[go: up one dir, main page]

JPH0583862A - Power converter - Google Patents

Power converter

Info

Publication number
JPH0583862A
JPH0583862A JP3236689A JP23668991A JPH0583862A JP H0583862 A JPH0583862 A JP H0583862A JP 3236689 A JP3236689 A JP 3236689A JP 23668991 A JP23668991 A JP 23668991A JP H0583862 A JPH0583862 A JP H0583862A
Authority
JP
Japan
Prior art keywords
output
power
phase
voltage
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3236689A
Other languages
Japanese (ja)
Inventor
Yoshiaki Miyazawa
芳明 宮澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3236689A priority Critical patent/JPH0583862A/en
Priority to TW81107256A priority patent/TW245848B/zh
Priority to KR92017008A priority patent/KR960009515B1/en
Priority to CN92111663A priority patent/CN1035973C/en
Publication of JPH0583862A publication Critical patent/JPH0583862A/en
Priority to US08/365,317 priority patent/US5473528A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inverter Devices (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To eliminate a restriction in a parallel operation limited to power converters having the same rating and the same characteristics by estimating a parameter of a system and controlling with an optimum control parameter. CONSTITUTION:A system parameter calculator 121 detects an output current varying when output voltage and phase are varied based on variations in the output voltage and phases and a command applied from an output reference controller 122 to a voltage controller 116a and a phase sync controller 118a, and calculates parameters such as voltage, phase, impedance of a system based on it to estimate it. An output reference controller 122 obtains optimum control outputs of output voltage and phase from system parameter estimated data calculated by the calculator 121 and applies the output as a reference of control of the controllers 116a and 118a. Thus, a restriction in a parallel operation limited to power converters having the same rating and the same characteristics can be eliminated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、商用電源等の第1の電
源、又は蓄電池や燃料電池等をエネルギ源とする第2の
電源を入力として安定な交流電力を供給する電力変換装
置に係り、特に複数台の電力変換装置の出力を容量増大
又は冗長化のために相互に連系するように構成した電力
変換装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power converter for supplying stable AC power by inputting a first power supply such as a commercial power supply or a second power supply using a storage battery, a fuel cell or the like as an energy source. In particular, the present invention relates to a power conversion device configured so that outputs of a plurality of power conversion devices are interconnected for capacity increase or redundancy.

【0002】[0002]

【従来の技術】コンピュ―タ等の重要負荷システムの電
源として、交流入力電源停電時或いは瞬時電圧低下時で
も蓄電池を電源として安定な交流電力を供給する無停電
電源装置(以下、UPSと記す)が広く使われるように
なってきている。特に近年のオンライン通信ネットワ―
クをはじめとしたシステムの大規模化に伴ない容量増大
と給電信頼性向上のためにUPSを並列運転するシステ
ムも用いられている。
2. Description of the Related Art An uninterruptible power supply (hereinafter referred to as UPS) that supplies stable AC power using a storage battery as a power supply even when an AC input power supply is interrupted or a momentary voltage drop is used as a power supply for an important load system such as a computer. Is becoming widely used. Especially in recent years online communication networks
A system that operates UPS in parallel is also used to increase the capacity and improve the reliability of power supply as the system scales up.

【0003】図3に従来のこの種のUPSの並列運転シ
ステムの一例を示す。図3において10は交流入力電
源、1aと1bは各出力が並列に接続されたUPS、1
2は負荷、13は並列出力母線である。UPS1aと1
bの内部構成は全く同一でありaとbの添字を付して区
別しており、その主回路は、コンバ―タ11a,11
b、蓄電池12a,12b、インバ―タ13a,13
b、交流フィルタ14a,14bで構成される。UPS
1a,1bの主回路構成は公知のものであるが、交流入
力電源10の電力をコンバ―タ11a,11bで直流電
力に変換し、インバ―タ13a,13bで再び交流電力
に変換し、更に交流フィルタ14a,14bで出力電圧
波形を正弦波形に改善し、負荷12へ給電する。蓄電池
12a,12bは通常コンバ―タ11a,11bで充電
されており、交流入力電源10が停電した際に蓄電池1
2a,12bの直流電力をインバ―タ13a,13bに
供給することにより、UPS1a,1bは無停電で給電
を継続する。
FIG. 3 shows an example of a conventional parallel operation system of this kind of UPS. In FIG. 3, 10 is an AC input power source, 1a and 1b are UPSs in which respective outputs are connected in parallel, 1
Reference numeral 2 is a load, and 13 is a parallel output busbar. UPS 1a and 1
The internal configurations of b are completely the same and are distinguished by adding subscripts of a and b, and their main circuits are converters 11a and 11b.
b, storage batteries 12a, 12b, inverters 13a, 13
b, AC filters 14a and 14b. UPS
The main circuit configurations of 1a and 1b are known, but the power of the AC input power source 10 is converted into DC power by the converters 11a and 11b, and converted into AC power again by the inverters 13a and 13b. The output voltage waveform is improved to a sine waveform by the AC filters 14a and 14b, and power is supplied to the load 12. The storage batteries 12a and 12b are normally charged by the converters 11a and 11b, and when the AC input power source 10 fails,
By supplying the DC power of 2a and 12b to the inverters 13a and 13b, the UPS 1a and 1b continue the power supply without interruption.

【0004】並列出力母線13を介して並列接続された
UPS1a,1bの並列運転の目的は、システム容量を
UPS1aと1bの出力容量の和とする出力容量増加ま
たはUPS1a,1bのうち1台分を予備容量として給
電信頼性向上を図る冗長化である。
The purpose of parallel operation of the UPS 1a, 1b connected in parallel via the parallel output bus bar 13 is to increase the output capacity by taking the system capacity as the sum of the output capacities of the UPS 1a and 1b, or for one of the UPS 1a, 1b. It is a redundancy to improve the power supply reliability as a reserve capacity.

【0005】この並列運転は、制御回路を構成する11
0a〜119a,110b〜119bにより以下のよう
に制御される。即ち、CT111a,111bによって
検出した各UPSの出力電流の偏差ΔIと出力電圧から
有効電力検出器119a,119bにより有効電力偏差
ΔPを、無効電力検出器110a,110bにより無効
電力偏差ΔQを検出する。有効電力偏差ΔPにより、発
振器117a,117bを基準とする位相同期制御器1
18a,118bへの位相補正を行い、無効電力偏差Δ
Qにより、出力電圧を定電圧制御する電圧制御器116
a,116bへの電圧振幅の補正を行い、ゲ―ト信号発
生器115a,115bの発生するインバ―タ13a,
13bの駆動信号を制御することにより、並列運転制御
を行う。この並列運転制御の動作原理は、例えば特許第
1215332号「インバ―タの並列運転装置」等によ
って周知の技術であるのでその詳細説明は省略する。
This parallel operation constitutes a control circuit 11
It is controlled as follows by 0a to 119a and 110b to 119b. That is, the active power detectors 119a and 119b detect the active power deviation ΔP and the reactive power detectors 110a and 110b detect the reactive power deviation ΔQ from the deviation ΔI and the output voltage of the output current of each UPS detected by the CTs 111a and 111b. The phase synchronization controller 1 based on the oscillators 117a and 117b based on the active power deviation ΔP
18a, 118b phase correction, reactive power deviation Δ
The voltage controller 116 that controls the output voltage at a constant voltage by Q
a, 116b, and the inverters 13a, 115b generated by the gate signal generators 115a, 115b.
Parallel operation control is performed by controlling the drive signal of 13b. The operation principle of this parallel operation control is a well-known technique, for example, in Japanese Patent No. 1215332 “Inverter parallel operation device” and the like, and therefore detailed description thereof will be omitted.

【0006】図3の如きUPSの並列運転システムにお
いては、図3に図示されるように並列バランスの補正制
御のための装置間の信号の授受が必要であり、UPS1
aと1bが同一の容量、同一構成、同一の制御性能であ
ることも必要であった。
In the UPS parallel operation system as shown in FIG. 3, it is necessary to exchange signals between the devices for parallel balance correction control as shown in FIG.
It was also necessary that a and 1b had the same capacity, the same configuration, and the same control performance.

【0007】[0007]

【発明が解決しようとする課題】図3の例を基に従来技
術による電力変換装置の並列運転システムの技術課題を
整理すると次のようになる。
The technical problems of the parallel operation system for the power conversion device according to the prior art will be summarized as follows based on the example of FIG.

【0008】(1) 各電力変換装置は、相互に並列運転制
御のたるの制御信号の授受が必要であり、本当の意味で
の装置単位での独立制御の構成とすることができなかっ
た。 (2) 各電力変換装置の出力は、電圧分担が均等になるよ
う制御され並列運転は同一定格で同一特性の電力変換装
置に限定されていた。
(1) It is necessary for each power conversion device to exchange control signals for parallel operation control with each other, and it has not been possible to have a structure of independent control in a device unit in the true sense. (2) The output of each power converter was controlled so that the voltage distribution was equalized, and parallel operation was limited to power converters with the same rating and characteristics.

【0009】(3) 負荷となるコンピュ―タシステムの増
設に対応した電源容量増加のための電力変換装置の増設
に関し、上記(2) 項より、当初の計画段階より予備容量
を正確に見込んだ設備計画を立てない限りフレキシブル
な対応が困難であることや、 前記(1) 項より制御信号
の授受が必要であるためオンライン給電での増設工事
のリスクがあることより、増設工事に対する時期や時間
の制約があった。
(3) Regarding the expansion of the power conversion device to increase the power supply capacity corresponding to the expansion of the load computer system, from the above item (2), equipment that accurately estimates the spare capacity from the initial planning stage. It is difficult to respond flexibly unless a plan is made, and since it is necessary to send and receive control signals according to item (1) above, expansion work with online power supply is required.
Due to the risk of the above, there were restrictions on the time and time for the expansion work.

【0010】本発明は、以上の点に鑑みなされたもので
あり、電力変換装置の出力を容量増大または冗長化のた
めに相互に連系するシステムにおいて、装置間の相互の
制御信号の授受を不要とすると共に、同一定格、同一特
性の装置によるシステム構成に限定しないフレキシブル
な電力変換装置を提供することを目的とする。
The present invention has been made in view of the above points, and in a system in which the outputs of power converters are interconnected for capacity increase or redundancy, mutual exchange of control signals between the devices is performed. An object of the present invention is to provide a flexible power conversion device that is not necessary and is not limited to a system configuration of devices having the same rating and the same characteristics.

【0011】[0011]

【課題を解決するための手段】本発明は上記目的を達成
するために、電力変換装置の出力電圧又は出力位相を変
化させた時の出力電流の変化より並列接続(連系)され
た並列出力母線のパラメ―タを推定する手段と、推定さ
れたパラメ―タに応じて電力変換装置の定格に見合った
出力電力分担となるよう電力変換装置の出力電圧、出力
位相を最適に制御する手段を電力変換装置の制御部に設
けたものである。
In order to achieve the above object, the present invention provides a parallel output (parallel connection) of parallel outputs connected in parallel based on a change in output current when the output voltage or output phase of a power converter is changed. A means for estimating the parameters of the busbar and a means for optimally controlling the output voltage and output phase of the power converter so that the output power is shared according to the estimated parameters according to the estimated parameters. It is provided in the control unit of the power converter.

【0012】[0012]

【作用】このような構成の電力変換装置においては、出
力電圧、出力位相を制御するための最適制御パラメ―タ
が、出力電圧、出力位相を変化させた時の出力電流の変
化のデ―タより推定され、常に最適制御状態を学習しな
がら制御動作を行うようにしている。
In the power converter having such a configuration, the optimum control parameter for controlling the output voltage and the output phase is the data of the change in the output current when the output voltage and the output phase are changed. Based on the estimation, the control operation is always performed while learning the optimum control state.

【0013】[0013]

【実施例】以下本発明の一実施例を図1を参照して説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG.

【0014】図1において、図3と同一番号を付した構
成要素は、図3のと同一機能のものであり、その説明は
省略するが、2は図3の1a,1bに対応するUPS、
21はインバ―タ13aを並列出力母線13に連系する
ための連系インピ―ダンス(図3の構成の14a,14
bと同様な構成としても良い)121は系統パラメ―タ
演算器、122は出力基準制御器である。
In FIG. 1, the components designated by the same numbers as those in FIG. 3 have the same functions as those in FIG. 3, and the description thereof will be omitted. However, 2 is a UPS corresponding to 1a and 1b in FIG.
Reference numeral 21 is an interconnection impedance for connecting the inverter 13a to the parallel output bus bar 13 (14a, 14a in the configuration of FIG. 3).
(The configuration may be the same as that of b) 121 is a system parameter calculator, and 122 is an output reference controller.

【0015】系統パラメ―タ演算器121は、出力基準
制御器122より電圧制御器116a,位相同期制御器
118aへ与えられた出力電圧、出力位相の変化と指令
に基づいて出力電圧、出力位相が変化した際に、変動す
る出力電流を検出し、(有効電流分と無効電流分に分け
て検出)これを基に系統の電圧、位相、インピ―ダンス
等のパラメ―タを演算し推定する。出力基準制御器12
2は、この系統パラメ―タ演算器121によって演算さ
れた系統パラメ―タ推定デ―タより、出力電圧、出力位
相の最適制御デ―タを求め、このデ―タを電圧制御器1
16a、位相同期制御器118aに制御の基準として与
える。次に上記のように構成された本発明の実施例の作
用について説明する。
The system parameter calculator 121 outputs the output voltage and the output phase based on the output voltage and the output phase change and the command given from the output reference controller 122 to the voltage controller 116a and the phase synchronization controller 118a. When there is a change, the fluctuating output current is detected, and the parameters of the system voltage, phase, impedance, etc. are calculated and estimated based on this (divided into active current and reactive current). Output reference controller 12
2 obtains the optimum control data of the output voltage and the output phase from the system parameter estimation data calculated by the system parameter calculator 121, and determines this data as the voltage controller 1
16a, which is given to the phase synchronization controller 118a as a control reference. Next, the operation of the embodiment of the present invention configured as described above will be described.

【0016】図1の作用を理解し易くするために、図2
に連系する系統のパラメ―タを含めた等価回路を記す。
図2においてeK はインバ―タ13aの出力電圧、eX
は系統側の無負荷端子電圧、Kは連系インピ―ダンス2
1、Xは系統側のインピ―ダンス、IK はUPS2の出
力電流、IL は負荷電流を表わすものであり、いずれも
振幅と位相を持ったベクトル量である。ここで、eK 、
X、IL 、は未知のパラメ―タであり、それ以外のもの
はUPS2自身のパラメ―タ或いは検出可能なパラメ―
タである。
To facilitate understanding of the operation of FIG. 1, FIG.
The equivalent circuit including the parameters of the system connected to is described in.
In FIG. 2, eK is the output voltage of the inverter 13a, eX
Is the no-load terminal voltage on the grid side, K is the interconnection impedance 2
1, X are impedances on the system side, IK is the output current of UPS2, and IL is the load current, and both are vector quantities having amplitude and phase. Where eK,
X and IL are unknown parameters, and other parameters are UPS2's own parameters or detectable parameters.
It is.

【0017】例えば、出力基準制御器122により、電
圧制御器116aにインバ―タ13aの出力電圧eK を
eK1,eK2,eK3の3種に変化させる指令を与えた際
に、UPS2の出力電流IK1,IK2,IK3に変化したと
する。出力電流IL のこの変化はCT111aを介して
系統パラメ―タ演算器121により検出される。
For example, when the output reference controller 122 gives the voltage controller 116a a command to change the output voltage eK of the inverter 13a into three kinds of eK1, eK2, and eK3, the output current IK1 of the UPS2, Suppose it has changed to IK2 and IK3. This change in the output current IL is detected by the system parameter calculator 121 via the CT 111a.

【0018】3種のケ―スにおいて、並列出力母線13
の電圧の変化はほとんどないとするとIL はいずれのケ
―スでも一定と考えて良く、次の3つの関係式が得られ
る。 (eK1―eX )/(K+X)=IK1―IL ……(1) (eK2―eX )/(K+X)=IK2―IL ……(2) (eK3―eX )/(K+X)=IK3―IL ……(3) この3つの関係式より未知のパラメ―タeK 、X、IL
が求められる。
In three cases, the parallel output bus bar 13
It can be considered that IL is constant in any case, assuming that there is almost no change in the voltage of, and the following three relational expressions are obtained. (EK1−eX) / (K + X) = IK1−IL …… (1) (eK2−eX) / (K + X) = IK2−IL …… (2) (eK3−eX) / (K + X) = IK3−IL ・ ・ ・(3) Unknown parameters eK, X, IL from these three relations
Is required.

【0019】出力電圧eK の振幅のみを変化させたとす
れば電流の無効分に相当する量のみで上記の3つの関係
式を解き、無効分に相当するパラメ―タを求めることが
できる。
If only the amplitude of the output voltage eK is changed, the above three relational expressions can be solved only by the amount corresponding to the reactive component of the current, and the parameter corresponding to the reactive component can be obtained.

【0020】同様にして、インバ―タ13aの出力位相
の変化指令を位相同期制御器118aに与えた時の出力
電流IL の変化を系統パラメ―タ演算器121により検
出して上記の如き関係式で解けば、有効分に相当するパ
ラメ―タを求めることができる。このようにして系統の
パラメ―タeK 、X、ILは系統パラメ―タ演算器12
1により演算し、推定される。この推定パラメ―タに基
づき、出力基準制御器122は出力電圧、出力位相の最
適制御パラメ―タを求める。通常、系統の容量は系統イ
ンピ―ダンスXに関連したものであるからXの大きさよ
り、系統とUPS2との負荷分担を決めるとともに、I
L の推定デ―タからもUPS2の出力すべき電力も設定
できる。即ち、系統とUPS2の出力との負荷分担及び
UPS2の出力すべき電力をUPS2の定格に見合った
レベルに制御する出力電圧、出力位相の最適制御パラメ
―タは、電圧制御器116a、位相同期制御器118a
に制御の基準として与えられる。この結果、UPS2の
出力電圧、出力位相は最適に制御され、上記の動作を所
定の周期で行えば、系統のパラメ―タの変化にも常に追
従した最適制御ができる。
Similarly, the change of the output current IL when the change command of the output phase of the inverter 13a is given to the phase synchronization controller 118a is detected by the system parameter calculator 121, and the relational expression as described above is obtained. If you solve with, you can obtain the parameters corresponding to the effective amount. In this way, the system parameters eK, X, and IL are the system parameter computing unit 12
1 is calculated and estimated. Based on this estimated parameter, the output reference controller 122 finds the optimum control parameters for the output voltage and output phase. Normally, the capacity of the system is related to the system impedance X, so the load sharing between the system and UPS2 is determined from the size of X, and I
The power to be output by UPS2 can also be set from the estimated data of L. That is, the load sharing between the system and the output of UPS2 and the output voltage and output phase optimum control parameters for controlling the power to be output by UPS2 to a level commensurate with the rating of UPS2 are voltage controller 116a and phase synchronization control. Bowl 118a
Given as a control criterion. As a result, the output voltage and the output phase of the UPS 2 are optimally controlled, and if the above operation is performed in a predetermined cycle, the optimal control that always follows the changes in the system parameters can be performed.

【0021】このようにして、本実施例では、系統のパ
ラメ―タを推定し、これに基づいた最適制御制御パラメ
―タで制御することにより、同一定格で同一特性の電力
変換装置に限定された並列運転の制約を解消するととも
に並列運転制御のための制御信号の授受も不要であるこ
とより負荷システム増設に対応した装置増設工事も容易
なフレキシブルなシステムを構成することができる。
In this way, in this embodiment, the parameters of the system are estimated, and the optimum control based on the parameters is controlled, so that the power conversion device having the same rating and the same characteristics is limited. Since the restriction of parallel operation is solved and the control signal for parallel operation control is not required, it is possible to configure a flexible system that facilitates equipment expansion work corresponding to load system expansion.

【0022】図1の実施例ではUPSを引用して説明し
たが、UPSに限定するものではなく他の電力変換装置
であっても良い。又、(コンバ―タ+インバ―タ)の構
成に限定せず、回路構成や方式は他のタイプの電力変換
装置であっても良い。更に、第2の電源である蓄電池
は、他のエネルギ源、例えば燃料電池等であっも良い。
Although the embodiment of FIG. 1 has been described with reference to UPS, the invention is not limited to UPS, and another power conversion device may be used. Further, the configuration is not limited to the (converter + inverter) configuration, and the circuit configuration and system may be another type of power conversion device. Furthermore, the storage battery that is the second power source may be another energy source, such as a fuel cell.

【0023】[0023]

【発明の効果】以上説明のように、本発明によれば、電
力変換装置の出力を容量増大又は冗長化のために相互に
連系するシステムにおいて、装置間の相互の制御信号の
授受を不要とするとともに、同一定格、同一特性の装置
によるシステム構成に限定されることを解消し、負荷シ
ステム増設にもフレキシブルに対応可能な電力変換装置
を提供することができる。
As described above, according to the present invention, in a system in which the outputs of power conversion devices are interconnected for capacity increase or redundancy, it is not necessary to exchange control signals between the devices. In addition, it is possible to provide a power conversion device that can be flexibly adapted to load system expansion, without being limited to a system configuration of devices having the same rating and the same characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電力変換装置の一実施例を示したブロ
ック図。
FIG. 1 is a block diagram showing an embodiment of a power conversion device of the present invention.

【図2】図1の実施例の作用を説明するための等価回路
図。
FIG. 2 is an equivalent circuit diagram for explaining the operation of the embodiment of FIG.

【図3】従来の電力変換装置の並列運転システムの構成
例を示したブロック図。
FIG. 3 is a block diagram showing a configuration example of a parallel operation system of a conventional power conversion device.

【符号の説明】[Explanation of symbols]

1a,1b,2 …UPS 10 …入力交流電源 11a,11b …コンバ―タ 12 …負荷 12a,12b …蓄電池 13 …並列出力母線 13a,13b …インバ―タ 14a,14b …交流フィルタ 110a,110b…無効電力検出器 111a,111b…CT 115a,115b…ゲ―ト信号発生器 116a,116b…電圧制御器 117a,117b…発振器 118a,118b…位相同期制御器 119a,119b…有効電力検出器 21 …連系インピ―ダンス 121 …系統パラメ―タ演算器 122 …出力基準制御器 1a, 1b, 2 ... UPS 10 ... Input AC power supply 11a, 11b ... Converter 12 ... Load 12a, 12b ... Storage battery 13 ... Parallel output busbars 13a, 13b ... Inverter 14a, 14b ... AC filter 110a, 110b ... Invalid Power detectors 111a, 111b ... CT 115a, 115b ... Gate signal generators 116a, 116b ... Voltage controllers 117a, 117b ... Oscillators 118a, 118b ... Phase synchronization controllers 119a, 119b ... Active power detector 21 ... Interconnection Impedance 121 ... System parameter calculator 122 ... Output reference controller

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 商用電源等の第1の電源、又は蓄電
池や燃料電池等をエネルギ源とする第2の電源を入力と
して安定な交流電力を供給する電力変換装置において、
複数台の該電力変換装置の出力を容量増大又は冗長化の
ために相互に連系するように構成し、該電力変換装置の
出力電圧又は出力位相を変化させた時の出力電流に変化
より連系された系統のパラメ―タを推定する手段と、推
定されたこのパラメ―タに応じて該電力変換装置の出力
電圧、出力位相を制御する手段を設けた電力変換装置。
1. A power converter for supplying stable AC power by inputting a first power source such as a commercial power source or a second power source using a storage battery, a fuel cell or the like as an energy source,
The outputs of a plurality of the power conversion devices are configured to be interconnected for capacity increase or redundancy, and the output voltage or output current of the power conversion devices is changed depending on the output current. An electric power conversion device comprising means for estimating a parameter of a system to be connected and means for controlling an output voltage and an output phase of the electric power conversion device according to the estimated parameter.
JP3236689A 1991-09-18 1991-09-18 Power converter Pending JPH0583862A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3236689A JPH0583862A (en) 1991-09-18 1991-09-18 Power converter
TW81107256A TW245848B (en) 1991-09-18 1992-09-15
KR92017008A KR960009515B1 (en) 1991-09-18 1992-09-18 Power inverting method and system
CN92111663A CN1035973C (en) 1991-09-18 1992-09-18 Power inverting method and system
US08/365,317 US5473528A (en) 1991-09-18 1994-12-28 Parallel connection of different types of AC power supplies of differing capacities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3236689A JPH0583862A (en) 1991-09-18 1991-09-18 Power converter

Publications (1)

Publication Number Publication Date
JPH0583862A true JPH0583862A (en) 1993-04-02

Family

ID=17004315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3236689A Pending JPH0583862A (en) 1991-09-18 1991-09-18 Power converter

Country Status (1)

Country Link
JP (1) JPH0583862A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986001429A1 (en) * 1984-08-27 1986-03-13 Toray Industries, Inc. Solid-liquid separating apparatus
JP2006054953A (en) * 2004-08-11 2006-02-23 Densei Lambda Kk Uninterruptible power supply device and system, and control method for uninterruptible power supply device
JP2008043184A (en) * 2006-05-25 2008-02-21 Ebara Corp Power supply device and synchronous operation method of power conversion device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986001429A1 (en) * 1984-08-27 1986-03-13 Toray Industries, Inc. Solid-liquid separating apparatus
JP2006054953A (en) * 2004-08-11 2006-02-23 Densei Lambda Kk Uninterruptible power supply device and system, and control method for uninterruptible power supply device
JP2008043184A (en) * 2006-05-25 2008-02-21 Ebara Corp Power supply device and synchronous operation method of power conversion device

Similar Documents

Publication Publication Date Title
US11159042B2 (en) Power systems and methods using voltage waveform signaling
CN112398141B (en) Device and method for providing a power interface
EP0492396B1 (en) Parallel inverter system
US6803679B1 (en) Parallel redundant power system and method for control of the power system
KR101804469B1 (en) UPS having 3 Phase 4 wire inverter with 3-leg
JPH1189096A (en) Operation control method of distributed power supply equipment
US5182463A (en) 3-Phase converter apparatus
KR101793416B1 (en) Apparatus, System and Method for Control of Voltage Source Invertor
WO2018234046A1 (en) Multi-mode ups system with an improved energy saver mode
Panda et al. An efficient SoC-balancing based power management strategy for interconnected subgrids of DC microgrid
Radwan et al. Bidirectional power management in hybrid AC-DC islanded microgrid system
Li et al. A converter-based battery energy storage system emulator for the controller testing of a microgrid with dynamic boundaries and multiple source locations
US11515724B1 (en) Electrical unit and backup power system
JPH0583862A (en) Power converter
JP2000083330A (en) Distributed power supply installation
JP2010110120A (en) Ac power supply system
JPH04351424A (en) Power supply
JPH0583860A (en) Power converter
JPH05252668A (en) Power converter
JP2732667B2 (en) Battery power storage system
US11888344B2 (en) Reversed power and grid support with a modular approach
JPH04299025A (en) Dc power unit
Ninomiya et al. Novel control strategy for parallel operation of power supply modules
US20230246452A1 (en) Power recovery under grid contingencies using droop-controlled grid-forming inverters
Agrawal et al. Distributed Multi-objective Control of Hybrid Microgrid in Autonomous Mode