ光源を用いている
ので、偏光ビームスプリツタ及び1/4波長板を設 けることによつて、半導体レーザ光源に対するバ
ツクトークを回避できるという利点もある。
In this case, since a semiconductor laser light source is used, there is an advantage that backtalk to the semiconductor laser light source can be avoided by providing a polarizing beam splitter and a quarter wavelength plate.

第10図の装置では、1個の半導体レーザ光源
1よりのビームから、回折格子を用いて3本のビ
ームを作り、それらビームを光学式記録媒体5の
記録面に入射せしめるようにした場合である。
In the apparatus shown in FIG. 10, three beams are created from the beam from one semiconductor laser light source 1 using a diffraction grating, and these beams are made to enter the recording surface of the optical recording medium 5. be.

即ち、半導体レーザ光源1よりのレーザビーム
をコリメータレンズ2を通じて回折格子7に入射
せしめて3本のビームを形成し、これらビームを
対物レンズ4を通じて光学式記録媒体5の記録面
を照射せしめる。記録媒体5に入射する3本のビ
ームBMa,BMb,BMcのビームスポツトSPa,
SPb,SPcの間の距離dは、回折格子7の格子間
隔によつて設定される。
That is, a laser beam from a semiconductor laser light source 1 is made incident on a diffraction grating 7 through a collimator lens 2 to form three beams, and these beams are made to irradiate the recording surface of an optical recording medium 5 through an objective lens 4. Beam spots SPa of the three beams BMa, BMb, and BMc incident on the recording medium 5,
The distance d between SPb and SPc is set by the grating spacing of the diffraction grating 7.

又、第1図の装置に於いて、半導体レーザ光源
1b及びコリメータレンズ2bを軸AX3上に配
し、軸AX3と軸AX2のなす角θを任意の信号で
変化させることにより、ビームスポツトの記録ト
ラツクと直交する方向の径を当該信号で変調させ
ることもできる。
In addition, in the apparatus shown in FIG. 1, the semiconductor laser light source 1b and the collimator lens 2b are arranged on the axis AX3 , and the beam can be The diameter of the spot in the direction orthogonal to the recording track can also be modulated by the signal.

尚、記録媒体5の記録面上のビームスポツトの
個数は2つ以上であればいくつでも良い。
Note that the number of beam spots on the recording surface of the recording medium 5 may be any number as long as it is two or more.

光学式記録媒体上のスポツト状記録痕跡は、反
射形の場合は他部との反射率の違い(金属薄膜の
非晶質→結晶の相転移、溶融等による)、又、透
過形の場合は他部との透過率の違いによつて形成
される。
Spot-like recording traces on an optical recording medium are caused by differences in reflectance from other parts in the case of a reflective type (due to phase transition from amorphous to crystalline metal thin film, melting, etc.), and in the case of a transmission type. It is formed due to the difference in transmittance from other parts.

上述せる本発明によれば、単一のレーザ光源か
らのビームの光パワーを増大させることなく、ビ
ーム照射により光学式記録媒体上に形成されるス
ポツト状記録痕跡の記録トラツク方向と略直交す
る方向の径を、実質的に増大させることのできる
光学式信号記録方法を得ることができる。
According to the present invention described above, without increasing the optical power of the beam from a single laser light source, the spot-like recording traces formed on the optical recording medium by beam irradiation are formed in a direction substantially perpendicular to the recording track direction. It is possible to obtain an optical signal recording method that allows the diameter of the optical signal to be substantially increased.

発明の効果 上述せる本発明によれば、単一のレーザ光源か
らのビームの光パワーを増大させることなく、ビ
ーム照射により光学式記録媒体上に形成されるス
ポツト状記録痕跡の記録トラツク方向と略直交す
る方向の径を、実質的に増大させることのできる
光学式信号記録方法を得ることができる。
Effects of the Invention According to the present invention described above, without increasing the optical power of the beam from a single laser light source, the direction of the recording track of the spot-like recording trace formed on the optical recording medium by beam irradiation can be adjusted. It is possible to obtain an optical signal recording method in which the diameter in the orthogonal direction can be substantially increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第8図、第9図及び第10図は夫々本
発明を適用した光学式記録装置の例を示す略線
図、第2図は本発明により得られた光学式記録媒
体上のスポツト状記録痕跡を示すパターン図、第
3図は本発明の説明に供給する記録媒体上のスポ
ツト状記録痕跡を示すパターン図、第4図〜第7
図は本発明の説明に供する特性曲線図である。 BMa,BMb,BMcはビーム、SPa,SPb,
SPcはビームスポツト、1,1a,1b,1cは
レーザ光源、2,2a,2b,はコリメータレン
ズ、3は偏光ビームスプリツタ、4は対物レン
ズ、5は光学式記録媒体である。
FIGS. 1, 8, 9, and 10 are schematic diagrams showing examples of optical recording devices to which the present invention is applied, and FIG. FIG. 3 is a pattern diagram showing spot-like recording traces on a recording medium that will be used to explain the present invention, and FIGS.
The figure is a characteristic curve diagram for explaining the present invention. BMa, BMb, BMc are beams, SPa, SPb,
SPc is a beam spot, 1, 1a, 1b, 1c are laser light sources, 2, 2a, 2b are collimator lenses, 3 is a polarizing beam splitter, 4 is an objective lens, and 5 is an optical recording medium.

Claims (1)

【特許請求の範囲】 1 光学式記録媒体にその記録トラツク方向に対
し略直交する方向に、同一の信号で変調され、対
物レンズにて集光された記録可能閾値以上の光パ
ワーを持つ第1のビームと、該第1のビームの光
軸及び上記対物レンズに対して夫々斜めに入射す
る第2のビームとから成る少なくとも2本のビー
ムを並べて照射して信号の記録を行ない、上記第
1及び第2のビームの上記光学式記録媒体上の各
スポツト間の距離dを d≦2dl (但し、dl=0.61λ/NA、ここでλは上記ビーム の波長、NAは上記対物レンズの開口数) に選定したことを特徴とする光学式信号記録方
法。
[Claims] 1. A first optical recording medium having optical power equal to or higher than a recordable threshold value, which is modulated with the same signal and focused by an objective lens in a direction substantially orthogonal to the recording track direction of the optical recording medium. and a second beam that is obliquely incident on the optical axis of the first beam and the objective lens, respectively, to record a signal by irradiating the first beam in parallel. And the distance d between each spot of the second beam on the optical recording medium is d≦2dl (where dl=0.61λ/NA, where λ is the wavelength of the beam and NA is the numerical aperture of the objective lens. ) An optical signal recording method characterized by being selected as follows.
JP58216863A 1983-11-17 1983-11-17 Optical signal recording method Granted JPS60109033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58216863A JPS60109033A (en) 1983-11-17 1983-11-17 Optical signal recording method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58216863A JPS60109033A (en) 1983-11-17 1983-11-17 Optical signal recording method

Publications (2)

Publication Number Publication Date
JPS60109033A JPS60109033A (en) 1985-06-14
JPH058495B2 true JPH058495B2 (en) 1993-02-02

Family

ID=16695081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58216863A Granted JPS60109033A (en) 1983-11-17 1983-11-17 Optical signal recording method

Country Status (1)

Country Link
JP (1) JPS60109033A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH087883B2 (en) * 1986-12-15 1996-01-29 株式会社リコー Optical disk master exposure method
JPS6452236A (en) * 1987-08-21 1989-02-28 Sharp Kk Formation of master disk for optical disk
JP2796312B2 (en) * 1988-09-14 1998-09-10 株式会社日立製作所 Information recording / reproducing apparatus, information recording / reproducing method, information reproducing apparatus, and information bit arrangement method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59195350A (en) * 1983-04-21 1984-11-06 Victor Co Of Japan Ltd Optical recording and reproducing device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59195350A (en) * 1983-04-21 1984-11-06 Victor Co Of Japan Ltd Optical recording and reproducing device

Also Published As

Publication number Publication date
JPS60109033A (en) 1985-06-14

Similar Documents

Publication Publication Date Title
US4893298A (en) Record-carrier body provided with a relief structure of optically detectable servo-track portions and sector addresses and apparatus for forming said structure
JP2725632B2 (en) Optical head device
JPH0721569A (en) Optical disk, optical disk reproducing device and recording and reproducing method for optical disk
JPH05101431A (en) Optical disk reproducing device
EP0068904B1 (en) Apparatus for reading information stored in a track pattern on a radiation reflecting record
JP2897924B2 (en) Optical head
JPS6325408B2 (en)
JPH058495B2 (en)
JPS63229640A (en) Optical head device
JPS61214146A (en) Optical head
JPS6211327B2 (en)
JPH0529969B2 (en)
JPS5879207A (en) Optical pickup device
JP2001176106A (en) Pickup device and information recording/reproducing device having its pickup device
JPS59142758A (en) Optical head for optical memory
US5706263A (en) Method and apparatus for high-density reproduction
JPS61160846A (en) Producer of light spot having cross-section form with large aspect ratio
JP2634221B2 (en) Optical recording / reproducing device
JP2644110B2 (en) Optical recording / reproducing device
JP2576504B2 (en) Optical information processing device
KR100200867B1 (en) Optical pickup device for double layer record reproduction
JPS63200329A (en) Optical head
JP3019867B2 (en) Optical pickup device
JP3010032B2 (en) Optical head
JP2537843B2 (en) Photodetector